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A variational method is developed based on the Hartree-Fock approximation, but not 
restricted to a single Slater determinant trial space. The idea is to find a subspace of 
collective states which are Strongly coupled to the ground state by providing a system- 
atic technique to generate these basis states from a Hartree-Fock-like state. In the 
resulting basis space a residual diagonalization is easily performed. An application to a 
solvable model is made, both to justify and to investigate the structure of our approach. 

PACS : 21.60. Jz; 21.60. Fw 

1. Introduction 

In nuclear structure studies one is often interested 
only in the low-lying bound states. If a complete set 
of eigenstates is not needed, the large diagonaliz- 
ations which occur in a shell model calculation may 
be avoided. This is the motivation for shape mixing 
calculations in deformed nuclei, where one mixes 
solutions of the Hartree-Fock (HF) equations which 
possess different deformation or shapes. 
From a theoretical standpoint there is a clear moti- 
vation to base an approach on the variational prin- 
ciple: the many-body Schradinger equation arises 
from it when the class of trial wave functions is 
unrestricted. The HF approximation [1] is obtained 
when the trial wave function is restricted to be a 
single Slater determinant (SD). If one also includes 
different configurations in the class of trial wave 
functions, then one obtains the multiconfiguration 
HF approach [2]. 
If a good description of the lowest-lying states of the 
system is desired, then one should know a priori 
which configurations should be included. Recently, 
Miller et al. [3-5] proposed a systematic approach 
for generating a set of basis states which are all 
solutions to the HF variational equations. Such an 
approach requires solving the HF problem not only 
once, but as many times as the number of basis 
states is desired. 

The purpose of the present work is to propose a 
method, based on the variational principle, that con- 
stitutes a more efficient way of generating the basis 
states that precede a configuration mixing calcu- 
lation. To achieve this goal, the HF problem is 
reformulated in a fashion that provides one with a 
novel way of viewing its inner structure. 
Our formalism is presented in Sect. 2, while an ap- 
plication to a solvable model is discussed in Sect. 3. 
Some conclusions are drawn in Sect. 4. 

2. Formalism 

Our starting point is to consider the HF problem 
not from the customary (Roothaan's [ lJ)  point of 
view but from a different perspective, by investigat- 
ing the connection between the H F - S S D ,  [HF),  
and a given "starting" SD, I~o), which usually (al- 
though by no means necessarily) will be the unper- 
turbed ground state (u.g.s.) 

N 

I~o) = IV[ ~[ 10). (2.1) 
i - - 1  

This is the ground state (g.s.) of the N-fermion sys- 
tem when the Hamiltonian /q=  ~ +  P" reduces itself 
to its one-body part T. According to Thouless [6], 
Iq~o) and IHF)  are related by 
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IHF) = exp (iff) I(bo) 

/~ being a hermitian one-body operator 

(2.2) 

F=~s e s l ~ b o ) ,  f i e  I(bo) .  (2.3) 

The HF problem can thus be regarded as that of 
determining F: one is looking for that set of coef- 
ficients f=e that (assuming (~bo[~o) = 1) minimizes 

EHF ---= (~o I e xp ( - i f f ) /~  exp (iff)I r (2.4) 

The variational principle leads then, immediately, to 
the HF equations, as shown for example in Ref. 6. 
But we could follow a different path by recourse to 
the commutation relationship between/1 and F. As- 
suredly, this contains all the information that may 
be relevant for our purposes, since these two oper- 
ators constitute the basic ingredients of the HF 
problem. Of course we do not know ff (otherwise, 
there would be no problem to solve), but we may 
introduce a hierarchy of operators C, given by 

d 0 = / t  (2.5) 

d , = i [ C , _ , ,  ff], n=  1, 2, ... (2.6) 

whose 14~o)-expectation values are necessary for the 
evaluation of the HF energy, i.e., 

oo 

EHF=n   O01 n,Oo  (2,, 
To calculate the [~o)-expectation values of the C,, 
it is convenient to rewrite /4 in a somewhat more 
general fashion as 

_ (o) , _1 v(o) ~ , ,~ , ,~  c ~ . ~  H -  C o -  ~ t,j a~ aj + 4 ~ ak , ijklt~i t~j ~1 
ij ikjl 

with 

ti j(O) __-- ti j (2.9) 

and 

V(O)= V~jk,, (2.10) jkl 

denoting the matrix elements of the operators T and 
respectively. 

