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This article evaluates the value of information on climate variables published in advance and at a higher 
frequency than the target variable of interest—crop yields—in order to get short term forecasts. Aggregate 
and disaggregate climate data, alternative weighting schemes and different updating schemes are used to 
evaluate forecasting performance. This study focuses on the case of soybean yields in Argentina. Results show 
that models including high frequency weather data outperformed particularly during the three consecutive 
campaigns after 2008/09 when soybean yield decreased almost by 50%. Furthermore, forecast combinations 
showed a better forecasting performance than individual forecasting models.
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RESUMEN

ABSTRACT

Este artículo evalúa el valor de utilizar información sobre variables climáticas publicadas con anticipación y 
con una frecuencia superior a la variable objetivo de interés —los rendimientos de los cultivos— con el fin de 
obtener pronósticos a corto plazo. Se utilizan datos climáticos agregados y desagregados, esquemas de pon-
deración alternativos y diferentes esquemas de actualización para evaluar el desempeño de las predicciones. 
Este estudio se centra en el caso de los rendimientos de la soja en Argentina. Los resultados muestran que los 
modelos que incluyen datos meteorológicos de alta frecuencia obtuvieron mejores resultados, particularmen-
te durante las tres campañas consecutivas después de 2008/09, cuando el rendimiento de la soja disminuyó 
en casi un 50%. A su vez, las combinaciones de pronóstico mostraron un mejor desempeño que los modelos 
de pronóstico individuales.

Palabras  claves: rendimientos, predicciones, clima, frecuencia mixta, soja.
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Farmers, government and traders’ decisions would benefit from obtaining more accurate crop yield fo-
recasts using short horizons. For instance, harvesting decisions are often based on incomplete information 
on crop yields which depend on current agricultural and meteorological conditions, particularly during the 
last part of the plant growth cycle. However, one important limitation to forecast crop yields is that the 
final figures are usually available on a national level and an annual basis only. Instead, a great deal of weather 
information, which is paramount to agricultural production, is published on a more frequent basis than 
agricultural information. Weather information, which includes temperature and precipitation data as the 
most relevant measures, may help improve the forecast accuracy of crop yields in the short term by mixing 
these higher frequency data with lower frequency data on crop yields.

Different factors may explain crop yield in the long run, e.g. the global and local effects of climate 
change or technological innovations such as the use of modified seeds, fertilizers or changes in management 
practices that can boost crop yields. These long-run effects are analyzed for the case of soybean yields in Ar-
gentina in Marcellino (2002). Notwithstanding, climate variables are expected to be a crucial determinant 
of yield variation in the short run. This article, in line with a growing body of literature, focuses on the 
contribution of climate variables to forecast crop yields.

In particular, precipitation and temperature have been recognized as major climate factors affecting 
crop growth on national and global scales (Lobell and Burke, 2009; Schlenker and Roberts, 2009). Wa-
ter stress during the flowering stage of the plant may affect seed weight, resulting in large seed weight 
variations. Nonetheless, many recent studies indicate that changes in temperature are more important 
than changes in rainfall, at least at the national and regional levels (Reilly and Schimmelpfennig, 2000; 
Schlenker and Lobell, 2010). Furthermore, crops are more sensitive to extremely high temperatures, in 
particular, during the plant growth cycle.

Thus, the primary goal in our current study is to assess the value of information on (climate) variables 
published in advance and at a higher frequency than the target interest variable (crop yields) in order to get 
short-term forecasts. Different approaches are considered using aggregate and disaggregate climate data, as 
well as alternative weighting schemes—simple averages or Mixed Data Sampling (MIDAS) regressions—
and ways of updating—rolling estimations—to evaluate their forecasting performance. We focus on the 
case of soybean yields in Argentina, the third worldwide producer and exporter.

The article is organized as follows. The next section reviews the literature and presents the different 
approaches used to forecast crop yields. Section 3 describes the data and forecast design. Section 4 analyzes 
the individual forecasting performance, while Section 5 evaluates forecast combinations. Finally, Section 6 
presents our conclusions.

