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A brief review of a first order theory with a quadratic Lagrangian L = 
R % woR 2 is presented. It is shown that a test particle follows a geodesic 
of the metric connection. The theory behaves in the Newtonian limit 
as the Newtonian theory with a correction which is proportional to the 
matter density at the field point. This behavior can be produced by 
a Yukawa potential with an atomic scale characteristic range A and a 
coupling constant a proportional to 1/A 2. This type of potential is not 
excluded by the present experimental data. 

1. I N T R O D U C T I O N  

In  the l imit  of small  energies the supers t r ing theories give an action for 
spacet ime in the form of the E ins te in -Hi lber t  action plus terms which are 
quadrat ic  in the  scalar curvature  and the  Ricci tensor. On the other hand  
it is well known [1] tha t  this act ion leads to a possible renormalizable 
q u a n t u m  theory  of gravity in the second order formalism; i.e., when we 
assume a R i e m a n n i a n  geometry and consider variat ions of the metric and 
its first derivatives equal to zero on the boundary  of a space t ime region/4. 

However, it is possible to modify the Eins te in-Hi lber t  action by adding 
a b o u n d a r y  te rm such that ,  when the variat ion of this te rm is taken into 
account,  it cancels the unwanted  te rm which appears when we only impose 
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a null variation of the metric on the boundary and leave its derivatives 
unrestricted [2,3]. 

Alternatively, the Palatini approach or first order formalism can be 
applied to obtain the field equations in general relativity assuming the 
metric and the connection as independent variables. This formalism has 
also been applied to more general Lagrangian densities, with quadratic 
terms or a general function of the scalar curvature [4,5], to study other 
geometrical theories of gravitation. More recently [6], the latter theories 
have been extended by including a scalar field in the Lagrangian. One 
apparent conceptual advantage of these theories is that  quantum fluctua- 
tions of the metric and the connection are independent of each other; i.e., 
the geometry of spacetime is less restrictive. 

In general, the first and second order formalisms give different field 
equations although they may be related to each other using the theory of 
Ferraris et al. [7,8]. This theory associates an affine metric with a pure 
metric theory in a non vacuum region. 

For L = 1:l + w o R  2 it is easy to prove, by inspection, that  the field 
equations of the first order formalism are different from those equations 
of the second order formalism. However, if we take the first order limit 
(linear in the parameter w0) both sets of equations are equivalent [9]. It is 
well known that  the field equations in the second order formalism are of 
fourth order and lead to inflationary cosmological models [10]. Probably, 
the first order theory shares this kind of solution. 

In this particular case (L  = R + w o R  2) it was found that  the cosmolog- 
ical solutions corresponding to dust and an equation of state p = (7 - 1)p 
were free of the initial singularity, due to the presence of an "antigravity" 
force [11]. 

All the theories obtained from a Lagrangian density L = f ( R ) ,  in the 
first order formalism, share with the fourth-order equations corresponding 
to a Lagrangian density L = R -b w o R  2 the vacuum solutions of general 
relativity. This may suggest that  the classical tests of general relativity are 
automatically satisfied through the Schwarzschild solution [12,13]. How- 
ever, the empty space solutions are to be matched to interior solutions 
and it may well occur that  the matching conditions are not satisfied [14]. 
We need a further study of all these alternative theories, and in partic- 
ular we need their weak field limit and a comparison with experimental 
data. Finally, we mention that  many of the properties of the theories for 
a general Lagrangian density L = f ( R )  are present in the simple case 
L = R + w o R  2 [4]. 
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2. T H E  G E N E R A L  S T R U C T U R E  O F  T H E  T H E O R Y  

Let us consider a Lagrangian density L -- R + wo R2 + LM, where 
the mat te r  Lagrangian does not depend on the connection. Then the field 
equations, if we vary with respect to the metric, are 

- -  1 R - -  ~ , R~,v ~g~,~, + 2woR(R~,  l g ~ , R )  87rGT~,~, (1) 

The variation with respect to the connection gives 

V ~ g ~  = b~ g ~ ,  (2) 

b~ = [in(1 + 2~0n)].~. (3) 

From (1) we obtain 
R = -87raT ,  (4) 

which shows that  b~ is determined by T and its derivative. The connection 
is 

Fu~,'~ = C ~  - ~(6,b~,1 ~ + 6~b~ - g~,ub~), (5) 

where C ~  are the components of the metric connection. The Riemann 
tensor is defined as usual by 

a A a X R ~ .  = o~r~. - o ~ r ~  + r , . r ~  - r , , r . ~ .  (6) 

The Ricci tensor and scalar curvature are 

1 2 R,~, -- R %  + 3 D~,b~, - �89 + �89 . b - �89 bv + ]g~,,,b (7) 

3b2 R = R  ~  , (8) 

where R%,  R ~ and Do are the Ricci tensor, scalar curvature and covariant 
derivative defined from the metric connection. 

The Bianchi identity gives [5,11,4] 

a ~  ] = o .  (9) 
Vu 1 - 2Wo87rGTJ 

Using the definition of Einstein tensor and the field equations (1) we get 

[T~ : ~ /2)~o8,Cg~T ~] 
Vu [1 - 2woTrGT] 2 j = 0. (10) / 
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I t  is apparent  from (10) that  a dust particle does not follow a geodesic of 
the affine connection. 

