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Abstract. By using the gradient method (GM) we study random sequential adsorption (RSA) processes in
two dimensions under a gradient constraint that is imposed on the adsorption probability along one axis
of the sample. The GM has previously been applied successfully to absorbing phase transitions (both first
and second order), and also to the percolation transition. Now, we show that by using the GM the two
transitions involved in RSA processes, namely percolation and jamming, can be studied simultaneously by
means of the same set of simulations and by using the same theoretical background. For this purpose we
theoretically derive the relevant scaling relationships for the RSA of monomers and we tested our analytical
results by means of numerical simulations performed upon RSA of both monomers and dimers. We also
show that two differently defined interfaces, which run in the direction perpendicular to the axis where
the adsorption probability gradient is applied and separate the high-density (large-adsorption probability)
and the low-density (low-adsorption probability) regimes, capture the main features of the jamming and
percolation transitions, respectively. According to the GM, the scaling behaviour of those interfaces is
governed by the roughness exponent α = 1/(1 + ν), where ν is the suitable correlation length exponent.
Besides, we present and discuss in a brief overview some achievements of the GM as applied to different
physical situations, including a comparison of the critical exponents determined in the present paper with
those already published in the literature.

1 Introduction

The study and understanding of random sequential ad-
sorption (RSA) processes have attracted large attention
as paradigmatic approaches towards irreversibility, as well
as due to the ubiquity of the phenomena in many fields of
physics and chemistry. The main features of the RSA of
objects on a sample are: (i) the adsorption is irreversible,
so that desorption is no longer considered, (ii) both the
adsorption position on the sample and the orientation of
the object to be adsorbed are random events, and (iii) at
any time only one object is being adsorbed, so that the
process takes place sequentially. Of course, several vari-
ants of the RSA processes including, e.g. diffusion [1,2],
relaxation [3,4] and dissociation [5,6] of the adsorbed par-
ticles, the competition between different species [7,8], as
well as anisotropic sequential deposition [9], have already
been studied. For reviews of RSA see e.g. [10,11].

By starting with an empty sample, at early stages
RSA processes lead to the formation of small clusters of
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particles. Subsequently, one observes the growth of larger
clusters and the onset of an incipient percolation cluster
that spans over the whole sample, e.g. for d > 1 dimen-
sion [12]. So, just at the percolation threshold one observes
a true geometrical second-order phase transition that be-
longs to the universality class of the standard percolation
problem [12]. If the RSA process further continues, one
may also observe the jamming transition, i.e. when there
is no further space left on the sample for additional adsorp-
tion [10,11]. It is worth mentioning that along the present
paper we use the term ‘jamming’ in order to identify the
situation when no room is left for further adsorption on
the sample. This is the usual practice in the RSA liter-
ature, in contrast to another use of this term in a wide
variety of physical systems (granular media, colloidal sus-
pensions, glasses, etc.) which may exhibit non-equilibrium
transitions from a fluid-like to a solid-like state, charac-
terized solely by the sudden arrest of their dynamics. In
these cases, it is said that the jamming of the involved
particles traps them kinetically, precluding further explo-
ration of the phase space [13–15]. Within the context of
RSA, the jamming density is no longer a trivial quantity
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for the adsorption of dimers and larger particles. Both,
percolation and jamming transitions are archetypal mod-
els studied by statistical physicists. However, interest in
these topics spreads over many fields of science and tech-
nology such as condensed matter, physical chemistry, bi-
ology, etc. [10–12].

In a related context, the stationary state of a diffu-
sion front of particles [16] can also be thought as an RSA
experiment. In fact, by assuming a source (sink) of parti-
cles on the right-hand (left-hand) side of the sample, the
density of particles decreases from 1 to 0 (from right to
left) almost linearly along the direction of diffusion [16].
The main proposal of the present paper is that due to
this gradient of density, one can simultaneously observe
both a gradient percolation transition and a gradient jam-
ming transition, which in turn can efficiently and straight-
forwardly be studied by means of the gradient method
(GM) [17,18]. In the early studies of Sapoval et al. [16], the
gradient percolation method was proved to be very useful
to accurately locate the percolation threshold [19], as well
as for the evaluation of some critical exponents of the per-
colation transition [16]. Very recently, we have generalised
this method in order to study irreversible phase transitions
(IPT’s) [17,18], both of first and second order, occurring
between absorbing and active states. By applying the new
approach, i.e. the so-called GM, to the Ziff-Gulari-Barshad
model for the catalytic oxidation of CO [17], and to the
forest-fire model with immune trees [18], it has been shown
that one can characterise both the absorbing phase tran-
sitions and the percolation transitions in a unified fashion.
We also note that the GM allowed for the calculation of
the critical exponents.

