# Neutron diffraction structure of $Y_2V_{10}O_{28}$ ·24H<sub>2</sub>O at 297 and 60 K

A. Navaza,<sup>(1)</sup> G. Chevrier,<sup>(2)</sup>\* J. M. Kiat,<sup>(3)</sup> and E. J. Baran<sup>(4)</sup>

Received September 5, 2000

The structure of yttrium-decavanadate-24-hydrate,  $[Y_2V_{10}O_{28}\cdot24H_2O]$ , was determined by neutron diffraction at temperatures of 297 and 60 K. Space group *P*-1, triclinic, *Z* = 2; at 297 K : *a* = 9.36(1), *b* = 9.86(1), *c* = 23.53(3) Å,  $\alpha$  = 98.79(2),  $\beta$  = 98.15(2),  $\gamma$  = 89.30(2), *V* = 2123(5); at 60 K : *a* = 9.19(3), *b* = 9.85(3), *c* = 23.31(12) Å,  $\alpha$  = 99.03(3),  $\beta$  = 98.99(6),  $\gamma$  = 89.39(6)°, *V* = 2058(13). Final *R* factors of 10 and 9.4% were obtained using 1955 and 1100 observed structure factors at both temperatures, respectively. The position of the 24 water molecules was determined and the characteristics of the hydrogen bonds were analyzed at both temperatures.

KEY WORDS: Yttrium-decavanadate; neutron diffraction; hydrogen bonds.

#### Introduction

The decavanadate anion,  $[V_{10}O_{28}]^{6-}$ , is the most condensed polyoxoanion found in vanadium (V) chemistry and consists in a stacking of 10 VO<sub>6</sub> octahedra. Six of such octahedra generate a compact rectangular 2 × 3 arrangement in which they shared O-O edges. Two additional octahedra are located above and the other two below this rectangle. This seems to be the largest stacked-octahedral isopolyanion cluster compatible with metal-metal repulsion.<sup>1</sup>

The structural characteristics of this cluster are well known from X-ray structural studies of decavanadates with inorganic and organic cations.<sup>2–20</sup> Its vibrational spectroscopic behavior has also been investigated and some of its salts present a very inter-

- <sup>(2)</sup> Laboratoire Léon Brillouin, CEN Saclay, 91191 Gif sur Yvette, France.
- <sup>(3)</sup> Laboratoire Léon Brillouin, CEN Saclay, 91191 Gif sur Yvette, France. Laboratoire de Chimie-Physique du Solide, URA CNRS 453, Ecole Centrale de Paris, 92295 Chatenay-Malabry, France.
- <sup>(4)</sup> CEQUINOR (CONICET/UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.Correo 962, 1900 La Plata, Argentina.
- \* To whom correspondence should be addressed.

esting thermal behavior, as different intermediate or final pyrolysis products can be stabilized.<sup>21–27</sup> In most of the known structures the polyoxoanion presents a distorted mmm symmetry. Previous crystallographic studies of  $Y_2V_{10}O_{28}.24H_2O^{5,7}$  suggested that in this compound the intrinsic symmetry deviates more than in other decavanadates, but retaining its inversion center. As departures from mmm symmetry could be due to strong hydrogen bonds connecting the hydrated cation and the polyanions, we have reinvestigated  $Y_2V_{10}O_{28}.24H_2O$  by neutron diffraction at temperatures 297 and 60 K to determine the configuration of the water molecules and the characteristics of the H-bond nets.

#### **Experimental section**

 $Y_2V_{10}O_{28}.24H_2O$  was obtained following the procedure of Jahr and Preuss.<sup>28</sup> Single crystals of sufficient dimensions to the study by neutron diffraction were grown by the hanging seed method, by spontaneous concentration of saturated aqueous solutions of  $Y_2V_{10}O_{28}$  kept in a thermostat at room temperature.

Details concerning the crystal data, data collection, and refinement conditions for 297 and 60 K structures are given in Table 1. The low temperature

<sup>&</sup>lt;sup>(1)</sup> Laboratoire de Chimie et Spectroscopie Structurale Biomoléculaire, UPRESA 7031, Université de Paris XIII, 93017 Bobigny, France.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Crystal data                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | $H_{48}O_{52}V_{10}Y_{2}$                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCDC no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1003/5924                                       |                                                    | 1003/5925                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Temperature (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 297                                             |                                                    | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 368                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $D_{\rm c}({\rm g~cm^{-3}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 2.453                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | triclinic                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 | P-1                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a(Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.36(1)                                         |                                                    | 9.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| b(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.86(1)                                         |                                                    | 9.85(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $c(\dot{A})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.53(3)                                        |                                                    | 23.31(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\alpha(^{\circ})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 98.79(2)                                        |                                                    | 99.03(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\beta(^{\circ})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98.15(2)                                        |                                                    | 98.99(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\gamma(\circ)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89.30(2)                                        |                                                    | 89.39(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $V(Å^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2123(5)                                         |                                                    | 2058(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| No reflections for refinements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $25(34 < 2\theta < 45^{\circ})$                 |                                                    | $21(34 < 2\theta < 52^{\circ})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| of lattice parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 (54 < 26 < 45 )                              |                                                    | 21(34 < 20 < 32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 | Orphée reactor, CEN Saclay                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wavelength $\lambda(\text{\AA})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.531(5)                                        | 1                                                  | 1.526(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (in the end of the end | 1001(0)                                         | $\lambda/2$ contamination < 1.9 x 10 <sup>-4</sup> | 1.020(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Absorption coefficient $\mu(cm^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 4.16 (measured)                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Crystal color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | Orange                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Crystal size (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | $30 \times 20 \times 03$                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Crystal description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Parallelepiped                                  | < -7110 > <122 > and <1-28 >                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| erystal description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rutulolopiped                                   | Data collection                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Diffractometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | Four-circle diffractometer (6T2channe              | 21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Data collection range and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\omega$ -scan for $3 < 2\theta < 50^{\circ}$   |                                                    | $\omega$ -scan for $3 < 2\theta < 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| scan mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\omega/\theta$ -scan for 50 < 2 $\theta$ < 80  |                                                    | $\omega/\theta$ -scan for $50 < 2\theta < 80$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sour mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\omega/2\theta$ -scan for $80 < 2\theta < 140$ |                                                    | 3-5 s/step 41 steps adjusted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-5 s/step 41 steps adjusted as a               |                                                    | as a function of the scattering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | function of the scattering angle                | e by                                               | angle by $6-8t\sigma\theta + 18t\sigma^2\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $6_{-8tgA} + 18tg^{2}A$                         | e oy                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Index range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-8 < h < 8 = 9 < k < 9 = 0 < 1 < 2^{-3}$       | 1                                                  | -7 < h < 7 $0 < k < 7$ $-19 < 1 < 17$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| No of reflections measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3431                                            | 1                                                  | 1820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.049                                           |                                                    | Unique set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| No of independent reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2267                                            |                                                    | 1820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| No of reflections with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1955                                            |                                                    | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $I > 2\sigma(I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1705                                            |                                                    | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Standard reflections variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (0 1 –9) ar                                     | nd $(-233)$ , constant throughout the da           | ata collection period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 days                                         |                                                    | 9 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Absorption correction type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                               | Numerical methods using crystal shap               | be state of the st |
| Transmission factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 0.2044; 0.8340                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (min, max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | ,                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Refinement                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Refinement method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | Full matrix least squares on $F^2$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| No. of refined parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 681                                             |                                                    | 406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Weighting scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | $\omega = 1/\sigma^2(F^2)$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>R</i> for all reflections, and <i>R</i> and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.161 0.100 0.093                               |                                                    | 0.161 0.094 0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $R_{\omega}$ for observed reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Goodness of fit all and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.92 1.71                                       |                                                    | 2.24 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| observed reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Extinction correction method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | SHELXL                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Extinction coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00268(18)                                     |                                                    | 0.00099(15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Source of the neutron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 | International Tables of Crystallography            | <i>ي</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| scattering lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 1. Crystal Data, Data Collection, and Refinements Conditions