II. Forecasting crop yields using climate data

Crop yield forecasting has been a matter of global concern given the need to increase food and re-
newable energy production to cope with a rapid global population growth. In particular, global warming 
awareness has sparked renewed interest in studying this topic over the last decade.

As Lobell and Burke (2010) state, a common approach is to use statistical models trained on historical 
yields and some simplified weather measurements, such as growing season average temperatures and preci-
pitations. According to Ray, Gerber, MacDonald, and West (2015), climate-driven temperature variations, 
precipitation or their interaction explain a third of global crop yield variability.

Different weather measures have been suggested to explain and forecast crop yields. It has been usually 
considered that the best crop yield predictor is some measure of extreme heat during the plant growth cycle. 
Using aggregated weather data during the plant’s growing season, Schlenker and Roberts (2009) found that 
extreme high temperatures are always harmful to crop growth. Temperatures above 30°C for soybeans and 
29°C for corn are very harmful. They found that crop losses on the hottest days drive much of the tem-

I. Introduction
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perature effect. Furthermore, many studies indicate that temperature extremes can be critical to reducing 
yields, especially if they coincide with the flowering stage of the crop (Auffhammer, Ramanathan, and 
Vincent, 2012; Welch, Vincent, Auffhammer, Moya, Dobermann, and Dawe, 2010; Wheeler, Craufurd, 
Ellis, Porter, and Prasad, 2000).

Using data from 1980 to 2003, Lobell, Cahill, and Field (2007) analyzed the relationship between 12 
major Californian crop yields and monthly temperatures and precipitations before and during growing 
seasons. However, as they acknowledged, monthly climate variables mask daily extremes that can have 
significant effects on yield. Nonetheless, disaggregating climate data to finer temporal scales will not neces-
sarily improve model performance. Therefore, dealing with mixed frequency data is considered a key issue 
in terms of modelling (annual) crop yields based on climate variables disaggregated at a finer temporal scale.

Thus, this article assesses different time-frequency approaches to evaluate if using disaggregate climate 
data to finer (weekly) temporal scales help to improve crop yield forecasts. All these model, which include 
climate variables, will be compared to a benchmark that does not rely on them: an AR(1) model as expres-
sed in Equation (1).

where  represents the crop yield variations, measured as the log-difference of drop yields, which are obser-
ved on an annual basis.

Comparing the performance of alternative forecasting models based on weather information with res-
pect to this AR(1) benchmark will allow us to evaluate the relative forecast improvements from introducing 
climate variables.

There are different ways of modelling with mixed-frequency data. This article evaluates different weigh-
ting schemes of high-frequency information (from simple averages to MIDAS regressions).

In the first approach, as usually done in the empirical literature, climate variables are aggregated to 
yearly values (using information from an year prior to the harvesting period) by taking means or through 
the sum of all values in the case of cumulative variables (such as rainfall) and they are added to the AR(1) 
model as shown in Equation (2).

where  includes a set of climate variables such as maximum temperature, number of days with maximum 
temperature above a threshold of 29°C, 30°C or 31°C, cumulative rainfall, and number of days without 
rain. Given that most regressors have a strong correlation and that the in-sample period has only 30 ob-
servations (years), those climate variables will be individually included in the model and also, their joint 
evaluation will be assessed by using LASSO (Least Absolute Shrinkage and Selection Operator). LASSO 
(Tibshirani, 1996) is a shrinkage and selection method for linear regression that fits a linear model such as 
in Equation (2) by least squares with a bound on the sum of the absolute values of the coefficients. Such 
restriction is multiplied by a parameter  that slows or accelerated the penalty. In this study,  selected on 
a rolling basis using a block form of -fold cross-validation (CV) given that we are working with time series 
data.