Within this context, the aim of this paper is to apply
the GM to the RSA problem and show that both percola-
tion and jamming can also be studied in a unified fashion
by means of a single numerical simulation. For this pur-
pose we apply a suitable version of the GM to the RSA
of both monomers and dimers in a lattice in d = 2 di-
mensions. Basically, we perform RSA experiments where
a density gradient is imposed along one direction of the
sample, leading to the formation of percolation and jam-
ming interfaces that can be treated by using the same the-
oretical background. It should be mentioned that previous
standard studies of these transitions have already shown
that they share several relevant characteristics [20,21].
However, one must keep in mind that the jamming process
is not an actual thermodynamic transition. Along this pa-
per, particular attention will be devoted to describe the
scaling laws of the interface roughness and the correspond-
ing exponents. This purpose will be achieved by means of
the generalisation, in the case of RSA, of the relationships
early developed by Sapoval et al. [16] for the percolation
problem associated with a diffusion front. We will also
show that the proposed approach yields accurate results
with a minimal computational effort.

We have organised this paper according to the follow-
ing schema: in Section 2 we provide the theoretical back-
ground of the GM, Section 3 is devoted to the description
of the RSA gradient method and the simulation procedure.

In Section 4 we first derive suitable scaling relationships
for the RSA of monomers. Subsequently we apply the GM
to the RSA of monomers and dimers, confirming the scal-
ing schema already developed. Finally, we state our con-
clusions in Section 5.

2 The gradient method approach

The GM approach is based on the study of some suit-
able experiment or system in which a control parame-
ter p varies monotonically along one spatial coordinate
x (0 ≤ x ≤ Lx), where Lx is the system size in the x-
direction. We assume this variation according to

p(x) = p0 + (p1 − p0)x/Lx (1)

where, for simplicity, we have taken constant gradientΔ =
∇p = (p1 − p0)/Lx, with p1 > p0.

Let us also assume the existence of a phase transition
at the critical point p ≡ pc and, of course, that this point
lies within the interval [p0, p1], namely p0 < pc < p1.
Under this condition the GM naturally exhibits at least
one interface between these coexisting phases. In fact, if
xc ≡ X(pc) is the coordinate given by equation (1), for
x > xc (i.e. p > pc) one has one phase (say phase A), while
for x < xc (i.e. p < pc) the second phase (say phase B)
is present. It is worth mentioning that the GM does not
provide a unique definition of the interface between phases
A and B. Far from being a shortcoming, this is a power-
ful advantage of the GM because one can always define,
locate, and calculate the properties of at least one suit-
able interface between phases A and B, capable of giving
useful information on the phase transition occurring at
xc = X(pc).

In order to achieve a quantitative description of the
physical situation, along this paper and following [17,18],
we will determine and study the properties of two dif-
ferent interfaces, i.e. the so-called single-valued interface
(SVI), and the multivalued interface (MVI). For the sake
of clarity, it is convenient to state that our study will be
performed in two dimensions by assuming a lattice in a
rectangular geometry of sides Lx × Ly, where the gradi-
ent is applied along the x-direction (rows), while the Ly-
direction (columns) is parallel to the interfaces considered
in the GM. The simplest definition corresponds to the SVI
that is given by the set of points {aj}, j = 1, 2, . . . Ly be-
longing to the phase A that are in contact with the phase
B, but are located on the rightmost side of each row j. On
the other hand, in order to construct the MVI one deter-
mines all the occupied sites in contact with the rightmost
column of the sample. These sites, connected by means of
nearest neighbours, are denoted as the ‘land’. Also, empty
sites are linked through both nearest- and next nearest-
neighbour sites and form a large cluster that is termed
the ‘sea’, connected with the leftmost column of the sam-
ple. The sites not connected with the two large clusters
of land and sea are identified as ‘islands’ and ‘lakes’, re-
spectively, but they are irrelevant. In fact, by definition,
the MVI is given by the ‘seashore’ where ‘land’ and ‘sea’
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are in contact. In this way the number of points belong-
ing to the MVI could be greater than Ly, which motivates
the name of the multivalued interface, in contrast to the
single-valued interface. For additional details on the defi-
nitions of the interfaces and the algorithms used to locate
them see, e.g. [17,18].

Let Int = {xi}, i = 1, 2, . . .M be the set of coordinates
corresponding to the sites belonging to a given interface
between phases A and B. Here one has that M = Ly
and M ≥ Ly for the SVI and the MVI, respectively. The
average position of the interface is given by

hxiInt =
1
M

X

Int

xi, (2)

while the width W of the interface can be calculated as
the rms deviation of hxiInt, as usual. So,

W =

s
1
M

X

Int

(xi − hxiInt)
2
. (3)

On the other hand, after proper identification of the
largest cluster associated with one phase, one can define
the cluster density profile measured along the coordinate
where the gradient is applied, namely ρcl(x,Δ), which is
just the density of the components of the cluster measured
at each column of coordinate x. The function ρcl contains
the most important information that one can obtain by
using the GM, and establishes the link between the inter-
facial properties and the standard criticality observed at
pc. In fact the derivative of ρcl is a Gaussian-like function
whose peak can be associated with the location of the in-
terface according to pc ≈ p(hxiInt) [16], while its width is
of the order of the interface width W . In order to work
out the scaling behaviour of the function ρcl(p,Δ), it is
useful to rewrite equations (2) and (3) as a function of the
control parameter by using equation (1), that is

hpiInt =
1
M

X

Int

p(xi), (4)

and

w =

s
1
M

X

Int

(p (xi) − hpiInt)
2
, (5)

where it is worth stressing that W and w are measured
in units of lattice spaces and control parameter units, re-
spectively.