# Neutron structure of $Y_2V_{10}O_{28}$ ·24H<sub>2</sub>O

| Table | 2. | Final | Fractional | Atomic | Coordinates, | Occupation | Factors, | and   | Thermal | Parameters | with | Estimated | Standard | Deviations |
|-------|----|-------|------------|--------|--------------|------------|----------|-------|---------|------------|------|-----------|----------|------------|
|       |    |       |            |        |              | in         | Parenth  | esesa |         |            |      |           |          |            |

| Atom   | x        | у             | z       | Uiso/Ueq | Atom                          | x      | у      | z               | Uiso/Ueq |  |  |  |
|--------|----------|---------------|---------|----------|-------------------------------|--------|--------|-----------------|----------|--|--|--|
|        | Temp     | erature = 297 | K       |          | Temperature = $297 \text{ K}$ |        |        |                 |          |  |  |  |
| Y1     | 0.93294  | 0.02310       | 0.12355 | 0.05159  | H341*                         | .13598 | .22644 | .19277          | .07159   |  |  |  |
| Y2     | 0.37793  | 0.49569       | 0.38035 | 0.05093  | H342*                         | 00443  | .31031 | .19113          | .08811   |  |  |  |
| V1*    | 0.48100  | 0.28300       | 0.05500 | 0.01279  | O35                           | .26219 | .04993 | .9455           | .05065   |  |  |  |
| V2*    | 0.60800  | 0.27400       | 0.93900 | 0.01330  | H351*                         | .34478 | 00987  | .95333          | .07627   |  |  |  |
| V3*    | 0.21700  | 0.47300       | 0.07800 | 0.01672  | H352*                         | .3145  | .1438  | .9534           | .06756   |  |  |  |
| V4*    | 0.33900  | 0.46100       | 0.96200 | 0.01178  | O36                           | .13711 | .05913 | .08056          | .06899   |  |  |  |
| V5*    | 0.47500  | 0.46300       | 0.85000 | 0.01127  | H361*                         | .1838  | .15208 | .07565          | .07063   |  |  |  |
| V6*    | 0.93100  | 0.19500       | 0.43000 | 0.01381  | H362*                         | .20184 | 00267  | .06993          | .09209   |  |  |  |
| V7*    | 0.14600  | 0.23500       | 0.54400 | 0.01507  | O37                           | .46194 | .33622 | .30956          | .06183   |  |  |  |
| $V8^*$ | 0.66000  | 0.01300       | 0.42300 | 0.01494  | H371*                         | .56198 | .30674 | .30756          | .07418   |  |  |  |
| V9*    | 0.87000  | 0.05300       | 0.53700 | 0.01571  | H372*                         | .40797 | .29913 | .27315          | .08153   |  |  |  |
| V10*   | 0.09700  | 0.09500       | 0.64800 | 0.01659  | O38                           | .34075 | .28924 | .41848          | .05941   |  |  |  |
| O1     | 0.51862  | 0.12403       | 0.04956 | 0.06070  | H381*                         | .39258 | .22072 | .41353          | .09984   |  |  |  |
| O2     | 0.29266  | 0.29134       | 0.06814 | 0.05920  | H382*                         | .25477 | .24927 | .43166          | .09378   |  |  |  |
| O3     | 0.56042  | 0.34974       | 0.12949 | 0.05328  | O39                           | .60066 | .42545 | .42768          | .05088   |  |  |  |
| O4     | 0.41458  | 0.28555       | 0.96842 | 0.05495  | H391*                         | .64259 | .33831 | .42415          | .07693   |  |  |  |
| O5     | 0.65740  | 0.34195       | 0.02424 | 0.05219  | H392*                         | .67501 | .49287 | .44291          | .07304   |  |  |  |
| O6     | 0.44758  | 0.50313       | 0.04953 | 0.05818  | O40                           | .74777 | .32887 | .66736          | .07453   |  |  |  |
| 07     | 0.64106  | 0.11633       | 0.93703 | 0.06299  | H401*                         | .7877  | .25471 | .64562          | .06494   |  |  |  |
| O8     | 0.51448  | 0.28286       | 0.86661 | 0.06078  | H402*                         | .77443 | .33151 | .70577          | .05551   |  |  |  |
| O9     | 0.77857  | 0.34525       | 0.92653 | 0.05842  | O41                           | .81394 | .45106 | .56625          | .04774   |  |  |  |
| O10    | 0.06205  | 0.44208       | 0.09211 | 0.06481  | H411*                         | .85138 | .36666 | .54924          | .07351   |  |  |  |
| 011    | 0.33524  | 0.50551       | 0.15124 | 0.05625  | H412*                         | .88663 | .52298 | .5642           | .10745   |  |  |  |
| O12    | 0.18351  | 0.43768       | 0.99010 | 0.05728  | O42                           | .5552  | .31428 | .55179          | .0573    |  |  |  |
| O13    | 0.29473  | 0.43638       | 0.88884 | 0.06370  | H421*                         | .45793 | .25991 | .55269          | .06543   |  |  |  |
| O14    | 0.40513  | 0.43412       | 0.78324 | 0.06219  | H422*                         | .61252 | .25554 | .53439          | .11021   |  |  |  |
| 015    | 0.96793  | 0.34463       | 0.42254 | 0.07436  | O43                           | .17839 | .38703 | .3174           | .06005   |  |  |  |
| O16    | 0.73739  | 0.18729       | 0.42071 | 0.05689  | H431*                         | .17165 | .29024 | .30813          | .08031   |  |  |  |
| 017    | 0.95146  | 0.09422       | 0.35911 | 0.07266  | H432*                         | .08593 | .42334 | .31751          | .06421   |  |  |  |
| 018    | 0.93586  | 0.22200       | 0.51801 | 0.05462  | 044                           | .44088 | .38198 | .66008          | .06948   |  |  |  |
| 019    | 0.13597  | 0.14286       | 0.46100 | 0.05448  | H441*                         | .41813 | .41276 | .69855          | .08274   |  |  |  |
| 020    | 0.09214  | 0.01825       | 0.54857 | 0.05252  | H442*                         | .39532 | .31107 | .64096          | .0964    |  |  |  |
| 021    | 0.18153  | 0.38/9/       | 0.53372 | 0.06914  | U45                           | .32239 | .258/2 | .20375          | .07218   |  |  |  |
| 022    | 0.11903  | 0.23600       | 0.01881 | 0.06251  | H451*                         | .3/893 | .10098 | .18813          | .09408   |  |  |  |
| 023    | 0.33430  | 0.10/04       | 0.33930 | 0.06203  | H452*                         | .33/93 | .33314 | .18105          | .09/39   |  |  |  |
| 024    | 0.06560  | 0.14606       | 0.71469 | 0.00070  | U40                           | .40307 | .05055 | .1/420          | 12422    |  |  |  |
| 025    | 0.20070  | 0.03355       | 0.04920 | 0.03393  | H401*                         | .44000 | 02422  | .1500/          | .12425   |  |  |  |
| 020    | 0.49027  | 0.03734       | 0.40604 | 0.07737  | 047                           | .47730 | 02823  | .20391<br>80182 | .1156    |  |  |  |
| 027    | 0.88505  | 0.10744       | 0.50979 | 0.05514  | U47<br>H471*                  | 14052  | .51700 | .00102<br>82841 | 10683    |  |  |  |
| 028    | 0.00393  | 0.10744       | 0.01031 | 0.05514  | H472*                         | 10367  | 5021   | .62641          | 07158    |  |  |  |
| H201*  | 0.01132  | 0.25593       | 0.92323 | 0.00443  | 048                           | 84376  | 32581  | 78247           | .07130   |  |  |  |
| H202*  | -0.07845 | 0.23375       | 0.92385 | 0.07813  | H481*                         | 9268   | 38489  | 7909            | 08223    |  |  |  |
| 030    | 0 20038  | 0.13308       | 0.92303 | 0.06478  | H482*                         | 77217  | 37094  | 80611           | 07534    |  |  |  |
| H301*  | 0.20050  | 0.19453       | 0.84785 | 0.11718  | 049                           | 19923  | 08818  | 29934           | 07974    |  |  |  |
| H302*  | 0.16813  | 0.15515       | 0.79456 | 0.08465  | H491*                         | 11862  | 08078  | 3256            | 15037    |  |  |  |
| 031    | 0.90188  | 0.05818       | 0.80713 | 0.06355  | H492*                         | .27844 | .04428 | 31229           | 12432    |  |  |  |
| H311*  | 0.88577  | 0.15117       | 0.80314 | 0.08031  | 050                           | .73679 | .24904 | .29439          | .09399   |  |  |  |
| H312*  | 0.86550  | -0.00218      | 0.76956 | 0.06779  | H501*                         | .74945 | .21714 | .25088          | .12425   |  |  |  |
| O32    | 0.88026  | 0.20805       | 0.06985 | 0.06162  | H502*                         | .79212 | .18803 | .31486          | .10755   |  |  |  |
| H321*  | 0.79294  | 0.24765       | 0.05459 | 0.05723  | O51                           | .0936  | .50631 | .68796          | .05084   |  |  |  |
| H322*  | 0.95343  | 0.28299       | 0.07859 | 0.11449  | H511*                         | .15179 | .57607 | .67924          | .09549   |  |  |  |
| O33    | 0.73857  | 0.14741       | 0.16774 | 0.06125  | H512*                         | .10535 | .41294 | .66202          | .0919    |  |  |  |
| H331*  | 0.65167  | 0.09100       | 0.17086 | 0.06407  | O52                           | .52645 | .10714 | .73443          | .10722   |  |  |  |
| H332*  | 0.70425  | 0.22998       | 0.15381 | 0.07789  | H521*                         | .44995 | .08887 | .70386          | .12841   |  |  |  |
| O34    | 0.03724  | 0.21528       | 0.18538 | 0.05995  | H522*                         | .52848 | .19101 | .74748          | .21467   |  |  |  |