By construction, one can easily show that C, is of 
the general form 

__  (n) "~ V ( n )  r  E t i j  ai a j  -~-1 E , ij~,a~i a~ a ,a~ (2.11) 
ij  ijkl 

,(0) v(O) where tl~ ) and "ijkllZ(n) dependent both upon ~ij, "i jkl  

and on the f~p that define F. The set of relationships 
(2.6) leads now to recurrence relations for the matrix 
elements of (2.11), which in principle would solve 

our problem, 

tl j(n+l) . _  t ~, (t{ ") f.*--t("! f. ~q-i ~ (t (") f -- t  ~") f*/  t-~y ajy  -YJ az?~-- t - i l  t a#j  - ~ j a p i )  
~r ,~o  (2.12) 

and 

v/(n+ 1) jkl = i ~ (n) V(n) ] 3- f / l / (n)  _ v(~ " ijl~l - -  J'fik " j~kl " ],jkllJ 
~r162 

+i Z 
t~e4~o 

+ c *  1,/(") _ V/•)u)}. (2 .13)  Jklt \  " ijl.tl 

After a little algebra, one finds that the g.s. energy, 
in terms of the tl~ ) and "ijkZ,V(") adopts the appearance 

1 ~V ~(") + ! V iv(') - V/~)i)}. (2.14) E H F =  ~ .  ( / , ~ i i  - - 4 / , ~ * i j i j  
n = 0  i zj'' 

Now, we can truncate the expansion of exp(iF) at 
order K, to obtain the K-th order of approximation 
of the HF g.s. energy, 

~V ,(') --1V ~ u(') - Vi~"]i)}. (2.t5) 
1 

EK-= ~ .  ( / , ~ i i  " 4 / ~ ' , ' i j i j  
n = 0  i zj- 

For successive values of K, the parameters f~p are 
determined by minimizing the approximate g.s. en- 
ergy E given by (2.15). Suppose now that at order K, 
we obtain M different sets of Parameters f=~. That 
set {f=~} that yields the lowest value for E K defines 
the K-th order approximation [HF). But, if we also 
consider the other ( M - l )  solutions, then we can 
determine a non-orthonormal, undercomplete basis 
given by 

[ 7*K(J)) = exp (i/~) [(bo) : j = l  . . . . .  M, (2.16) 

where /~ is constructed with the j-th set f=~ which 
results from minimizing (2.15). 
We are now in a position to perform, at each order 
of approximation K, a residual diagonalization o f / t  
within this undercomplete basis [~K (j)) which leads to 
the following generalized eigenvalue problem 

M M 
E (K) (K)=  E(K) _(K) (2.17) Hij dj ~ d~ zO, i= 1, M,  Oij . . . ,  

j = l  j = l  

where 

HI~)= <~)1 /4  [ ~J)>, (2.18) 

and 

o.(K) __ ij - (7JK(1) I }PK(J)), (2.19) 

detailed expressions being given in the Appendix. 
The lowest eigenvalue of (2.17) will be our new 
approximation, at order K, for the exact g.s. energy. 
Even for small values of K one would expect good 
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results from these small diagonalization as this sub- 
space is expected to include collective states which 
are strongly coupled to the g.s. Not all the M states 
one obtains from minimizing (2.15) should be includ- 
ed in this subspace: only those that correspond to 
small values of f are appropriate. In that situation, 
1~0o) is not expected to differ too much from IHF). 
The criterium by which one truncates this under- 
complete basis will be discussed in the next Section. 

3. Application to a Solvable Model 

3.1. Description of the Model 

We consider an exactly solvable model of the Lipkin 
type [7] proposed by Abecasis et al. [8, 9]. We deal 
with two N-fold degenerate single-particle (s.p.) lev- 
els, separated by the s.p. energy e, and N identical 
fermions. Two quantum numbers characterize a 
given s.p. state, One of them adopt the values - I  
(lower level) and + 1 (upper level). The other, which 
may be called the "p-spin", singles out a state within 
the N-fold degeneracy. In order to write down the 
corresponding Hamiltonian we introduce the quasi- 
spin operators [7] 

N 

J + = P _ =  ~" a;+lap_ ~, (3.1) 
p ~ l  

and 
N 

J~=�89 s Z a@~ap~, (3.2) 
p = l  a ~ - - l , 1  

which fulfill SU(2) (angular momentum) commu- 
tation rules. With the energy given in units of the 
s.p. energy e, the Hamiltonian reads [8, 9] (repulsive 
interaction) 

/~=L+2 v--(j~ " ~̂ +J~-L), 

with 

(3.3) 

Y~ =�89 + a r )  (3.4) 

ar~ =g  +�89 L +L ar+). (3.5) 

/~ commutes with ar2 and thus the exact solution is 
found by diagonalization within the g.s. multiplet 
with J = N/2 [9]. 