Using yearly weather information may be useful to predict crop yields variations as the soil conditions 
(prior to the beginning of the planting season) are usually affected by extreme weather events such as high 
cumulative rainfall that will condition the plant’s growth and yield. However, this low-frequency models 
regress crop yield variations on climate variables on an annual basis (t), without exploiting high-frequency 
variations that may help to improve the model’s forecast performance.

https://revistas.unlp.edu.ar/economica
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Secondly, in order to evaluate if forecasting models based on recent climate data outperform those ob-
tained by using the full year data, the climate information is restricted to the last five or seven weeks before 
the start of the harvest season. 

where  includes a set of climate variables that restrict the information to the last five or seven weeks before 
the harvest begins (e.g. the maximum temperature in the last months prior to the harvest). Once again, the 
climate variables will be individually included in the model and jointly evaluated by LASSO.

Therefore, aggregating climate data restricted to more recent information will allow us to assess if short-
run (Equation 3) or long-run (Equation 2) weather information helps improve our forecasts. Moreover, 
relevant historical climate information may differ according to the weather measure considered.

Finally, a mixed-frequency approach is also followed, the so-called MIDAS (mixed-data sampling) 
approach. The MIDAS regression models, developed by Ghysels, Santa-Clara, and Valkanov (2004, 2006), 
economize on the number of parameters to be estimated by fitting a flexibly and parsimoniously parame-
trized lag polynomial of the response of the lower frequency dependent variable (here, crop yield variations) 
to the higher frequency data (here, climate variables). Weekly climate indicators are earlier available than 
the final figures of yields. Thus, weekly climate indicator is typically available within the year for which no 
yield figure is available. A simple MIDAS model is:

where yt represents the crop yield variations which is observed once between  t-1 and t (yearly) and xt
m the 

climate variables observed m times in the same period (i.e. weekly or m=52).  and 
L(1/m) is a lag operator such that  ; and the lag coefficients in  of the corresponding 
lag operator  are parameterized as a function of small-dimensional vector of parameters .

Different polynomial parametrizations have been suggested and employed in empirical work. In this 
article, an Exponential Almon Lag, as expressed in Equation (5), is used as the weighting function of lag 
values.1

The function is known to be quite flexible and can take various shapes with only a few parameters, that is, 
even if it is restricted to a two-parameter case,  (see Ghysels et al., 2004, for further explanation 
on the flexibility of the Exponential Almon Lag). However, as stated by Jansen, Jin, and de Winter (2016), 
the efficiency gains of this approach come at the cost of potential efficiency losses, if the implied restriction 
on the lag dynamics between the weekly indicators and yearly crop yield variations happen to be invalid.

1 A Beta weighting function was also used, but it had a lower forecasting performance than the Exponential Almon lag. Although not reported, results are available 
upon request.
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The optimal exponential Almon lag structure of the MIDAS model was first selected for each climate 
regressor in terms of the selected information criteria (Akaike and Schwarz criteria) over the in-sample pe-
riod. Results showed that the optimal lag length to be considered is 7 weeks for the maximum temperature 
and cumulative rainfall, and 5 weeks for the number of days without rain and the number of days with 
different maximum temperature thresholds (29°C, 30°C and 31°C).

Furthermore, to assess if the weighting scheme (the exponential Almon lag polynomial) in the MIDAS 
representation was more accurate than the low-frequency data estimations, their forecasting performance 
was compared with respect to each climate regressor’s simple average using the same optimal lag length. 
If the MIDAS representation outperforms the later, it will imply that a non-linear weighting scheme of 
climate variables helps forecast crop yields.

The next section describes the data and introduces the forecast design.

III. Data and forecast design
III.1 The case of soybeans in Argentina

Argentina is the world’s third largest producer and exporter of soybeans and the world’s top exporter of 
soymeal and soybean oil. Soybean was almost an unknown crop in the agricultural landscape in the early 
1970s and it has rapidly gained in popularity mainly due to the increased global demand for food, animal 
feed and biofuel.

This study focuses on the nucleus or central zone of soybean production in Argentina (northern part of 
Buenos Aires, southern part of Santa Fe, eastern part of Córdoba and western part of Entre Ríos). This area 
comprises 34 counties (“departamentos” or “partidos”) that account for 42% of the national production 
and only 38% of the total harvest area over 1971/72 to 2017/18. During this period, the nucleus zone has 
had average soybean yields above 25% from the national average, with an annual increase of 4%.1

Figure 1: Soybean yields (level and growth)

Note: date label indicates the year in which the campaign ends.
Source: Dirección Nacional de Estimaciones Agrícolas.