Now, if we assume that p ≡ pc is a critical point that
has a diverging correlation length (ξ) given by

ξ ∝ |p− pc|−ν , (6)

where ν is the correlation length exponent, it can be
proved that the correlation length is related to the gra-
dient according to [16]

ξ ∝ |Δ|−
ν

ν + 1 . (7)

Coming back to the cluster density function ρcl(p,Δ), it
is clear that the critical behaviour appears in the limits
|p− pc| → 0 and Δ → 0, where ρcl converges to the
Heaviside step function. Therefore, by using equations (6)
and (7) in these limits, the scaling relationship for ρcl be-
comes

ρcl(p,Δ) = Ψ
�
[p− pc]Δ− 1

ν+1

�
, (8)

where Ψ is a suitable scaling function. It is worth recall-
ing that equation (8) is of the same type as that of the
percolation probability in the well known standard perco-
lation problem [12]. So, one can prove that for Δ→ 0 (but
Δ 6= 0), the width of the transition region (i.e. w, which
is measured according to Eq. (5)) and the position of the
effective critical point (hpiint, as given by Eq. (4)), behave
according to

w ∝ Δα, α =
1

ν + 1
, (9)

and

hpiInt − pc ∝ Δα, α =
1

ν + 1
, (10)

respectively, where α is the so called roughness expo-
nent [22].

Furthermore, in the Δ→ 0 limit, one can estimate the
critical point pc with high precision, by using equation (8),
as the coordinate of the crossing point ρ∗ ≡ρcl(pc, Δ) ≡
Ψ(0) among curves of the cluster density corresponding to
different values of Δ.

The relationships discussed previously have been used
for the study of several models, with the gradient percola-
tion transition as the paradigmatic case [16–18,23]. Here,
we will show that the same schema can also be applied to
RSA problems. For this purpose we shall exploit the sim-
ilarity between percolation and jamming. In fact, by us-
ing the same adsorption experiment or simulation, we will
show that the MVI is suitable to describe the critical prop-
erties of the percolation transition, while the SVI is related
to the properties of the jamming transition. The similarity
between jamming and percolation has also been observed
before, when jamming has been used to measure the di-
mensionality of the samples [20,24–26]. For RSA problems,
it is well known that the jamming transition is not actu-
ally a true phase transition, in the thermodynamic sense,
and consequently it lacks a diverging correlation length. In
this case, correlations between particles are short-ranged
and extend over few lattice units. Furthermore, the ex-
ponent νJ, which plays the role of the correlation length
exponent, can be calculated exactly and is given by [24,25]

νJ = 2d/(2 + df), (11)

where d is the dimension of the substrate and df is the
dimension of the active sites where the actual adsorption
process takes place. Notice that equation (11) is quite gen-
eral and also holds for a fractal set of active sites.

Along the next sections of the paper we will show that
the previous discussions can be applied to the RSA of
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monomers and dimers. We will propose a numerical ver-
sion of the GM for RSA. After that we will show that the
simplest case of jamming of monomers can be solved an-
alytically and the scaling function can be found explicitly
in the thermodynamic limit. Furthermore, focusing our
attention on both the percolation and the jamming tran-
sitions, we will study RSA processes of both dimers and
monomers by means of extensive numerical simulations.

3 The gradient method applied to RSA
and the numerical simulation schema

Our aim is to extend the recently proposed GM [17,18] to
the study of RSA processes. The GM is inspired in the
seminal work of Sapoval et al. [16] on the diffusion front
(DF) problem, where the DF is originated by the diffu-
sion of particles between a source and a sink, which are
placed at the rightmost and leftmost sides of a sample,
respectively. In the DF problem, the relevant parameter
is the density of diffusing particles that monotonically de-
creases from the source towards the sink, i.e. a concentra-
tion gradient is naturally established as a consequence of
random motion and excluded volume, which fully satisfies
the equation of diffusion. Furthermore, it is well known
that the established gradient is almost linear along the
source-sink direction, provided that the distance between
them is large enough.

We propose that a similar concentration gradient can
be generated in an RSA process just by assuming some
constraint over the density of the adsorbed particles along
a given direction, i.e. the gradient direction. In the stan-
dard notation of the RSA literature, the density of the
adsorbed particles is the coverage θ. Now, for the RSA
case one has to use the constraint coverage as the control
parameter p as is used in Section 2, that is θ → p.

The above-mentioned constraint, which is suitable for
the implementation of an RSA process in a gradient, is
called the linear constraint and it is implemented as fol-
lows: simulations are performed in two dimensions by as-
suming a lattice in a rectangular geometry of sides Lx×Ly,
where the gradient is applied along the x-direction, while
the Ly-direction is parallel to the interfaces considered
in the GM. For the purpose of the simulations, periodic
boundary conditions are applied along the Ly-direction,
while the remaining boundaries along the Lx-direction
are closed. In order to implement the RSA with the lin-
ear cut-off constraint, the density of each ith column
(1 ≤ i ≤ Lx) cannot exceed i/Lx in order to satisfy
θ(i) = θ0 + (θ1 − θ0)i/Lx, which for the RSA problem
is equivalent to equation (1), with θ1 = 1 and θ0 = 0. For
the case of the RSA of monomers a column i is selected at
random with probability 1/Lx. Then, if the density of the
column is smaller than i/Lx, a site from this column is
selected at random with probability 1/Ly and the adsorp-
tion of a particle is considered provided that the selected
site is empty. The RSA continues until particles can no
longer be adsorbed on any place of the sample due to the
linear cut-off constraint.