Table 2. Continued

| Atom      | x      | у             | z      | Uiso   | Atom         | x      | у            | z      | Uiso   |
|-----------|--------|---------------|--------|--------|--------------|--------|--------------|--------|--------|
|           | Temper | rature = 60 K |        |        |              | Temper | ature = 60 K |        |        |
| Y1        | .93578 | .02772        | .12432 | .02159 | H341         | .13955 | .22821       | .19343 | .01296 |
| Y2        | .38273 | .48403        | .38046 | .02843 | H342         | 00194  | .30542       | .19139 | .02514 |
| V1        | .48100 | .28300        | .05500 | .00384 | O35          | .26234 | .05124       | .94582 | .02271 |
| V2        | .60800 | 27400         | .93900 | .00399 | H351         | 34590  | 01035        | .95455 | .03566 |
| V3        | 21700  | 47300         | 07800  | 00502  | H352         | 31280  | 14316        | 95611  | 03454  |
| V4        | 33900  | 46100         | 96200  | 00343  | 036          | 14418  | 06112        | 08149  | 01281  |
| V5        | 47500  | 46300         | 85000  | 00338  | H361         | 18808  | 14996        | 07932  | 02836  |
| V6        | 93100  | 19500         | 43000  | 00414  | H362         | 20065  | _ 00931      | 06621  | 03211  |
| V0<br>V7  | 14600  | 23500         | 54400  | 00452  | 037          | .20003 | 32169        | 31307  | 00516  |
| V8        | .14000 | .23300        | 42300  | 00448  | H371         | 57064  | 30865        | 30013  | 04854  |
| VO        | .00000 | .01300        | .42300 | .00448 | 11371        | .57004 | .30803       | .30913 | .04654 |
| V9<br>V10 | .87000 | .03300        | .33700 | .00471 | D3/2         | .41030 | .29777       | .27361 | .01361 |
| V10       | .09700 | .09300        | .04600 | .00498 | U30<br>11201 | .54100 | .27005       | .42207 | .00991 |
| 01        | .310/3 | .12137        | .05047 | .02059 | H361         | .39093 | .19944       | .41085 | .03538 |
| 02        | .29120 | .29110        | .06879 | .02330 | H382         | .20300 | .24370       | .43372 | .04132 |
| 03        | .50/21 | .35564        | .13010 | .02012 | 039          | .60780 | .41319       | .43536 | .01010 |
| 04        | .40876 | .28796        | .96664 | .02248 | H391         | .64660 | .32779       | .42043 | .03774 |
| 05        | .66182 | .33/85        | .02512 | .02107 | H392         | .6/454 | .48433       | .44/64 | .02013 |
| 06        | .44507 | .50004        | .04892 | .02157 | 040<br>11404 | .73494 | .33061       | .66358 | .02042 |
| 07        | .63/13 | .11251        | .93658 | .01942 | H401         | .76535 | .25727       | .63892 | .01804 |
| 08        | .50424 | .28387        | .86456 | .01264 | H402         | .76666 | .33332       | .70365 | .02985 |
| 09        | .77492 | .34544        | .92447 | .01192 | O41          | .81531 | .46492       | .56723 | .01010 |
| O10       | .05813 | .45224        | .09453 | .01555 | H411         | .83848 | .36873       | .54278 | .05311 |
| 011       | .33657 | .50445        | .15379 | .02470 | H412         | .88888 | .52267       | .56718 | .03804 |
| O12       | .17934 | .44680        | .99121 | .00979 | O42          | .54324 | .33453       | .54483 | .01000 |
| O13       | .28449 | .44612        | .88667 | .01907 | H421         | .47429 | .26297       | .54270 | .03754 |
| O14       | .39708 | .43334        | .77823 | .02586 | H422         | .56286 | .34474       | .50983 | .03815 |
| O15       | .96901 | .34343        | .42083 | .01914 | O43          | .18815 | .38492       | .31536 | .01297 |
| O16       | .73376 | .17633        | .41532 | .01340 | H431         | .18262 | .28357       | .30495 | .03100 |
| O17       | .95646 | .08989        | .35795 | .00499 | H432         | .09103 | .42125       | .31471 | .03155 |
| O18       | .92392 | .22490        | .51478 | .02720 | O44          | .43093 | .39903       | .65986 | .01101 |
| O19       | .13392 | .14387        | .46392 | .02999 | H441         | .40780 | .41396       | .69391 | .01606 |
| O20       | .08869 | .02004        | .55113 | .01383 | H442         | .39284 | .32177       | .63902 | .04494 |
| O21       | .17779 | .38989        | .53426 | .02003 | O45          | .33514 | .25940       | .20364 | .02319 |
| O22       | .10865 | .26186        | .62026 | .02187 | H451         | .38694 | .18185       | .18475 | .03841 |
| O23       | .33225 | .17066        | .56232 | .02213 | H452         | .35095 | .33157       | .18446 | .02829 |
| O24       | .07240 | .16223        | .71575 | .03658 | O46          | .48211 | .03480       | .17082 | .02615 |
| O25       | .29036 | .06583        | .65528 | .02828 | H461         | .44494 | .98780       | .13572 | .02611 |
| O26       | .48337 | .02956        | .39814 | .02005 | H462         | .46703 | .97258       | .19972 | .06165 |
| O27       | .68435 | .06086        | .50674 | .02170 | O47          | .06224 | .51635       | .80031 | .02008 |
| O28       | .87059 | .11000        | .60885 | .01373 | H471         | .13962 | .49754       | .83199 | .04403 |
| O29       | .00967 | .19274        | .92455 | .02221 | H472         | .09394 | .49665       | .76469 | .05368 |
| H291      | .07442 | .25489        | .94666 | .03223 | O48          | .83083 | .32596       | .77959 | .01797 |
| H292      | 07975  | .24340        | .92361 | .04759 | H481         | .92032 | .38729       | .78961 | .04451 |
| O30       | .20255 | .12697        | .83229 | .00884 | H482         | .76599 | .37728       | .80043 | .01903 |
| H301      | .28997 | .18046        | .84525 | .03866 | O49          | .20060 | .08871       | .30179 | .01840 |
| H302      | .16636 | .15953        | .79398 | .10471 | H491         | .13240 | .07817       | .32665 | .02945 |
| O31       | .89120 | .05453        | .80438 | .01634 | H492         | .28919 | .05077       | .31090 | .08842 |
| H311      | .87865 | .15686        | .80121 | .04296 | O50          | .75221 | .25203       | .29029 | .02925 |
| H312      | .86455 | .00220        | .76875 | .02638 | H501         | .75872 | .21364       | .25262 | .03544 |
| O32       | .88555 | .21587        | .06986 | .02552 | H502         | .81016 | .18074       | .31612 | .03572 |
| H321      | .79252 | .24307        | .05293 | .04048 | O51          | .07972 | .50755       | .68443 | .01436 |
| H322      | .95290 | .28506        | .08140 | .04384 | H511         | .14982 | .57507       | .68391 | .05880 |
| 033       | 73614  | 14688         | .16657 | .02222 | H512         | .08670 | 42,667       | .65983 | 02273  |
| H331      | .65572 | .09942        | .16960 | .01876 | 052          | .52211 | .11107       | .74119 | .02979 |
| H332      | 69818  | 22848         | 15533  | 06621  | H521         | 44047  | 09172        | 71390  | 02583  |
| 034       | .04106 | .21034        | .18557 | .02765 | H522         | .52245 | 20118        | .76154 | .08706 |
| 0.54      | .07100 | .21054        | .10557 | .02705 | 11344        | .52275 | .20110       | .,0154 | .00700 |

 ${}^{a}U_{eq} = 1/3 \Sigma U_{ij} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \mathbf{a}_{j}$ , starred atoms were refined isotropically.

#### Neutron structure of Y<sub>2</sub>V<sub>10</sub>O<sub>28</sub>·24H<sub>2</sub>O

was attained cooling the specimen with a cooling rate of 3 K/min within a closed-cycle refrigerator. The observed diminution of the cell volume at 60 K (3%) is essentially due to the contraction of the **a** and **c** cell parameters; **b** remains constant within experimental error.