Despite the observed long-run trend, soybean yield growth has shown large variations within this 
period as shown in figure 1.

2 The 34 counties considered are: 20 from the north of Buenos Aires province (Alberti, Baradero, Bragado, Campana, Chacabuco, Chivilcoy, General Arenales, 
Junín, Leandro N. Alem, Luján, Mercedes, Pergamino, Pilar, Ramallo, Rojas, Salto, San Nicolás, San Pedro, Suipacha and Zárate), 2 from the east of Córdoba 
province (Marcos Juárez and Unión), 3 from the west of Entre Ríos province (Colón, Diamante and Victoria) and 9 from the center and south of Santa Fe province 
(Belgrano, Caseros, Constitución, General López, Iriondo, Rosario, San Jerónimo, San Lorenzo and San Martín).

Panel A: Soybean yield (kg/ha) Panel B: Soybean yield annual growth (%)
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III.2 Dataset

In order to obtain short-term forecasts of annual soybean yield variations, our study is based on the 
sample period ranging from 1971/72 to 2017/18 (47 annual observations). In Argentina, the soybean cam-
paign typically starts in October and finishes in May or June, when the harvest is finished. At the national 
and county scale, soybean yields are published by the Dirección Nacional de Estimaciones Agrícolas. The 
historical crop yield figures considered in this study were released on November 27th, 2018.

Weather data used in this study include: cumulative rainfall, average maximum temperature, number 
of days without rain, and number of days with maximum temperatures above 29°C, 30°C and 31°C. The 
different threshold temperature measures showed similar results, therefore only the forecasting performance 
of the number of days with maximum temperature above 30°C is reported. Even if these climate variables 
are released by six meteorological stations located in the nucleus zone at a daily frequency,3 their mean 
weekly values are considered which are weighted by each county share in the total soybean planted nucleus 
area. Even if weekly climate averages mask daily extremes that can have strong effects on crop yields, daily 
climate variables reduce the reliability of the dataset due to data inaccuracies (e.g. missing values) that may 
be cancelled out at broad scales.

Figure 2 shows the historical evolution of the climate variables considered in the forecast exercise.

Sources: National Weather Service (SMN) and National Institute of Agricultural Technology (INTA).

III.3 Forecast design

Using 1971/72 – 2000/01 as the estimation sample, a rolling4 pseudorealtime forecast exercise of soy-
beans yields was performed over the period 2001/02 to 2017/18, with a rolling 30year window.

3 The six meteorological stations, which have complete historical weather data, are located in Pergamino, Junín, Marcos Juárez, Rosario, San Pedro and Iriondo. 
The first four stations belong to the National Weather Service (SMN), whereas the last two are from the National Institute of Agricultural Technology (INTA).

4 Although not reported, recursive forecasts were also performed, but they never showed a better performance than the rolling forecasts. Results are available 
upon request.
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For each forecast, the origin was at the end of the flowering and filling stages (end of February), and 
the final figures of soybean yields were forecasted for the corresponding out-of-sample campaign. Figure 3 
shows the soybean production calendar for Argentina’s nucleus zone for the 2017/18 campaign.

Figure 3: Soybean crop calendar

Source: own elaboration.

As explained in Section 2, the forecasting models were estimated using different frequency data.
Table 1 summarizes the estimated individual forecasting models using different frequency data. All 

models included an autoregressive term and passed diagnostic tests. Insample estimations for the initial 
window are reported in the Appendix in Tables A1 and A2.

Given that soybean yields may be represented as stationary around a deterministic linear trend and that 
all climate variables are found to be stationary,5 all forecasting models regard the log-difference of yields as 
the dependent variable. Nevertheless, given that our interest is in forecasting soybean yield levels (measured 
in kg/ha), the growth rates (calculated as the first difference of the natural logarithm of yields) were conver-
ted to median levels in order to evaluate their forecasting performance. That is, median forecasts are easily 
derived from the inverse transformation as if , then .6

Table 1: Alternative forecasting models for soybean yields growth

Source: own elaboration.