3.2. Application of our Formalism 

Let us now apply to this model the formalism in- 
troduced in Sect. 2. We shall write the operator C o 

of (2.8) in the following way: 

C0=~oL+~0g +~oar ~+6oJI +6~J~ 
+ eo ar+ + e~ L ,  (3.6) 

the constants %,/3o, 7o, 6o and e o being determined 
by comparison with the definition (3.3): 

~o = 1, 

13o = ~o = ~o = V, (3.7) 

V 60 - 
2 

Due to the fact that the interaction (3.3) does not 
depend explicitly upon the individual p-quantum 
numbers (all of them are equivalent), the arguments 
advanced by Agassi et al. [10] in order to construct 
the HF transformation for the Lipkin model will 
apply here as well. Consequently, the operator _P 
adopts the extremely simple form (adopted in a dif- 
ferent context by Mann & Gross [11]) 

/?=far+ +f*ar_, (3.8) 

that is, ff depends only upon one single (complex) 
parameter f. The next step is to find C1, and we 
obtain 

e~ =lifo, ;] =ao& +a~L +bo(LL+LLt 
+ b ~ ( ~  ~ +arzJ)  + co3" ~ (3.9) 

with 

a o = i % f ,  

b o = i(f iof+ 2rio f*) ,  (3.10) 

c o = 2 i(e o f *  - e* f ) .  

The commutator of d 1 and F gives 

C ~ = ~ 1 ~ + g ~ g + ~ Y ~ + 6 ~ J +  ~ + 6 T L  ~ 

+~II++~TL, (3.11) 
with 

a �9 a l = 2 i ( a o f * -  of ) ,  

fll =6 i(bof * - b ~  f ) ,  

71 = - 2 i ( b o f *  - b ' f ) ,  (3.12) 

61 =2b0f ,  

e I = Cof. 

Clearly, C 2 has a structure identical to that of C o, 
which implies that C~ and C3 will also have the 
same structure, etc. The C~ are divided then into 
two groups, according to whether the subindex n is 
even or odd. Within each group, all operators have 
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identical structure, and one can write for the HF g.s. 
energy (2.7): 

1 
EnF= ~ ~ (ugsl C2,1ugs> 

n = O  

~=o 1 (ugsl {~2n+ i lugs). 
+.=  (2n+1)! 

(3.13) 

Clearly, the recurrence relationships (2.12-2.13) 
translate themselves into the corresponding ones 
(3.10) and (3.12) which are easily solvable starting 
with (3.7). On account of the nature of the u.g.s. [7], 
we immediately find 

(ugsl CznlUgs)= -cr (3.14) 

and 

(ugs[ (~2,+ 1 lugs>= -c,J, (3.15) 

so that, after introduction of these results into (3.13), 
we are led, by setting 

x = 2 If[ (3.16) 

f=A+iB (3.17) 

to the result 

J ~V(N + 1 ) -  cos (x) - 2 VB sin (x) EnF(A, B) 
[ x 

, ,  sin / (x)] 
- V B 2 ( N -  (3.18/ 

which is independent of the real part A of f .  Mini- 
mization with respect to B leads to the desired H F  
solution. We do not need to pursue the subject any 
further in view of the fact that the expression to be 
minimized, 

E~F = -- J cos (B) + VJ {2J cos 2 (B) + sin 2 (B) 

+ 1 + 2 sin (B)} (3.19) 

is the one obtained, following a totally different 
route, in Ref. 9. Thus, our formalism easily leads to 
the correct (previously known [9]) HF solution. 
If we now keep a finite number of terms K in 
Eq. (3.13), we obtain our approximate expression for 
the HF energy. For  simplicity we will only study 
those cases in which K=2M (M integer). Our ap- 
proximate energy E K will be given by 

E K = - J  ~ (--l)rX 2r VJ(2J-1) ~ (--1)r(ZX) 2r 
,=0 (2r)! t 2 r=o (2r).t 

VJ ~ 1  (_ l ) rx2 r+ l  VJ (2J+3)  

2 2.r=o ( 2 r + l ) !  + 2 ' 
(3.20) 

Table 1. Approximate  energies for the ground state, retaining the 
first K terms in (3.20). The second column shows the real values 
of x for which a min imum for the energy is obtained. The param- 
eters of the model are N = 4  and V=  1 

K x E(x) K x E(x) 

2 - 0 . 4  8.757333 14 -0.420002 8.807252 
4 -0.421999 8.808264 -2.800196 12.42967 