For both structures, the oxygen of water molecules were located from difference Fourier map phased with the X-ray positions and isotropic thermal parameters of all the atoms not belonging to water molecules, previously refined with neutron diffraction data. Subsequent difference maps gave the positions of the missing hydrogen atoms. The small dimension of the crystal limited the neutron diffraction. Moreover, the number of collected intensities for the structure at 60 K was further reduced because of the cooling experimental conditions. As a consequence vanadium and hydrogen atoms of the 297 K structure were refined isotropically and all other atoms were refined anisotropically. In the case of the 60 K structure, the positions of vanadium atoms were fixed to those of the 297 K structure and its isotropic thermal parameters were estimated. This can be justified by the weak neutron scattering length of the vanadium. The other atoms were refined with isotropic thermal parameters. In the last difference maps the absolute value of the largest residual peak was smaller than 14.2% and 25.9% of the peak height of a removed oxygen atom used as a reference, to 297 and 60 K structures, respectively.

Structure refinement was performed with the SHELXL93 program<sup>29</sup> on a Hewlett-Packard Vectra VA PC. Final atomic parameters are presented in Table 2.

#### **Results and discussion**

# Crystal packing

The crystallographic symmetry generates two independent decavanadate polyanions in the lattice. The crystal cell also contains four hydrated yttrium cations. Figure 1 shows a stereoscopic view of the crystal packing. This may be described as built from layers, parallel to the  $(0\ 0\ 1)$  plane, which contain all the ions. In these layers, the  $[V_{10}O_{28}]^{6-}$  polyanions are joined to the  $[Y(H_2O)_8]^{3+}$  cations *via* hydrogen bridges formed by the water molecules coordinated to the Y(III) ions. The water molecules not coordinated to cations are located between layers, the generated



Fig. 1. Stereoscopic view of structural packing of  $Y_2V_{10}O_{28}.24H_2O$  crystal (for clarity, only water molecules of class 2 and class 1' were labeled).

hydrogen bridges involving these atoms join the layers along the [0 0 1] direction.

# Anions and cations

Selected bond distances concerning the independent units  $[Y(H_2O)_8]^{3+}$  and  $[V_{10}O_{28}]^{6-}$  at 297 and 60 K are presented in Table 3. In this crystallographic study the coordination distances and angles of vanadium and yttrium atoms are less dispersed than those in the X-ray structure.<sup>5,7,8</sup>

No appreciable geometrical differences are observed between the two independent  $[V_{10}O_{28}]^{6-}$ units, the superposition of both polyhedra *via* a leastsquares procedure gives a root mean square (rms) deviation of less than 0.04 Å. For the  $[Y(H_2O)_8]^{3+}$ cations, the superposition of the two independent units shows small distortions (rms 0.16 Å). In this case the largest observed distance (0.21 Å) between corresponding atoms after superposition occurs for the two pairs O30–O37 and O33–O44; this difference may be correlated with the different hydrogen bond strength associated to the corresponding water molecules (Table 3).

 $[V_{10}O_{28}]^{6-}$  is a discrete unit of 10 distorted VO<sub>6</sub> octahedra (bond angles at the V atoms ranging from 74 to 107°) joined by a common side (Fig. 2). The two independent polyanions are located around the crystallographic centers of inversion at  $\frac{1}{2}$ ,  $\frac{1}{2}$ , 0 and 0, 0,  $\frac{1}{2}$  and describe a pseudo body-centered arrangement. The V—O distances, which depend upon the type of oxo ligand, vary between (distance in Å):

 Table 3. Selected Bond Distances (Å) and Angles at 297 K Temperature (First Column, esd on Distances 0.02 Å, on Angles 1°) and at 60 K (Second Column, esd on Distances 0.03 Å, on Angles 1°) Concerning the Two Crystallographic Independents Units of:

| $[V(H_2O)_2]^{3+}$ cations <sup>4</sup> |                          |                          |                                                    |                      |                          |                          |                   |  |  |  |
|-----------------------------------------|--------------------------|--------------------------|----------------------------------------------------|----------------------|--------------------------|--------------------------|-------------------|--|--|--|
| A 1                                     | 4.2                      |                          | J <sub>8</sub> ] <sup>-</sup> callons <sup>a</sup> | A 1                  | A 2                      | d                        | Ŀ                 |  |  |  |
| Al<br>Yı                                | A2<br>029 <sup>i</sup>   | 0 <sub>295</sub><br>2 35 | 2 38                                               | $\mathbf{A}_{1}$     | A2<br>033                | 0 <sub>295</sub><br>2 45 | 242               |  |  |  |
| $Y_1$                                   | O30 <sup>i</sup>         | 2.44                     | 2.43                                               | $\mathbf{Y}_{1}$     | O4 <sup>iii</sup>        | 2.34                     | 2.12              |  |  |  |
| $\mathbf{Y}_1$                          | O31 <sup>ii</sup>        | 2.31                     | 2.35                                               | Y1                   | O35 <sup>i</sup>         | 2.31                     | 2.30              |  |  |  |
| $\mathbf{Y}_1$                          | O32                      | 2.38                     | 2.41                                               | $\mathbf{Y}_1$       | O36 <sup>iii</sup>       | 2.34                     | 2.34              |  |  |  |
| Y <sub>2</sub>                          | O37                      | 2.33                     | 2.32                                               | Y <sub>2</sub>       | O41 <sup>iv</sup>        | 2.34                     | 2.35              |  |  |  |
| Y <sub>2</sub><br>X-                    | O38                      | 2.39                     | 2.45                                               | Y <sub>2</sub><br>Y- | O42 <sup>IV</sup>        | 2.30                     | 2.32              |  |  |  |
| $\mathbf{Y}_{2}$                        | 039<br>040 <sup>iv</sup> | 2.37                     | 2.42<br>2.40                                       | $Y_2$                | 043<br>044 <sup>iv</sup> | 2.37<br>2.47             | 2.28              |  |  |  |
|                                         |                          | $[V_{10}O_{28}]^{6-1}$   | polyanions <sup>b</sup>                            |                      |                          |                          |                   |  |  |  |
| V1                                      | O1                       | 02                       | 03                                                 | 05                   | 04                       | i                        | Q6                |  |  |  |
| 01                                      | 1.59 1.61                | 2.71 2.69                | 2.68 2.72                                          | 2.71 2.72            | 2.74 2                   | .80                      | 3.79 3.79         |  |  |  |
| 02                                      | 104 103                  | 1.83 1.82                | 2.73 2.74                                          | 3.76 3.76            | 2.75 2                   | .76                      | 2.68 2.65         |  |  |  |
| 03                                      | 103 104                  | 96 97                    | 1.83 1.84                                          | 2.75                 | 3.80 3                   | .82                      | 2.69              |  |  |  |
| 05                                      | 96 97                    | 157 158                  | 91 89                                              | 2.02 2.01            | 2.4                      | 8                        | 2.59              |  |  |  |
| O4 <sup>i</sup>                         | 97 98                    | 91 90                    | 157 155                                            | 75 76                | 2.05 2                   | .07                      | 2.63 2.59         |  |  |  |
| O6                                      | 170 172                  | 83 82                    | 83 82                                              | 75 77                | 76 7                     | 5                        | 2.21 2.18         |  |  |  |
| V2                                      | O7                       | O9                       | 08                                                 | O5 <sup>ii</sup>     | 04                       | Ļ                        | O6 <sup>iii</sup> |  |  |  |
| O7                                      | 1.58 1.61                | 2.67 2.71                | 2.66 2.71                                          | 2.78 2.77            | 2.79 2                   | .81                      | 3.81 3.86         |  |  |  |
| O9                                      | 103 105                  | 1.83 1.80                | 2.69 2.68                                          | 2.71 2.72            | 3.75 3                   | .72                      | 2.65 2.61         |  |  |  |
| O8                                      | 103 103                  | 95 94                    | 1.82 1.86                                          | 3.72 3.75            | 2.69 2                   | .66                      | 2.65 2.68         |  |  |  |
| O5 <sup>ii</sup>                        | 101 100                  | 90 92                    | 154 154                                            | 2.01 1.99            | 2.48 2                   | .52                      | 2.59 2.61         |  |  |  |
| O4                                      | 101 101                  | 154 153                  | 89 86                                              | 76 77                | 2.02 2                   | 2.03                     | 2.63 2.59         |  |  |  |
| O6 <sup>iii</sup>                       | 174 174                  | 81 79                    | 81 81                                              | 74 75                | 75 7                     | 4                        | 2.24 2.26         |  |  |  |
| V3                                      | O10                      | O9 <sup>iii</sup>        | O2                                                 | 011                  | 012                      | 2 <sup>i</sup>           | O6                |  |  |  |
| O10                                     | 1.58 1.59                | 2.71                     | 2.68 2.74                                          | 2.76 2.72            | 2.79 2                   | .80                      | 3.96 3.92         |  |  |  |
| O9 <sup>iii</sup>                       | 106 103                  | 1.81 1.80                | 3.62 3.61                                          | 2.62                 | 3.94 3                   | .87                      | 2.65 2.61         |  |  |  |
| O2                                      | 100 103                  | 153 154                  | 1.91 1.90                                          | 2.64 2.64            | 2.60 2                   | .63                      | 2.68 2.65         |  |  |  |
| O11                                     | 105 102                  | 90 89                    | 88 88                                              | 1.90 1.91            | 3.82 3                   | .80                      | 2.74 2.77         |  |  |  |
| $O12^i$                                 | 101 103                  | 88 87                    | 83 86                                              | 153 155              | 2.02 1                   | .97                      | 2.70 2.61         |  |  |  |
| O6                                      | 175 177                  | 77 77                    | 76 77                                              | 79 81                | 75 7                     | 4                        | 2.38 2.33         |  |  |  |
| V4                                      | O12                      | O13                      | O4                                                 | O5 <sup>iii</sup>    | O6                       | ii                       | O6 <sup>iii</sup> |  |  |  |
| O12                                     | 1.71 1.73                | 2.73 2.76                | 2.68 2.69                                          | 2.74 2.70            | 2.70 2                   | .61                      | 3.78 3.78         |  |  |  |
| O13                                     | 107 106                  | 1.70 1.73                | 2.68 2.72                                          | 2.75 2.71            | 3.81 3                   | .80                      | 2.74 2.71         |  |  |  |
| O4                                      | 96 98                    | 97 100                   | 1.88 1.83                                          | 2.48 2.52            | 2.63 2                   | 60                       | 2.58 2.59         |  |  |  |
| O5 <sup>m</sup>                         | 98 94                    | 99 94                    | 155 158                                            | 1.92 1.96            | 2.57 2                   | 2.61                     | 2.59 2.61         |  |  |  |
| O6 <sup>ii</sup>                        | 88 86                    | 166 168                  | 81 83                                              | 80 80                | 2.15 2                   | 2.09                     | 2.64              |  |  |  |
| O6 <sup>m</sup>                         | 165 164                  | 88 90                    | 81 83                                              | 78 80                | 77 7                     | 8                        | 2.09 2.09         |  |  |  |
| V5                                      | O14                      | O11 <sup>iii</sup>       | O3 <sup>iii</sup>                                  | 08                   | 01                       | 3                        | O6 <sup>iii</sup> |  |  |  |
| O14                                     | 1.60 1.70                | 2.71 2.72                | 2.71 2.72                                          | 2.72 2.73            | 2.82 2                   | .86                      | 3.94 4.02         |  |  |  |
| O11 <sup>111</sup>                      | 105 103                  | 1.81 1.78                | 2.65 2.64                                          | 2.65 2.69            | 3.79 3                   | 5.80                     | 2.74 2.75         |  |  |  |
| O3 <sup>111</sup>                       | 103 101                  | 92 94                    | 1.87 1.83                                          | 3.72 3.59            | 2.64 2                   | .51                      | 2.69 2.65         |  |  |  |
| 08                                      | 102 101                  | 91 95                    | 154 154                                            | 1.90 1.86            | 2.6                      | 0                        | 2.65 2.68         |  |  |  |
| O13                                     | 100 98                   | 155 159                  | 84 80                                              | 82 83                | 2.07 2                   | .08                      | 2.66 2.71         |  |  |  |
| O6 <sup>m</sup>                         | 174 174                  | 82 84                    | 78 78                                              | 77 79                | 74 7                     | 5                        | 2.35 2.34         |  |  |  |