5 Although not reported, unit root test results are available upon request.

6 The median and mean level forecasts are identical if no functional transformation is used.
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The individual performance of each model is compared in order to evaluate forecasting gains from 
using high frequency data (Section 4). Then, those models are compared with different model and forecast 
combination strategies (Section 5).

iV. Individual forecast performance

This section compares the forecasting accuracy of the different estimated models. Results are divided 
into two subsections: individual forecasting comparisons, and the timevarying forecasting ability.

IV.1 RMSE and MAPE

In this section, the root mean squared error (RMSE) and the mean absolute percentage error (MAPE) 
are used to evaluate the quality of point forecasts over the 2002/03 to 2017/18 period, as shown in table 
2. The comparison between the individual forecasting models is expected to produce different results using 
either of those measures. These differences may arise not only because of the normalization of the MAPE, 
but also because the implicit quadratic loss function of the RMSE measure gives relatively higher weight 
to large errors than MAPE does.

Table 2: Forecasting performances

Note: ***p¡.01, **p¡.05, and *p¡.10. The best forecasting model is in bold, 
and the best model specification within each climate regressor is highlighted.

Source: own elaboration.

From table 2, we can note that there are forecasting gains when taking averages of the weekly maximum 
temperature  during the growing cycle of the plant than considering the annual data. This result is also 
found when using the maximum temperature threshold of 30°C. These results are in line with many studies 
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that indicate that temperature extremes can be critical to reducing yields, especially if they coincide with 
the flowering stage of the crop (Auffhammer et al., 2012; Welch et al., 2010; Wheeler et al., 2000). Howe-
ver, when using weather data associated to precipitations, that is, the cumulative rainfall  and the number 
of days without rain , the model based on annual data outperforms the rest. Among all climate regressors, 
the number of days without rain using annual data shows forecasting gains.

For each climate variable, the predictive accuracy of each model was compared against the rest. Signi-
ficance is indicated when the forecasting model outperforms the rest. According to Diebold-Mariano tests, 
average forecasting gains are detected only when using a quadratic loss function for the models based the 
number of days without rain prior to the harvest.

It is worth noting that these results are valid only on average for the whole out-ofsample period and 
may differ over time. Focusing solely on the average performance of the model may result in a loss of in-
formation and possibly lead to incorrect forecast selection decisions. Therefore, the following subsection 
conducts a fluctuation test to evaluate the relative forecasting performances of the two models with the best 
average performance for each variable.

IV.2 Relative forecasting ability

The out-of-sample period was quite unstable, particularly during the 2008/09 campaign when crop 
production was severely affected by a historical drought. Given the observed instability of the out-of-sam-
ple period, it is also worth evaluating the evolution of the different models’ relative performances. To assess 
the time-varying forecasting performance of two competing models, the fluctuation test developed by Gia-
comini and Rossi (2010) was applied. In our case, we evaluate the local relative forecasting performances 
of the best forecasting model (within each climate regressor, as highlighted in Table 2) with respect to the 
benchmark, the AR(1) model.

We defined a (quadratic or absolute) loss function  for each forecasting 
model . The out-of-sample relative performance of the models was given by:  where  co-
rresponds to the best forecasting model within each climate variable and  to the benchmark model.

The local relative loss for two models is evaluated as the sequence of out-of-sample loss differences over 
centered rolling windows of size  (in our case, ). In this case, a quadratic and an absolute loss functions 
were considered when comparing the best forecasting model (in terms of their average performance) with 
respect to the benchmark.

The results of the fluctuation test are shown in figure 4. In each case, the graph reports both the fluctua-
tion test statistic and the two-sided critical value at 5% (the dotted lines). Positive values, above the critical 
value, indicate that the benchmark forecasting model is better than the forecasting model with the best 
average performance during the outofsample period, while negative values indicate the opposite.
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Figure 4: Fluctuation test results (best model vs benchmark)

Source: own elaboration.