In order to implement the RSA of dimers under the
linear cut-off constraint, one also selects at random a col-
umn with probability 1/Lx and subsequently a site be-
longing to that column with probability 1/Ly. However,
since now one requires an additional site for the adsorp-
tion process, a neighbouring site of the previously selected
one is also chosen at random with probability 1/4. Notice
that this additional site may lie on the same column as
that of the first one (with probability 1/2) undergoing
the same constraint, or it may be located in two adjacent
columns (with probability 1/4 on each side of the origi-
nally selected column), so that in that latter case it may
undergone a slightly different constraint. We have checked
that our results (see below) are independent of this detail,
as expected since a correction of the order of 1/Lx is in-
volved. So, adsorption of the dimer is accepted provided
that both selected sites are vacant and that the linear
cut-off constraint of the first selected site is satisfied. The
RSA process stops when no sites for further adsorption of
dimers are left on the sample.

4 Results and discussion

4.1 The GM applied to the RSA of monomers

For this case one recovers the standard DF problem, early
studied by Sapoval et al. [16], so we will only discuss the
main results focusing our attention on the properties of
the SVI that capture the behaviour of the jamming tran-
sition. Then, those results corresponding to the MVI that
capture the behaviour of the standard percolation prob-
lem, already discussed in terms of the DF problem [16],
will only be briefly mentioned.

We consider a two-dimensional lattice in a station-
ary DF configuration. This means that the density of
monomers, in the horizontal direction, varies linearly from
θ = 0 (on the left) to θ = 1 (on the right).

Let us now point our attention to any row in this sim-
ple configuration. In order to simplify the formulation of
the following equations, we label the sites of a given row
with the horizontal coordinate (i.e. its column number) as
i0 = 0, . . . , Lx − 1, from right to left (i.e. being i the pre-
viously used index, one has i0 = Lx − i). The occupation
probability, for a site with label i0, will be r(i0) = 1−i0/Lx
and the probability to be empty, q(i0) = i0/Lx. The gra-
dient in the density is simply given by Δ = 1/Lx. Fur-
thermore, for a given row, the site belonging to the SVI
interface can be taken as i0 = I if all sites with coordi-
nate i0, so that i0 < I, are occupied, and the I-site itself
is empty1. Then, the probability that a site i0 of a given

1 There is an uncertainty of the order of 1/Lx = Δ in the def-
inition of this location because the coordinates of the sites are
integer numbers, whilst the coordinate of the resulting inter-
face calculated according to equation (2) can be a real number.
Despite this shortcoming any choice must lead to the same re-
sult in the limit Δ → 0. So, the error in the GM is of the order
of Δ/2.
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row belongs to the SVI is given by

p(i0 = I, Lx) = r(0)r(1)r(2) . . . r(I − 1)q(I)

=
I Lx!

LI+1
x (Lx − I)!

· (12)

By considering the whole lattice, equation (12) gives us
the horizontal distribution of the sites belonging to the
SVI. By taking Lx large enough and by using the Stirling
formula for the factorial numbers, it is easy to show that
p(I, Lx) can be expressed as a function of the new variable
z = I/Lx , with 0 6 z < 1, as

p(z, Lx) ∝ ze−Lxψ(z), (13)

where the function ψ is given by

ψ(z) = z + (1 − z) ln(1 − z), (14)

which is a monotonically increasing function and its mini-
mum is ψ(z = 0) = 0. From equation (13) one can see that
for large enough Lx, only that minimum gives the leading
behaviour of p. Then, by making a Taylor expansion of ψ
around z = 0, we conclude that

p(z,Δ) ∝ z exp
�
− z2

2Δ

�
, (15)

where we used Δ = 1/Lx. The solid cluster of the jammed
state, which is placed on the right-hand side of the SVI,
is compact in the sense that it lacks holes, and its cluster
density ρcl(z,Δ) can be calculated as

ρcl(z,Δ) = −
Z z

1

p (z0, Δ) dz0. (16)

Because the maximum of ρcl(z,Δ) is ρmax = 1, one has

ρcl(z,Δ) = exp
�
− z2

2Δ

�
. (17)

The coordinate zc(Δ) that measures the position of the
interface and the width corresponding to the jamming
transition can now be obtained straightforwardly. In fact,
from equation (15) and identifying zc with the maximum
of p(z,Δ), one obtains

zc(Δ) = zc(0) +Δ1/2, (18)

where zc(0) = zc(Δ → 0) = 0. Also, the width of the
transition (wSVI), given by the characteristic width of the
exponential function (Eq. (17)), is

wSVI = Δ1/2. (19)