|                   |           | 14        | ble 3. Continued |                  |                   |                  |
|-------------------|-----------|-----------|------------------|------------------|-------------------|------------------|
| V6                | O15       | O16       | O17              | O18              | O19 <sup>iv</sup> | O20 <sup>v</sup> |
| O15               | 1.56 1.56 | 2.66 2.71 | 2.68 2.69        | 2.76 2.73        | 2.71 2.69         | 3.80 3.80        |
| O16               | 105 107   | 1.80 1.80 | 2.71 2.68        | 2.72 2.66        | 3.75 3.70         | 2.69 2.65        |
| O17               | 104 102   | 96 94     | 1.84 1.88        | 3.78 3.75        | 2.73 2.72         | 2.67 2.62        |
| O18               | 99 101    | 90 90     | 154 155          | 2.04 1.96        | 2.50 2.48         | 2.60 2.68        |
| O19 <sup>iv</sup> | 96 98     | 156 154   | 90 89            | 76 78            | 2.04 2.00         | 2.64 2.57        |
| $O20^{v}$         | 171 172   | 82 81     | 81 78            | 75 78            | 76 74             | 2.26 2.25        |
| V7                | O21       | O23       | O22              | O19              | O18 <sup>vi</sup> | O20              |
| O21               | 1.61 1.61 | 2.69      | 2.68 2.69        | 2.74 2.70        | 2.79 2.79         | 3.83 3.84        |
| O23               | 100 102   | 1.88 1.83 | 2.68 2.70        | 2.74 2.68        | 3.77 3.80         | 2.68 2.65        |
| O22               | 104 102   | 93 95     | 1.79 1.84        | 3.74 3.70        | 2.70 2.74         | 2.65 2.65        |
| O19               | 98 99     | 89 91     | 158 157          | 2.01 1.93        | 2.50 2.48         | 2.64 2.62        |
| O18 <sup>vi</sup> | 102 99    | 156 157   | 91 89            | 78 77            | 1.97 2.05         | 2.60 2.68        |
| O20               | 174 176   | 81 81     | 82 81            | 77 78            | 76 77             | 2.22 2.23        |
| V8                | O26       | O16       | O23 <sup>v</sup> | O27              | O25 <sup>v</sup>  | O20 <sup>v</sup> |
| O26               | 1.60 1.65 | 2.71 2.67 | 2.72 2.76        | 2.83 2.87        | 2.70 2.68         | 3.95 3.97        |
| O16               | 102 102   | 1.88 1.80 | 3.68 3.61        | 2.62 2.67        | 2.67 2.67         | 2.69 2.65        |
| O23 <sup>v</sup>  | 102 102   | 155 156   | 1.89 1.89        | 2.64 2.57        | 2.63 2.62         | 2.68 2.65        |
| O27               | 102 107   | 84 92     | 85 85            | 2.02 1.91        | 3.78 3.83         | 2.64 2.70        |
| O25 <sup>v</sup>  | 102 94    | 91 90     | 89 85            | 155 158          | 1.85 1.99         | 2.77 2.79        |
| O20 <sup>v</sup>  | 176 175   | 78 79     | 78 77            | 74 79            | 81 80             | 2.35 2.33        |
| V9                | O28       | O27       | O19 <sup>v</sup> | O18              | $O20^{iv}$        | O20 <sup>v</sup> |
| O28               | 1.71 1.70 | 2.73 2.69 | 2.76 2.79        | 2.69 2.73        | 2.64 2.65         | 3.79 3.82        |
| O27               | 107 103   | 1.69 1.75 | 2.73 2.71        | 2.69 2.71        | 3.75 3.73         | 2.64 2.70        |
| O19 <sup>v</sup>  | 98 101    | 97 95     | 1.94 1.94        | 2.50 2.45        | 2.64 2.62         | 2.64 2.57        |
| O18               | 96 98     | 96 95     | 157 157          | 1.92 1.94        | 2.60 2.68         | 2.63 2.64        |
| O20 <sup>iv</sup> | 87 91     | 166 165   | 82 81            | 81 85            | 2.09 2.02         | 2.64 2.65        |
| O20 <sup>v</sup>  | 165 170   | 88 87     | 81 79            | 81 80            | 82 79             | 2.11 2.16        |
| V10               | O24       | O25       | O22              | O17 <sup>v</sup> | O28 <sup>vi</sup> | O20              |
| O24               | 1.60 1.66 | 2.70 2.71 | 2.70 2.64        | 2.73 2.78        | 2.84 2.84         | 3.94 3.90        |
| O25               | 103 104   | 1.83 1.78 | 2.66 2.68        | 2.66 2.70        | 3.80 3.88         | 2.77 2.79        |
| O22               | 103 97    | 92 94     | 1.85 1.87        | 3.65 3.65        | 2.61 2.62         | 2.65 2.65        |
| O17 <sup>v</sup>  | 102 104   | 91 95     | 154 155          | 1.90 1.87        | 2.61 2.65         | 2.67 2.62        |
| O28 <sup>vi</sup> | 101 96    | 155 161   | 84 81            | 83 82            | 2.06 2.15         | 2.64 2.65        |
| O20               | 174 169   | 82 87     | 77 79            | 77 78            | 74 74             | 2.35 2.25        |

Table 3. Continued

<sup>*a*</sup>Symmetry codes: (i) -x + 1, -y, -z + 1. (ii) x, y, z - 1. (iii) x + 1, y, z. (iv) -x + 1, -y + 1, -z + 1.