Figure 4 shows that forecast gains are time-varying between each forecasting model and the bench-
mark. The best forecasting model that accounts for the number of days without rain showed statistically 
significant differences arise particularly during the three following campaigns after the 2008/09 campaign 
when soybean yield decreased almost by 50% in the nucleus zone. It is also worth noting that there are no 
systematic forecasting gains with each model, the benchmark model showed significant gains in some cases 
priori to the 2009 crisis.

V. Forecast combinations

Forecast combinations are usually found to produce better forecasts than individual models. Moreover, 
as Timmermann (2006) indicates, simple combinations that ignore correlations between forecast errors 
often dominate more refined combination schemes aimed at estimating the theoretically optimal combi-
nation weights.

Combining forecasts from alternative single models can be beneficial in the presence of misspecifica-
tion or instabilities (Clark and McCracken, 2010; Hendry and Clements, 2004). Furthermore, as high 
frequency climate variables are usually highly collinear, forecast combination of several univariate models 
can also be considered as a potential solution to dealing with multicollinearity issues as suggested by An-
dreou, Ghysels, and Kourtellos (2013). Moreover, the combination of methods was the king of the recent 
M4 Competition. According to Makridakis, Spiliotis, and Assimakopoulos (2018), of the 17 most accurate 
methods, 12 were “combinations” of mostly statistical approaches.

Therefore, table 3 presents the pooling of the best individual models: the long-sample data of the num-
ber of days without rain and the short-sample data of the maximum temperature during the plant’s flowe-
ring stage, using the mean of individual forecasts, and also the inverse weights of the RMSE and MAPE 
obtained from the forecasts made during the previous campaign. Those forecasts are also compared with 
a model which combines the regressors used in the individual models (maxtemp and no rain). All models 
include an autoregressive term and the in-sample estimations are presented in the Appendix.
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Table 3: Forecast combination performances

Source: own elaboration.

When pooling the two best individual models, the mean pooling showed the best forecast performance 
in terms of RMSE and MAPE. However, when combining, in a single model, annual data on the number 
of days without rainfall and weekly data on the number of days with maximum temperature above 30°C 
during the plant flowering stage forecasting gains are found in terms of MAPE, but RMSE still indicates 
that the mean pooling outperforms. According to the DieboldMariano tests, their differences are not sta-
tistically significant.

Overall, forecast combinations showed a better forecast performance than their individual counter-
parts, with a statistically significant difference detected at a 10% when comparing the mean pooling with 
respect to the individual models.

VI. Conclusions

This article addressed the usefulness of exploiting high frequency climate information to forecast an-
nual crop yields in the short run. We have focused on soybean yields in the nucleus zone of production in 
Argentina, the world’s third largest producer and exporter.

Different approaches were considered using aggregate and disaggregate climate data as well as alterna-
tive weighting schemes (simple averages or MIDAS regressions) to evaluate their forecasting performance. 
Climate data included cumulative rainfall, average maximum temperature, number of days without rain, 
and number of days with maximum temperatures above 29°C, 30°C and 31°C.

Average forecasting gains were detected in models based on maximum temperature data. In particular, 
models based on weekly data corresponding to the maximum temperatures during the plant growth phase 
outperformed the long-sample estimation. This result is in line with many studies that indicate that tem-
perature extremes can be critical to reducing yields, especially if they coincide with the flowering stage of 
the crop.

By testing their local relative performance, we also found that the forecasting gains are time-varying. 
Models including high frequency weather data outperformed particularly during the three consecutive 
campaigns after the 2008/09 campaign when soybean yield decreased almost by 50%.

Finally, although significant at a 10% level, forecast combinations showed a better forecasting perfor-
mance than individual forecasting models.

Therefore, forecasting using different frequencies could be worthwhile to explore since it could be 
useful in some cases such as forecasting crop yields using temperature data. There is no need to use a given 
weighting scheme as models based on simple averages of high frequency data, or forecast combinations of 
different frequencies can have better forecasting performance.
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Appendix Initial in-sample estimations

Table A1: Initial in-sample estimations (1971/1972 – 2000/01)

Table A2: Initial in-sample MIDAS estimations (1971/72-2000/01)
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