Now physically, the relevant variable is the coverage,
θ = 1 − z, therefore we can explicitly write the scaling
relationship introduced in Section 2 (Eq. (8)) just by us-
ing equation (17), namely

ρcl(θ,Δ) = Ψ
��
θ − θMJ

�
Δ−1/2

�
, (20)

0.001 0.010
Δ

0.01
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W
SV
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SVI Monomers
SVI Dimers

0.00 0.05 0.10 0.15 0.20

Δ1/2

0.70

0.80

0.90

1.00

θ J

(a) (b)

Fig. 1. (Color online) RSA of monomers (circles) and dimers
(triangles) under the linear gradient constraint. (a) Log-log
plots of the width of the SVI versus the gradient Δ. The con-
tinuous lines are power-law fits and the resulting exponents are
αJ = 0.48±0.02 (αJ = 0.46±0.02) for the SVI corresponding to
the adsorption of monomers (dimers). (b) The position of the
SVI is shown versus Δ1/2, as obtained for different gradients.
The continuous lines are linear fits, so that the intersections
with the vertical axis are the extrapolated jamming coverages
θJ. The arrows indicate the coverage for the jamming transi-
tion θM

J = 1 (θD
J ≈ 0.907) for monomers (dimers). More details

in the text.

where the critical (jamming) coverage is θMJ = 1 and the

scaling function is Ψ(u) = e−
u2
2 .

In order to test the above-developed theoretical frame-
work, we simulated the RSA of monomers under the gra-
dient constraint. Figure 1a shows a log-log plot of the
width of the SVI (wSVI) given by equation (5) versus the
gradient Δ, as obtained for square samples of different
sizes (64 ≤ Lx ≤ 2048) that actually set the gradient.
For the case of monomers, a power-law fit of the data
to equation (9) yields αJ = 0.48 ± 0.02, which is consis-
tent with the exact theoretical value αJ = 1/2 given by
equation (19). Figure 1b shows the location of the SVI,
θJ ≡ hθiInt, as measured in units of the coverage by using
equation (4), plotted as a function of Δ1/2. In this way,
equation (10) is fully confirmed, and again the exactly
obtained theoretical exponent αJ = 1/2 is verified for the
case of monomers. On the other hand, the extrapolation
of the data yields to the Δ→ 0 limit θMJ = 0.999± 0.005.
Also, we obtained A = −1.21 ± 0.02 for the constant in-
volved in equation (10).

Figure 2a shows plots of the density of the compact
cluster located on the right-hand side of the SVI, which
corresponds to the cluster of the jammed state (ρSVI

cl ),
as measured from the simulations, versus the control pa-
rameter θ(x) of each column of the sample. Results are
obtained for different gradients that can be accomplished
by taking samples of different lattice width Lx. In this
case the crossing point between all the curves is trivially
given by θMJ = 1. Then by using the scaling relationship
given by equation (8) with pc ≡ θMJ = 1 and νJ = 1
(which corresponds to αJ = 1/2), one obtains an excellent
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0.6 0.8 1
θ(x)

0.0

0.5

1.0

ρ cl
SV

I

  64
 128
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2048

-3 -2 -1 0

(θ−1)Δ−1/2

0.0

0.5

1.0

ρ cl
SV

I

(a) (b)
Lx

Fig. 2. (Color online) RSA of monomers under the linear gra-
dient constraint. These data correspond to the same simula-
tion used in Figure 1. (a) Plots of the density of the cluster
defined by the SVI versus the parameter θ(x) as obtained for
different lattice sizes (i.e. different gradients). Note the trivial
intersection of the curves at θM

J = 1. (b) Collapse of the data
already shown in (a) obtained by rescaling the horizontal axis
according to (θ − 1)Δ−1/2. The continuous line is the theo-
retical scaling function (Eq. (20)) that is plotted without any
adjusted parameter.

data collapse, as shown in Figure 2b. The continuous line
in Figure 2b is the theoretical scaling function (Eq. (20))
derived above (without any adjusted parameter). So, the
excellent agreement fully supports the previous theoretical
treatment.

The previous results suggest that, although it is well
known that the jamming transition is not actually a true
phase transition, the exponent νJ given by equation (11)
can be used as the correlation length exponent in equa-
tions (9) and (10). That is taking df = d = 2 in equa-
tion (11), one gets νJ = 1, and by inserting this figure
in equations (9) and (10) one obtains αJ = 1/2 for the
roughness exponent, in agreement with all of our previ-
ously discussed results.