<sup>b</sup>Symmetry codes: (i) x, y, z - 1. (ii) x, y, z + 1. (iii) -x + 1, -y + 1, -z + 1. (iv) x + 1, y, z. (v) -x + 1, -y, -z + 1. (vi) x - 1, y, z.

- to  $V=O_t$  (O<sub>1</sub>, O<sub>7</sub>, O<sub>10</sub>, O<sub>14</sub> and O<sub>15</sub>, O<sub>21</sub>, O<sub>24</sub>, O<sub>26</sub>; oxo terminal, oxygen atoms bonded to only one vanadium atom)
  - $(1.58-1.60)_{297K}$   $(1.59-1.70)_{60K}$  and  $(1.56-1.61)_{297K}$   $(1.56-1.66)_{60K}$
- to V- $O_{2b}$  ( $O_2$ ,  $O_3$ ,  $O_8$ ,  $O_9$ ,  $O_{11}$ ,  $O_{12}$ ,  $O_{13}$ , and  $O_{16}$ ,  $O_{17}$ ,  $O_{22}$ ,  $O_{23}$ ,  $O_{25}$ ,  $O_{28}$ ,  $O_{27}$ ; oxy-

gen atoms shared between two vanadium atoms)

 $(1.70\text{--}2.07)_{297\mathrm{K}}$   $(1.73\text{--}2.08)_{60\mathrm{K}}$  and  $(1.69\text{--}2.06)_{297\mathrm{K}}$   $(1.70\text{--}2.15)_{60\mathrm{K}}$ 

— to  $V-O_{3b}$  (O<sub>4</sub>, O<sub>5</sub>, and O<sub>18</sub>, O<sub>19</sub>; oxygen atoms shared between three vanadium atoms)

| 0    | Н            | С                        | О-Н       | 0-С                     | н-о-н          | С-О-Н        | С-О-С           | н-н          | А                   | Н-А          | О-Н-А    | 0-A        |
|------|--------------|--------------------------|-----------|-------------------------|----------------|--------------|-----------------|--------------|---------------------|--------------|----------|------------|
|      |              |                          |           | C                       | Class 1: one b | ond to the b | visector of the | he lone pair | 5                   |              |          |            |
| O29  |              | $Y1^i$                   |           | 2.35 2.38               | 106 101        |              |                 | 1.56 1.43    |                     |              |          |            |
|      | H291         |                          | 0.97 0.90 |                         |                | 122 127      |                 |              | O12                 | 2.07 2.17    | 160 155  | 3.00 3.04  |
|      | H292         |                          | 0.97 0.96 |                         |                | 131 132      |                 |              | O9 <sup>1</sup>     | 1.67 1.66    | 160 174  | 2.63 2.62  |
| O30  |              | $Y1^{1}$                 |           | 2.43 2.43               | 106 101        |              |                 | 1.48 1.50    |                     |              |          |            |
|      | H301         |                          | 0.91 0.95 |                         |                | 130 135      |                 |              | 08                  | 2.40 2.18    | 155 171  | 3.25 3.12  |
|      | 11202        |                          | 0.04.1.00 |                         |                | 102 104      |                 |              | 013                 | 2.43 2.65    | 140 122  | 3.16 3.25  |
| 021  | H302         | Vili                     | 0.94 1.00 | 2 22 2 25               | 110 110        | 123 124      |                 | 1 60 1 50    | 024                 | 1.92 1.90    | 164 161  | 2.83 2.86  |
| 031  | <b>U211</b>  | I I.                     | 0.04.1.02 | 2.32 2.33               | 110 110        | 126 124      |                 | 1.00 1.39    | 048                 | 1 99 1 95    | 171 167  | 2 82 2 86  |
|      | H212         |                          | 1 00 0 01 |                         |                | 120 124      |                 |              | 040<br>040i         | 1.00 1.05    | 171 107  | 2.82 2.80  |
| 032  | 11312        | $\mathbf{V}1$            | 1.00 0.91 | 2 38 2 11               | 106 114        | 121 120      |                 | 1 55 1 55    | 049                 | 1./4 1./0    | 1/3 1/3  | 2.74 2.07  |
| 032  | H321         | 11                       | 0.05.0.04 | 2.30 2.41               | 100 114        | 133 127      |                 | 1.55 1.55    | 05                  | 1 70 1 63    | 160 161  | 2 64 2 54  |
|      | H321         |                          | 0.95 0.94 |                         |                | 115 113      |                 |              | 010 <sup>iii</sup>  | 1.70 1.05    | 170 166  | 2.04 2.34  |
| 033  | 11322        | <b>V</b> 1               | 0.99 0.91 | 2 44 2 42               | 108 104        | 115 115      |                 | 1 59 1 44    | 010                 | 1.04 1.00    | 170 100  | 2.02 2.17  |
| 055  | H331         | 11                       | 1 01 0 90 | 2.77 2.72               | 100 104        | 116 120      |                 | 1.57 1.44    | O46                 | 1 67 1 73    | 167 169  | 2 68 2 62  |
|      | H332         |                          | 0.96.0.93 |                         |                | 118 122      |                 |              | 03                  | 1.87 1.83    | 154 161  | 276273     |
| 034  | 11002        | Y1 <sup>iv</sup>         | 0.90 0.95 | 2.342.24                | 106 103        | 110 122      |                 | 1.54 1.50    | 05                  | 1.07 1.00    | 101101   | 2.70 2.75  |
| 001  | H341         | ••                       | 0.92 0.91 | 210 1 212 1             | 100 100        | 121 125      |                 | 101100       | O45                 | 1.75 1.80    | 175 176  | 2.67 2.71  |
|      | H342         |                          | 1.01 1.01 |                         |                | 127 126      |                 |              | O47 <sup>v</sup>    | 1.80 1.83    | 176 174  | 2.81 2.83  |
| O35  |              | $Y1^i$                   |           | 2.20 2.30               | 100 101        |              |                 | 1.54 1.54    |                     |              |          |            |
|      | H351         |                          | 0.98 0.99 |                         |                | 121 120      |                 |              | O1 <sup>i</sup>     | 1.69 1.68    | 167 165  | 2.66 2.64  |
|      | H352         |                          | 1.03 1.00 |                         |                | 128 131      |                 |              | O4                  | 1.66 1.65    | 174 173  | 2.68 2.65  |
| O36  |              | Y1 <sup>iv</sup>         |           | 2.35 2.34               | 103 110        |              |                 | 1.52 1.56    |                     |              |          |            |
|      | H361         |                          | 1.05 0.98 |                         |                | 129 126      |                 |              | O2                  | 1.76 1.76    | 169 169  | 2.80 2.73  |
|      | H362         |                          | 0.87 0.92 |                         |                | 127 124      |                 |              | O7 <sup>i</sup>     | 1.85 1.80    | 168 156  | 2.72 2.67  |
| O37  |              | Y2                       |           | 2.33 2.32               | 106 108        |              |                 | 1.55 1.49    |                     |              |          |            |
|      | H371         |                          | 0.98 0.90 |                         |                | 128 127      |                 |              | O50                 | 1.78 1.85    | 173 169  | 2.76 2.73  |
|      | H372         |                          | 0.95 0.94 |                         |                | 126 118      |                 |              | O45                 | $1.70\ 1.72$ | 170 172  | 2.65 2.66  |
| O38  |              | Y2                       |           | 2.39 2.45               | 101 104        |              |                 | 1.43 1.46    |                     |              |          |            |
|      | H381         |                          | 0.83 0.96 |                         |                | 123 116      |                 |              | O26                 | 2.01 1.85    | 169 168  | 2.83 2.79  |
|      | H382         |                          | 1.01 0.90 |                         |                | 133 135      |                 |              | O19                 | 1.81 1.82    | 164 169  | 2.79 2.71  |
| O39  |              | Y2                       |           | 2.37 2.41               | 109 116        | 129 117      | 110             | 1.54 1.58    |                     |              |          |            |
|      |              | H422                     |           | 2.06                    |                | 119 112      |                 |              |                     |              |          |            |
|      | H391         |                          | 0.94 0.95 |                         |                | 93           |                 |              | O16                 | 1.72 1.68    | 174 163  | 2.65 2.60  |
| 0.40 | H392         | T COVI                   | 0.96 0.92 | <b>a</b> 44 <b>a</b> 40 | 440.445        | 107          |                 | 4 59 4 50    | O21 <sup>v1</sup>   | 1.77 1.80    | 176 172  | 2.72 2.71  |
| 040  | 11404        | <b>Y</b> 2 <sup>v1</sup> | 0.02.0.02 | 2.41 2.40               | 112 117        | 100 110      |                 | 1.52 1.58    | 000                 | 106104       | 172 1 (2 | 0.70.0.70  |
|      | H401         |                          | 0.93 0.92 |                         |                | 120 118      |                 |              | 028                 | 1.86 1.84    | 1/3 163  | 2.79 2.73  |
| 0.41 | H402         | wavi                     | 0.90 0.91 | 2 2 4 2 25              | 106 109        | 127 125      |                 | 1 56 1 50    | 048                 | 1.84 1.79    | 1/4 1/6  | 2.74 2.72  |
| 041  | <b>H</b> 411 | 12 <sup>rd</sup>         | 0.05.1.06 | 2.34 2.33               | 100 108        | 122 120      |                 | 1.30 1.38    | 019                 | 174170       | 174 164  | 260274     |
|      | LI411        |                          | 1 00 0 80 |                         |                | 133 126      |                 |              | 015 <sup>vii</sup>  | 1.74 1.70    | 1/4 104  | 2.09 2.74  |
| 042  | Π412         | vovi                     | 1.00 0.89 | 2 20 2 22               |                | 120 123      |                 | 1 57 1 52    | 015                 | 1.00 1.05    | 108 170  | 2.84 2.70  |
| 042  | H421         | 12                       | 1 07 0 94 | 2.30 2.32               |                | 121 130      |                 | 1.37 1.32    | 023                 | 1 52 1 76    | 161 158  | 2 58 2 66  |
|      | H422         |                          | 0.88      |                         | 112            | 115          |                 |              | 023                 | 2.06         | 168      | 2.08 2.00  |
|      | H422         |                          | 0.88      |                         | 107            | 135          |                 |              | 039                 | 2.00         | 156      | 2.55       |
| 043  | 11122        | Y2                       | 0.00      | 2.37 2.23               | 109 110        | 100          |                 | 1.53 1.59    | 037                 | 2.01         | 100      | 2.00       |
| 0.0  | H431         |                          | 0.95 0.99 | 2107 2120               | 109 110        | 121 120      |                 | 100 1107     | O49                 | 1.99 1.91    | 168 167  | 2.92 2.89  |
|      | H432         |                          | 0.93 0.96 |                         |                | 121 122      |                 |              | O51 <sup>viii</sup> | 1.81 1.71    | 176 178  | 2.74 2.67  |
| O44  | 11:02        | Y2 <sup>vi</sup>         | 0.50 0.50 | 2.47 2.46               | 117 113        | 121 122      |                 | 1.55 1.44    | 001                 | 1101 11/1    | 1/01/0   | 217 1 2107 |
|      | H441         |                          | 0.96 0.84 |                         |                | 121 129      |                 |              | O14                 | 1.99 1.96    | 164 168  | 2.93 2.79  |
|      | H442         |                          | 0.85 0.88 |                         |                | 122 117      |                 |              | O23                 | 2.21 2.14    | 151 157  | 2.99 2.98  |
|      | .2           |                          |           |                         |                |              |                 |              | O22                 | 2.61 2.64    | 131 124  | 3.23 3.21  |
|      |              |                          |           |                         |                |              |                 |              | O25                 | 2.78 2.80    | 144 140  | 3.51 3.52  |
|      |              |                          |           | Class 2.                | two bond to    | the lone no  | irs (tetraha    | dral arrange | ment) <sup>b</sup>  |              |          |            |
| 045  |              | H341                     |           | 1.75 1 80               | 110 105        | 110 112      | 119 115         | aran arrange | mentj               |              |          |            |
| 0.0  |              | H372                     |           | 1.70 1.72               | 110 105        | 106 108      | 11/11/          |              |                     |              |          |            |
|      | H451         | 11012                    | 1.08 0.98 | 1., 5 1., 2             |                | 102 108      |                 | 1.70 1.51    | O46                 | 1.69 1.70    | 170 164  | 2.76 2.65  |
|      |              |                          | 1.00 0.90 |                         |                | 102 100      |                 |              | 0.10                | 1.02 1.70    | 1,0101   | 2.7 0 2.00 |