-1.034263 8.244145 1.445718 -0.124880 
1.195393 1.126105 -1.313649 7.747911 

6 -0.419962 8.807235 3.149440 11.25360 
8 -0.420002 8.807252 16 -0.420002 8.807252 

1.432947 -0.094270 -2 .862564 12.5880 
10 -0.420002 8.807252 -3 .731462 9.681294 

-2.413473 10.61410 -1.313648 7.747912 
-1.314487 7.747259 1.445716 -0.124877 

2.603934 5.932571 18 -0.420002 8.807252 
1.445658 -0 .124782 -2.853722 12.56816 

12 -0.420002 8.807252 -1.313648 7.747912 

-1.313611 7.747937 3.406663 12.51426 
1.445658 -0.124782 1.445716 -0.124877 

Table 2. The number  of terms in (3.20) necessary to achieve a 
stable value for the ground state energy is shown as a function of 
the number  of particles N and the product N V  

N N.V. K E(K) 

4 0.4 8 -1.089048 
20 0.4 8 -5 .832454 
40 0.4 8 - 10.81802 

4 2.0 16 -0.249008 
40 2.0 16 -2.498999 

4 4.0 20 -0.124877 
40 4.0 20 -1.249877 

E K is clearly a polynomial of degree K in x, which 
should be minimized with respect to this variable. 
This procedure will lead to not one but several roots 
xi, and we select, for obtaining the corresponding K- 
th order approximation to the HF energy, the one 
that gives the lowest E K. 
In Table 1 we list, for several values of K, the dif- 
ferent E K values that one obtains from the corre- 
sponding x i (only the real ones are considered), for 
the case N =  4 and V= 1. We need 14 terms in (3.20) 
in order to achieve convergence within four signifi- 
cant digits. The number of terms needed in Eq. (3.20) 
in order to obtain a stable energy value depends on 
the product NV. Some examples are shown in Ta- 
ble 2. The "convergence" of (3.20) is by no means a 
rapid one, although the number of terms required 
can be considered a manageable one. 
Now, the "leit-motiv" of this work is that of in- 
vestigating the possibility of obtaining better approx- 
imations to the exact ground state energy than 
EHF , by diagonalizing /q in the non-orthonormal 
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T a b l e  3. G r o u n d  s ta te  energies  for  dif ferent  c o u p l i n g  c o n s t a n t s  V (expressed in t e rms  of  Vc=0.0333 ) for  N =  16 
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V 0.6 0.9 1.0 1.1 1.4 

E x a c t  ene rgy  - 5.329 - 4 .094 - 3.729 - 3.404 2.678 

E ( H a r t r e e - F o c k )  - 5.296 - 4.023 - 3.662 - 3.351 - 2.655 

E (p re sen t  a p p r o a c h )  - 5.323 - 4 .074 - 3.887 - 3.376 - 2.655 

K 6 28 28 28 28 

D i a g o n a l i z a t i o n  o r d e r  2 x 2 5 x 5 5 x 5 5 x 5 7 x 7 

undercomplete basis generated by our algorithm. We 
proceed now in this direction. 
In view of the simplicity of the model, things work 
out here in a very simple fashion. No matter how 
large K may be, the number of real roots x i of (3.20) 
is never larger. As a matter of fact, it does not, in 
any circumstance, exceed the value K = 7 .  Some 
typical results are displayed in Table 3 for N =  16. 
The exact ground state energy is obtained by means 
of a 17 x 17-matrix diagonalization. With our meth- 
od, just a 2 x 2 or, at most, a 7 x 7 one gives already 
satisfactory figures. The coupling constants are given 
in terms of the Mann and Gross "critical" one: 
V~=0.0333 (for N=16)  [11, 121. The Hartree-Fock 
energy E H F  is also given (which, due to the pecu- 
liarities of these "Lipkin-like" models, constitutes 
always a good approximation [2, 9, 10]. The results 
of the diagonalization within the present scheme are 
given, together with both the value of K employed 
and the order of the corresponding matrix. 