An additional advantage of the GM is that by means
of the same simulation results, the analysis of the MVI
can also be used to gain insight into the standard per-
colation transition. In fact, the RSA of monomers in the
GM maps onto the DF problem and consequently onto
the percolation system as well. The power-law fit of the
width of the MVI (wMVI) versus the gradient as obtained
by performing simulations of the RSA of monomers (see
Eqs. (5) and (9)) yields αp = 0.40± 0.01 (not shown here
for the sake of space), i.e. a figure that slightly underesti-
mates the exact value that can be obtained with the aid
of equation (9) taking ν = 4/3 for the standard percola-
tion problem, namely αp = 3/7 ' 0.4286. The observed
discrepancy is due to the operation of strong finite-size
effects. In fact, by using this type of measurement one
has to evaluate local exponents, defined between two ad-
jacent values of the gradient, and the exact value is re-
covered when these local exponents are properly extrapo-
lated to the thermodynamic limit [18,27,28]. For a detailed
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Fig. 3. (Color online) RSA of monomers under the linear gra-
dient constraint. (a) Plots of the density of the percolation
cluster defined by the MVI versus the control parameter θ(x)
as obtained for different lattice sizes (i.e. different gradients).
The inset shows plots of the intersection points between ad-
jacent curves (shown in the same panel) against average val-
ues taken between consecutive gradients (Δ1 and Δ2), namely
Δ∗ ≡ (Δ1 + Δ2)/2, which give us θM

p = 0.59274 ± 0.00025,
that nicely converges towards the percolation threshold θM

p '
0.59275, shown as a dashed line. (b) Collapse of the data al-
ready shown in (a) obtained by rescaling the horizontal axis
according to (θ − 0.59275)Δ−3/7 . More details in the text.

discussion and application of the above procedure with the
GM see [18]. Here, we will only quote that by considering
the discussed correction, we obtained αp = 0.425± 0.004.

On the other hand, the massive percolation cluster is
composed of sites belonging to the land and the lakes and
islands inside the land. Figure 3a shows the density pro-
files associated with that massive percolation cluster plot-
ted versus the coverage. It exhibits a common intersection
point for different values of the gradient. The inset of Fig-
ure 3a shows the location of the intersection point between
two curves of consecutive gradient values versus the aver-
aged gradient. One has that these intersections converge
towards the percolation threshold of the standard perco-
lation problem, namely θMp ' 0.59275 [29], as expected.
The percolation threshold can also be determined by us-
ing the position of the MVI (similar to Fig. 1b for the
MVI) as was done before for the case of the DF problem
by Sapoval et al. [16]. Also, by using the proposed scaling
relationship for the density profile (Eq. (8)) one obtains an
excellent data collapse of the results shown in Figure 3a,
as depicted in Figure 3b. So far, we conclude that the RSA
of monomers with the gradient constraint can be used to
study both the jamming and the percolation transition in
a unified fashion.

4.2 Application of the GM to the RSA of dimers

Let us now discuss the results corresponding to the RSA of
dimers with the gradient constraint. Figure 1a shows a log-
log plot of the width of the SVI (wSVI) versus the gradient.
By fitting the obtained results with the aid of equation (9)
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Fig. 4. (Color online) RSA of dimers under the linear gra-
dient constraint. (a) Plots of the density of the cluster de-
fined by the SVI versus the control parameter θ, as obtained
for different lattice sizes (i.e. different gradients). The inset
shows the intersection points between different (but consecu-
tive) curves against average values taken between consecutive
gradients (Δ1 and Δ2), namely Δ∗ ≡ (Δ1 +Δ2)/2, which con-
verge to θD

J = 0.90676 ± 0.00025. The dashed line is the best
known estimated value, taken from [9,10]. (b) Collapse of the
data already shown in (a) as obtained by rescaling the horizon-
tal axis according to (θ − 0.90668)Δ−1/2 . The inset is a zoom
of the scaling region, i.e. θ ' θD

J , which shows the high quality
of the data collapse. More details in the text.

for the case of dimers, one obtains αJ = 0.46± 0.02, i.e. a
figure that is close to the exact value, namely αJ = 1/2.
The rather small difference between the exact value and
the numerical determination could be due to the opera-
tion of finite-size scaling corrections, which would be more
important for the case of the RSA of large objects, e.g.
dimers, trimers, k-mers, etc., as compared with monomers
where we have a good agreement with the theoretical
value. In fact, by using the corrections discussed in [18]
we obtained αJ = 0.495 ± 0.008, in excellent agreement
with the expected value.

On the other hand, the location of the SVI (measured
in units of θ) versus Δ yields a remarkable straightline
(Fig. 1b) that, according to equation (10), extrapolates
to the jamming coverage of dimers in the thermodynamic
limit, namely θDJ = 0.905± 0.005, in good agreement with
the best available value given by θDJ = 0.90668 [9,10]. This
result also supports our choice of αJ = 1/2, as already
discussed for the jamming transition by using νJ = 1 in
equations (9) and (10).

Furthermore, plots of the density profiles of the clus-
ters associated with the SVI versus θ (see Fig. 4a) ex-
hibit a common intersection point close to θDJ , i.e. the
jamming coverage for the RSA of dimers. Again, the ex-
trapolation of the intersection points between curves mea-
sured for consecutive gradients (see the inset of Fig. 4a)
converges towards θDJ = 0.90668 (our estimate is θDJ =
0.90676±0.00025). The data shown in Figure 4a, obtained
for different gradients, can nicely be collapsed in a sin-
gle curve just by using the proposed scaling relationship
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Fig. 5. (Color online) RSA of dimers under the linear gradient
constraint. (a) Plots of the density of the percolation cluster
defined by the MVI versus the control parameter θ(x) as ob-
tained for different lattice sizes (i.e. different gradients). The
inset shows plots of the intersection points between different
(but consecutive) curves against average values taken between
consecutive gradients (Δ1 and Δ2), namely Δ∗ ≡ (Δ1+Δ2)/2,
which converge to θD

p = 0.5620±0.0007. The dashed line is the
best known estimated value, taken from [9,10]. (b) Collapse
of the data already shown in (a) as obtained by rescaling the
horizontal axis according to (θ − 0.5618)Δ−3/7 .