Table 3. Continued

| 0    | Н            | С                                       | О-Н                    | 0-С                    | н-о-н         | С-О-Н              | С-О-С         | Н-Н       | А                                        | Н-А                                 | О-Н-А                         | 0-A                                 |
|------|--------------|-----------------------------------------|------------------------|------------------------|---------------|--------------------|---------------|-----------|------------------------------------------|-------------------------------------|-------------------------------|-------------------------------------|
|      | H452         |                                         | 0.99 0.92              |                        |               | 110 109            |               |           | 011<br>02<br>03                          | 1.93 1.94<br>2.60 2.63<br>2 57 2 55 | 164 164<br>121 118<br>124 126 | 2.90 2.84<br>3.22 3.17<br>3 23 3 17 |
| O46  |              | H331<br>H451                            |                        | 1.67 1.73<br>1.67 1.70 | 104 105       | 111 111<br>117 120 | 108 101       |           | 05                                       | 2.37 2.33                           | 124 120                       | 5.25 5.17                           |
|      | H461<br>H462 |                                         | 0.95 0.90<br>0.98 1.01 |                        |               | 110 110<br>104 109 |               | 1.52 1.51 | O7 <sup>i</sup><br>O52 <sup>i</sup>      | 1.95 1.87<br>1.75 1.70              | 173 178<br>170 166            | 2.89 2.76<br>2.73 2.69              |
| O47  |              | H342 <sup>v</sup><br>H481 <sup>iv</sup> |                        | 1.80 1.83<br>1.86 1.79 | 110 111       | 121 114<br>105 108 | 113 116       |           |                                          |                                     |                               |                                     |
|      | H471<br>H472 |                                         | 0.89 0.98<br>0.96 0.91 |                        |               | 106 109<br>101 99  |               | 1.51 1.56 | O13<br>O51                               | 2.01 1.82<br>1.80 1.88              | 180 174<br>157 153            | 2.90 2.80<br>2.70 2.72              |
| O48  |              | H311<br>H402                            |                        | 1.88 1.85<br>1.84 1.79 | 106 101       | 112 109<br>109 116 | 117 118       |           |                                          |                                     |                               |                                     |
|      | H481<br>H482 |                                         | 0.96 1.00<br>0.99 0.92 |                        |               | 105 104<br>108 106 |               | 1.55 1.49 | O47 <sup>iii</sup><br>O11 <sup>vii</sup> | 1.86 1.79<br>1.84 1.81              | 172 170<br>165 171            | 2.81 2.78<br>2.81 2.73              |
| O49  |              | H312 <sup>i</sup><br>H431               |                        | 1.74 1.76<br>1.99 1.92 | 110 115       | 107 109<br>107 103 | 114 112       |           |                                          |                                     |                               |                                     |
|      | H491         |                                         | 1.05 0.93              |                        |               | 90 97              |               | 1.60 1.55 | 017 <sup>iv</sup><br>028 <sup>i</sup>    | 1.84 1.87<br>2.57 2.57              | 165 160<br>123 127            | 2.87 2.77<br>3.26 3.22              |
|      | H492         |                                         | 0.89 0.90              |                        |               | 127 121            |               |           | O26<br>O52                               | 2.79 2.52<br>2.60 2.65              | 143 141<br>136 139            | 3.55 3.27<br>3.31 3.38              |
| O50  |              | H371<br>H511 <sup>vii</sup>             |                        | 1.78 1.85<br>1.99 1.90 | 105 104       | 116 119<br>125 116 | 100 96        |           |                                          |                                     |                               |                                     |
|      | H501<br>H502 |                                         | 1.05 0.91<br>0.93 1.08 |                        |               | 107 115<br>102 107 |               | 1.57 1.57 | O33<br>O17<br>O25                        | 1.96 1.99<br>2.01 1.84<br>2.79 2.82 | 170 169<br>166 163<br>130 130 | 3.00 2.89<br>2.91 2.89<br>3.46 3.61 |
| O51  |              | H432 <sup>v</sup><br>H472               | 3.46 3.61              | 1.81 1.71<br>1.80 1.88 | 112 116       | 104 110<br>116 118 | 93 90         |           |                                          |                                     |                               |                                     |
|      | H511<br>H512 |                                         | 0.95 0.93<br>1.04 0.91 |                        |               | 113 103<br>116 116 |               | 1.65 1.57 | O50 <sup>vi</sup><br>O22                 | 1.99 1.90<br>1.73 1.76              | 149 155<br>178 173            | 2.85 2.78<br>2.77 2.67              |
| 052  |              | H462 <sup>vi</sup>                      |                        | 1 75 1 70              | Class 1': one | e bond to on       | e of the lone | e pairs.  |                                          |                                     |                               |                                     |
| 0.02 | H521<br>H522 | 11702                                   | 0.94 0.93<br>0.84 0.91 | 1.75 1.70              | 107 112       | 98 115<br>130 98   |               | 1.45 1.53 | O25<br>O8<br>O14                         | 1.84 1.77<br>2.83 2.44<br>2.71 2.55 | 174 173<br>121 130<br>154 149 | 2.77 2.67<br>3.48 3.13<br>3.34 3.39 |

Symmetry codes: ( i) -x + 1, -y, -z + 1. (ii) -x + 2, -y, -z + 1. (iii) x + 1, y, z. (iv) x - 1, y, z. (v) -x, -y + 1, -z + 1. (vi) -x + 1, -y + 1, -z + 1. (vii) -x + 2, -y + 1, -z + 1 (viii) -x, -y + 1, -z + 1.