4. Conclusions 

The HF  approach has been reformulated in a novel 
way by recourse to the Thouless representation of 
the HF Slater determinant. The HF problem is here 
regarded as that of determining the one-body opera- 
tor ff of Eq. (2.2), and the corresponding problem is 
tackled by studying the commutation relations be- 
tween /~ and F. A hierarchy of operators C arises 
from this study, that allows for a compact ex- 
pression for the HF energy (Eqs. (2.7) and (2.14)). 
The latter has a vivid "perturbative" appearance, 
and its truncation leads, in a natural fashion, to 
different approximations t o  E H F .  These, however, do 
not constitute the "leit-motiv" of this work. It is 
rather the fact that, after truncation of (2.14) to 
order K (cf. Eq. (2.15)), the minimization procedure 
for E K yields several solutions. To each of them 
corresponds a different SD, and these form an 
undercomplete basis that arises out of a process 
where the dynamics of the problem plays clearly a 

dominant role. Diagonalizing /4 in this basis gener- 
ates then a "dynamically-motivated" algorithm, 
based upon the variational principle. Applications to 
an exactly solvable model (Sect. 4) illustrate the 
power of the proposed approach. 

Appendix 

For the sake of completeness we now derive the 
matrix elements of the Hamiltonian /~ in the re- 
sidual subspaces. 
The states I T~K ~ (see Eq. (2.16)) admit the following 
expansion: 

1~,2~> = ~ (ify N/2 ,=o ~ 10)= Z C(~).2~ 121) 
/ = 0  

N/2-1 
+ Y', C u) 12/+1}, (A.1) K, 2 / +  1 

n = 0  

where l l) denotes the configuration in which l par- 
ticles are in the upper level and N - l  in the lower 
level. The coefficients C(~),z are easily obtained from 
the following recurrence relations: 

(-x/" 
K, 2 l - - .=0- -  (2  n )  ! c(2n)' 

~1  (__Xj)2n+l 
~u) _ C(2.+ 1) (A.2) 
~v, 2 1 + l - , = o  (2n+l)T. 2t+1 , 

with 

C(02~ § 2 ) = (2 N (N - 1))1/2 C(22 ~) _ N C(o 2 ~) n = 0 . . . . .  M - 1 

C?n+ 3)= ( 6 ( N -  1 ) (N -  2)) ~/2 C(3 2"+ ~) 

+ ( 2 -  3N) C(12"+ 1) n = 0  .. . . .  M - 2  

C(a], + 2)= [(2i + 1)(2i + 2 ) ( N -  2i)(N - 2i - 1)l i/2 C(22~ 2 

- [ 2 i ( N - 2 i +  1) + (2i + 1 ) ( N -  2i)] C(a 2") 

+ E2i(2i-  1 ) ( N -  i+  1 ) ( N - 2 i + 2 ) ]  1/2 C(22")_2 

N 
i = 1 , . . . , ~ - 1 ;  n = 0  . . . . .  M - 1  
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c(2n+ 3) 
2 i +  1 

= [2 i (2 i  + 1 ) ( N -  2 i ) ( N -  2i  + 1)] 1/2 C(2~"_+l i) 

- [ ( g -  2 i -  1 ) ( 2 i +  2) + ( 2 i +  1 ) ( g -  2i)]  (-(2n+ 1) ~ 2 i +  1 

+ [2(i  + 1)(2i + 3 ) ( g  - 2 i -  1)(N - 2 i -  2)31/2 t~(2, + i) 
~ 2 i +  3 

n = 0  . . . .  , M = 2 ;  i = 0  . . . . .  M = 2  (A.3) 

C~_"~ 3) = (6 (n - 1)(N - 2)) 1/z - (3 g - 2) "-'N-c'(2" +l l) 

n = 0  . . . . .  M - 2  

C ~ , +  2) = (2 N ( N  - 1)) 1/2 C~')2 - N ~N1"(2") 

n - - 0  . . . . .  M - 1  

wi th  the in i t ia l  va lues  

C(o ~ = 1, 

C(i i) = ] / /N. (A.4) 

F ina l ly ,  the m a t r i x  e l ements  needed  for the res idua l  
d i a g o n a l i z a t i o n  (2.17-2.19) are g iven by  

J J 1 

a(K)= Z C(K),21C(J) J- Z C~ ), t~(J) (A.5) ij K,21 ~ 2 / + 1  ~ K , 2 / +  1 
/ = 0  / = 0  

and  

J J 

(K) __ K, 2 l" ij -- 2 2 C~),2l C(j) ( 2 1 [ H 1 2 l ' )  
/ = 0  l ' = 0  

J - 1  J - 1  

+ 2 ~ C(g) ,.~(s) (2l+11H121'+1> K, 2 / +  1 ~ K ,  2 / ' +  1 
l = 0  I ' = 0  

J - 1  J 

, C (j) + Z Z K,2,, 
/ = 0  / ' = 0  

+ C~ ), zr + a C(J)K,2z (21l H I21' + l > (a.6) 

where the matrix elements (l lHll '> are given in 
Ref. 9. 
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