(Eq. (8)) with pc ≡ θDJ = 0.90668 and νJ = 1 (which
corresponds to αJ = 1/2), as shown in Figure 4b.

On the other hand, as already discussed, the per-
colation properties of the RSA process in the gradient
method can be captured by analysing the MVI. Fig-
ure 5a shows plots of the densities of the percolation
clusters defined by MVI versus the control parameter
θ, as obtained for different gradients. The inset of Fig-
ure 5a shows a plot of the intersection points, as mea-
sured for consecutive gradients, which extrapolate to the
value θDp = 0.5620 ± 0.0007, in excellent agreement with
an already known value for the percolation threshold of
dimers θDp = 0.5618± 0.0001 [9,20,30–32]. Also, Figure 5b
shows the collapse of the curves already shown in Fig-
ure 5a according to equation (8) and obtained by as-
suming the exponent αp = 1/(1 + ν) = 3/7, where the
value of α is evaluated by taking ν = 4/3 for the stan-
dard percolation problem. Also, we measured the expo-
nent αp (not shown here for the sake of space) for the
case of the MVI in the dimer gradient adsorption process
by using the relationship given by equation (9) and the
resulting estimated value is αp = 0.41± 0.01. Again, with
the corrections due to finite-size effects [18] we obtained
αp = 0.43 ± 0.02, in excellent agreement with the exact
value αp = 3/7 ' 0.4286.

5 Conclusions

The gradient method (GM), inspired in the gradient per-
colation problem early studied in the context of the diffu-
sion front of particles by Sapoval et al. [16], has previously
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Table 1. Summary of critical exponents and critical points obtained by applying the Gradient Method. MVI and SVI refer to
the multivalued and the single-valued interfaces defined in the text. ZGB = Ziff-Gulari-Barshad model for the monomer-dimer
reaction [33]. FFMI = forest-fire model with immune trees (here we show only results for p = 0.5, for the complete results
see [18]). KPZ = Kardar-Parisi-Zhang [22]. EW = Edwards-Wilkinson [22]. DF = Diffusion Front. RSA = Random Sequential
Adsorption of dimers. GAP = Gradient Allee Process [23]. The exponent α is the roughness exponent of the interface and ν is the
spatial correlation length exponent. In the last four columns we quote the exponents α measured by performing simulations and
using equation (9) (the symbol ∗ indicates values with finite-size scale corrections [18]), the critical parameters corresponding
to each transition, the estimations of values of the critical parameters as obtained from the GM, and the available critical
parameters found in the literature. The symbol † refers to results obtained in this paper. More details in the text.

Transition Model Interface ν α =
1

1 + ν
α pc GM Other methods

ZGB [17] 0.36(4) PMVI
ox 0.51(1) 0.515(15) [36]

Standard FFMI [18] MVI 4/3 [12] 3/7 ≈ 0.427(1)∗ gp 0.3470(2)
Percolation DF† 0.4286 0.425(4)∗ θM

p 0.59274(25) 0.59274602(4) [29]
RSA† 0.43(2)∗ θD

p 0.5620(7) 0.5618(1) [9]

Directed ZGB [17] SVI 0.733 [34,35] 0.577 0.56(2) P 1
ox 0.3880(8) 0.3874 [37]

Percolation FFMI [18] 0.577(4)∗ gc 0.5613(8) 0.5614 [38]

First-order ZGB [17] SVI/MVI 2/5 (KPZ) [22] 5/7 ≈ 0.7143 0.68(2) P 2
co 0.5253(5) 0.52561 [39]

(absorbing) GAP [23] MVI 0.35 (EW) [22] 0.7407 0.74(1)

Jamming DF† SVI 1 [24,25] 1/2 0.48(2) θM
J 0.999(5) 1

RSA† 0.495(8)∗ θD
J 0.90676(25) 0.90668 [9]

been applied successfully to study absorbing phase tran-
sitions (both first and second order) and the percolation
transition [17,18,23]. In this way, in our previous work we
showed that with the aid of a single-valued interface (SVI)
one is able to characterise active-inactive transitions (no
matter the order of the transition), whereas with the aid
of the multivalued interface (MVI) one can characterise
the critical (geometrical) percolation transition.