 $(1.88-2.05)_{297K}$   $(1.83-2.07)_{60K}$  and  $(1.92-2.04)_{297K}$   $(1.93-2.05)_{60K}$ 

 to V-O<sub>6b</sub> (O<sub>6</sub> and O<sub>20</sub>; oxygen atoms shared between six vanadium atoms)

 $(2.09-2.35)_{297K}$   $(2.09-2.34)_{60K}$  and  $(2.09-2.35)_{297K}$   $(2.02-2.33)_{60K}$ 

The V–V distances observed between adjacent VO<sub>6</sub> octahedra are in the range :

 $(3.07 - 3.39)_{297K}$   $(3.06 - 3.41)_{60K}$ 

These figures show that, at both temperatures, in this yttrium compound the decavanadate polyhedron is basically the same as that in the analogous decavanadates of other inorganic and organic cations.

#### Water structure and hydrogen bonds

Table 3 presents selected distances and angles of the water molecules classified according to the types defined by Ferraris and Franchini-Angela.<sup>32</sup> This table also includes all contacts which could be hydrogen bonds.

The 24 crystallographically inequivalent water molecules occupy C1 sites (no symmetry). At room temperature, 16 are trigonal, coordinated to a single cation (bisector of lone-pairs toward an Yttrium



Fig. 2.  $[V_{10}O_{28}]^{6-}$  polyanion showing the atom labels of the two independent crystallographic units.

cation), 7 are tetrahedral (lone-pairs toward two H), and the last water molecule W52 could be classified as pyramidal (only one lone-pair accepts a hydrogen bond).

From Table 3 it can be seen that for H442, H452, H502, and H491 there is only one hydrogen bond with its characteristic of directionality, plus two (for H491 and H502) or three (for H442, H452) weak contacts which cannot be considered as real hydrogen bonds according to the criteria of Chiari and Ferraris.<sup>33</sup> At room temperature H301 hydrogen bond clearly splits into two bonds of comparable strength; this bifurcated hydrogen bond is lost at 60 K, the associated distances and angles at this temperature are not of the same order. H492 and H522 have two weak contacts with more or less the same characteristics and a significant shortening of O-H distances; the strength of these interactions is increased at 60 K; they could be classified as bifurcated hydrogen bonds. All other water molecules are donors of two hydrogen bonds.

Between 297 and 60 K, the plane determined by the W42 molecule rotates  $60^{\circ}$ . At room temperature, H442—O23 hydrogen bond contributes to structural cohesion along the [1 0 0] direction. At 60 K, this hydrogen bond is replaced by H442—O39 which increase the cohesion along [0 0 1] and change the class of the new acceptor atom. W39 water molecule is coordinated, at 60 K, to two atoms and may be classified tetrahedral (class 2).

# Conclusion

There is no order/disorder problem in the investigated Y<sub>2</sub>V<sub>10</sub>O<sub>28</sub>·24H<sub>2</sub>O crystals. Interatomic distances and angles within decavanadate polyhedra show that its geometry is quite similar to that found in other crystalline decavanadates. The positions of the 24 water molecules were determined. Almost all water molecules are donors of two hydrogen bonds. At room temperature W30 presents one bifurcated hydrogen bond which is lost at 60 K. In spite of the multiple contacts observed to H442, H452, H491, and H502, the differences observed in corresponding bond lengths and angles prevent the classification of those as polyfurcated hydrogen bonds. Interaction forces concerning H492 and H522 atoms are increased at 60 K and related bonds could be classified as weak bifurcated hydrogen bonds.

The most outstanding structural change observed in the crystal between 278 and 60 K is a rotation of 60° of W42 molecular plane which alters the hydrogen bond associated system changing one of the acceptor atoms (O27 at 278 K, O39 at 60 K). The coordination of the W39 molecule undergoes variation, from trigonal to tetrahedral.

The present results allow a good insight into the complex net of hydrogen bonds present in this structure and adds interesting structural information to the complex chemistry of condensed vanadium polyanions.

### References

- 1. Keppert, D.L. Inog. Chem. 1969, 8, 1556.
- Swallow, A.G.; Ahmed, F.R.; Barnes, W.H. Acta Crystallogr. 1966, 21, 397.
- 3. Evans, H.T. Inorg. Chem. 1966, 5, 967.
- 4. Saf'yanov, Y.N.; Belov, N.V. Sov. Phys. Dokl. 1976, 21(4), 176.
- Saf'yanov, Y.N.; Kuzmin, E.A.; Belov, N.V. Sov. Phys. Dokl. 1977, 22(7), 350.
- Saf'yanov, Y.N.; Kuzmin, E.A.; Belov, N.V. Sov. Phys. Dokl. 1978, 23(9), 639.
- Saf'yanov, Y.N.; Kuzmin, E.A.; Belov, N.V. Sov. Phys. Crystallogr. 1978, 23(4), 390.
- Saf'yanov, Y.N.; Kuzmin, E.A.; Belov, N.V. Sov. Phys. Crystallogr. 1979, 24(4), 438.
- 9. Durif, A.; Averbuch-Pouchot, M.T.; Guitel, J.C. Acta Crystallogr. 1980, B36, 680.
- Debaerdemaeker, T.; Arrieta, J.M.; Amigo, J.M. Acta Crystallogr. 1982, B38, 2465.
- Rigotti, G.; Escobar, M.E.; Baran, E.J.Z. Anorg. Allg. Chem. 1983, 501, 184.
- Rivero, B.E.; Rigotti, G.; Punte, G.; Navaza, A. Acta Crystallogr. 1984, C40, 715.

# Neutron structure of Y<sub>2</sub>V<sub>10</sub>O<sub>28</sub>·24H<sub>2</sub>O

- Punte, G.; Rivero, B.E.; Rigotti, G.; Navaza, A. Acta Crystallogr. 1988, C44, 216.
- 14. Avtamonova, N.V.; Trunov, V.K.; Makarevich, L.G. Izv. Akad. Nauk SSSR Neorg. Mater. **1990**, 26, 350.
- 15. Nieto, J.M.; Salagre, P.; Medina, F.; Sueritas, J. E.; Solans, X. *Acta Crystallogr.* **1993**, *C49*, 1879.
- 16. Averbuch-Pouchot, M.T. Eur. J. Solid State Chem. 1994, 31, 557.
- 17. Ninclaus, C.; Riou, D.; Ferey, G. Acta Crystallogr. 1996, C52, 512.
- Kamenar, B.; Cindric, M.; Strukan, N. Acta Crystallogr. 1996, C52, 1338.
- Zavalu, P.Y.; Chirayil, T.; Whittingham, M. S.; Pecharsky, V. K.; Jacobson, R. A. Acta Crystallogr. 1997, C53, 170.
- Strukan, N.; Cindric, M.; Kamenar, B. Acta Crystallogr. 1999, C55, 291.
- 21. Escobar, M.E.; Baran, E.J. Monatsh. Chem. 1981, 112, 147.
- 22. Ulicka, L.; Zurkova, L. J. Thermal Anal. 1981, 20, 147.
- 23. Escobar, M.E.; Lavat, A.E.; Baran, E.J. *Thermochim. Acta* 1981, 46, 341.

- 24. Rigotti, G.; Punte, G.; Rivero, B.E.; Escobar, M. E.; Baran, E. J. J. Inog. Nucl. Chem. **1981**, *43*, 2811.
- 25. Lavat, A.E.; Escobar, M.E.; Baran, E.J. Thermochim. Acta 1982, 52, 359.
- 26. Lavat, A.E.; Baran, E.J.; Escobar, M.E. *Thermochim. Acta* 1982, *55*, 355.
- 27. Lavat, A.E.; Baran, E.J.; Escobar, M.E. *Thermochim. Acta* **1983**, *60*, 105.
- 28. Jahr, K.F.; Preuss, F. Chem. Ber. 1978, 98, 441.
- Sheldrick, G.M. SHELXL93, Program for Crystal Structures Refinement; University of Göttingen: Germany, 1993.
- International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England (Present distributor: Kluwer Academic Publisher: Dordrecht), 1974; Vol. IV, p. 270.
- 31. TRIPOS SYBYL, Molecular Modeling Software, V 5.2; Inc. MO, 1998.
- Ferraris, G.; Franchini-Angela, M. Acta Crystallogr. 1972, B28, 3572.
- 33. Chiari, G.; Ferraris, G. Acta Crystallogr. 1982, B38, 2331.