In this work we proposed a new application of the GM
for the case of RSA processes under a gradient constraint.
We show that by using the GM the two transitions in-
volved in the RSA process, namely percolation and jam-
ming, can be studied simultaneously by means of the same
set of simulations and by using the same theoretical back-
ground. In this way, the SVI and the MVI capture the
main features of the jamming and percolation transitions,
respectively. As in the case of absorbing phase transitions,
the scaling behaviour of both interfaces is governed by the
roughness exponent α = 1/(1+ ν), where ν is the suitable
correlation length exponent [17,18]. For the case of the
two-dimensional RSA studied in the present work we find
that, for the jamming transition, the exponent that plays
the role of the correlation length exponent is νJ = 1, which
give us αJ = 1/2 for the roughness exponent. This value is
given by the relationship νJ = 2d/(2 + df), where d is the
dimension of the substrate and df is the (fractal) dimen-
sion of the active sites where the actual adsorption process
takes place, which has been calculated exactly before in
the RSA context [24,25]. For the percolation transition
one has ν = 4/3, that is the critical exponent of the corre-
lation length for the standard percolation transition [12],
which gives αp = 3/7 ' 0.4286. The exponent αJ = 1/2
was also derived theoretically for the RSA of monomers
(see Eq. (19)). We also tested our analytical results by
means of numerical simulations performed upon adsorp-
tion of monomers and dimers. For the case of the jamming

transition we obtained αJ = 0.48 ± 0.02 (monomers)
and αJ = 0.495 ± 0.008 (dimers) and for the standard
percolation transition we obtained αp = 0.425 ± 0.004
(monomers) and αp = 0.43± 0.02 (dimers), all of them in
excellent agreement with the theoretical predictions.

Let us also recall that the transition points are also
determined with great accuracy by the GM. For the RSA
of dimers we obtained the critical (jamming) coverage
θDJ = 0.90676 ± 0.00025 (see Fig. 4), in good agreement
with the best available value given by θDJ = 0.90668 [9,10].
On the other hand, the percolation threshold of dimers
obtained with the GM is θDp = 0.5620 ± 0.0007 (see
Fig. 5), in excellent agreement with an already known
value, θDp = 0.5618 ± 0.0001 [9,20,30–32]. For the RSA of
monomers, the critical (jamming) coverage is the trivial
value θMJ = 1 and the coverage at the percolation thresh-
old is θMp ≡ pc = 0.59275 [29] since one recovers the DF
problem. The value θMJ = 1 is found analytically (Eq. (18))
and from the simulations we obtain an excellent agreement
with the known values: θMJ = 0.999 ± 0.005 (Fig. 1b) and
θMp = 0.59274± 0.00025 (Fig. 3).

In order to provide a quick overview of some recent
achievements of the GM as applied to different physical
situations, Table 1 summarises the available results so far,
including a comparison of the critical exponents obtained
by using the GM with those already calculated exactly, or
by means of different numerical approaches. We can see
that the MVI is the meaningful interface in order to study
the standard percolation transition, whereas the SVI is
useful to study both absorbing phase transitions (first and
second order) and the jamming transition. For the case of
a first-order transition, when the density of the absorb-
ing phase is greater than the threshold of the percolation
transition, the differences between these two types of in-
terfaces are washed out, and both the MVI and the SVI
are completely equivalent, so that one has something like a
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first-order percolation transition. This is precisely the case
of the first-order irreversible phase transition of the ZGB
model, whose interface behaviour (MVI/SVI) is given by
the Kardar-Parisi-Zhang (KPZ) universality class, with
ν⊥ = 2/5 [22] and αKPZ = 5/7 ≈ 0.7143 [17]. Recently,
Gastner et al. [23] studied a variant of the Schlögl’s sec-
ond model under a gradient constraint, which was called
the gradient Allee process. They found that the roughness
exponent that characterise the width of the MVI is given
by α = 0.74 ± 0.012 and argued that a first-order per-
colation phase transition exists. Note that by considering
ν⊥ = 0.35 of the Edwards-Wilkinson (EW) universality
class [22], one has that α w 0.7407, i.e. a figure that is fully
consistent with the value reported by Gastner et al. [23].
This result suggests that the interface generated by the
gradient in the Schlögl’s second model [23] belongs to the
EW universality class, which dominates the behaviour of
the MVI at this first-order transition due to the absence
of a diverging correlation length exponent. However, since
the value of the roughness exponent for the KPZ univer-
sality class, which is given by αKPZ = 5/7 ≈ 0.7143 [17],
is very close to that corresponding to the EW universal-
ity class, and since in reference [23] no finite-size correc-
tions of the measurements are reported, one cannot out-
line a definitive conclusion on this issue. In Table 1 we also
present a comparison between the critical parameters as
obtained by using the GM and the best available values
found in the literature.

Furthermore, we stress that the GM has proved to be
a useful, general and efficient tool. It allows one to eval-
uate critical point values with very good and controlled
precision, still when rather small lattices are used in the
simulations. Also, it can be used to calculate the correla-
tion length exponent of the transition under consideration.
Another advantage of the GM, as follows from Table 1, is
the remarkable agreement between the data obtained by
means of the GM and the previously determined values
obtained by using independent measurement methods. In
this way, we expect that the GM will become a power-
ful tool for the study of far-from-equilibrium systems in
statistical physics and related fields.

We acknowledge financial support from the Argentinian Sci-
ence Agencies CONICET and ANPCyT, and from the UNLP
(Universidad Nacional de La Plata).
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