However, we shall prove now that  T# is covariantly conserved if we 
use the metric connection D r as the derivative operator. Equation (10) 
can be put  into the form 

v,[[1 ] i i 
_ 2 w o r G T ] 2 ] =  ~ T [ [ 1 . 2 w ~ r G T ] 2 ]  ,v (II) 

This last expression for the conservation law (9) can also be obtained as a 
generalized Bianchi identity, from the mat ter  action, in the case that  the 
mat ter  Lagrangian does not depend on the connection. 

Multiplying (11) by [1 - 2wowGT] 2 and using (3) we obtain 

V~,T~ + 2Ttb ~ = �89 (12) 

From (5) we can express V in terms of D. Then, 

V~,T~ : D~T~ - 2b~T~ + �89 (13) 

Finally, from this last equation and (12) we get 

D~,T~ : 0. (14) 

We may conclade then that  a test  particle will follow the geodesics of the 
metric connection. 

3. THE N E W T O N I A N  LIMIT 

To solve the system of equations (1)-(2) we trace the metric field 
equations to replace R by -87rGT and use (3) and (7) to obtain 

1 [STrGT~, - 4~rGTg,,,(1 - SlrGT) ] 

F,~,.,,, 3 F,~,F,,, 1 
+ F 2 F 2 + 2"F g~v O F  (15) 

where F : 1 - 167rwoGT. The factor F in front warrants a modification of 
Newton's gravitational constant. Writing g~v = ~/~v + h ~ ,  the linearized 
Ricci tensor is found to be 
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The linearized field equation obtained from (15) is 

[] (ht, v - 16~rGworlt, ,T) = -167rG T,~ - 7 ~,v , (16) 

where we have used a gauge similar to the harmonic one: 

O#h~ ,  - �89 + 2w0(SrG)T,~ = 0. (17) 

When gravity is weak and the velocities are small the source has a 
Newtonian behavior, 

Tab O( p ta tb ,  (18) 

where t ~ = (c9/c9x~ ~ is the time direction of our global inertial coordinate 
system. With these assumptions eq. (16) becomes 

V 2 (hoo - 2wo (8~rG)p) = -87rGp,  

V2h0~ = 0, (19) 

V 2 (h~j + 5~j2w0 (8rG)p) = -81rGpS~j .  

Then, in the Newtonian limit the equation of motion of a test particle is 
given by (14) with u s -~ 5~, and the proper t ime of the particle may be 
approximated by the coordinate time t. Thus we find 

d2x i 1 0 h o o  

dx  2 2 0 x  ~ ' 

�89 = --VN + wo(SrcG)p. (20) 

The integration constant in (20) is chosen to satisfy the condition that  
the metric be locally flat. We have a departure of the acceleration of a 
test  body from the Newtonian theory value which is proportional to the 
gradient of the mass density. 

This departure from the Newtonian value has to be measured when 
the body is moving "through" a mat ter  filled region. Of course this state- 
ment can only be considered in the statistical sense. On the other hand, 
the experimental search for an extra force in the gravitational potential, 
between two ma~s points, has been put into the form of a Yukawa po- 
tential which is added to the Newtonian interaction through a coupling 
constant a and force range )~. The presence of a term proportional to the 
mass density, in the gravitational potential, would be precisely manifested 
as a Yukawa potential in the limit of a very short range A (A -~ atomic 
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scale), i.e., mediated by a very massive particle, and a coupling constant 
- w0/A 2. This can be proved by considering the expression 

lim F c o F ~ / 2 ~ r  WO e -I~-z~ 
"x*~ JO JO 47r'~2 I :~ -- XOI 

p( o) IZ -  ol2dlZ - Zol 

= op(Z) (21) 

where we have used that  

l i m / c o  1 e_r/~rdr = 1. (22) 
A--*0 J0  , A t 

On the other hand, it is interesting to notice that  in the corresponding 
limit of the fourth-order theory, the gravitational potential is [1] 

V = -G / (l + (l/3)e-r/Jg~) (23) 

Thus, in the linear order in w0 we obtain 

e_  r/6~/'g'~'~ 
V --+ V N - __G 6wo lim / 3 ~o--*0 6w0-------~ pd3x = V N  - 2woG4~rp, (24) 

where we have again used (22). Thus the fourth-order theory, which is 
different from the theory obtained by Palatini's method, shares with the 
latter the same behaviour when we take the weak field limit and consider 
up to the linear term in the parameter w0. 

4. E X P E R I M E N T A L  CHECK 

It would be interesting to obtain some experimental bound for the 
constant w0 in the present theory. However, this does not seem an easy 
task: all the departures from Newtonian behaviour are both very small 
and masked by other effects. 

Bounds on a Yukawa tail of the gravitational interaction have been 
set in recent years, motivated by theoretical results similar to those in 
the present work. A review of them may be seen in [15,16]. The most 
accurate existing experimental data [17,18] do not strongly exclude the 
possibility that  Newtonian gravity is violated for distances smaller than 
1000 km, nor that  there might exist some, as yet undiscovered, ultra-weak 
interactions of macroscopic range, coupling approximately to mass. On 
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the  o the r  hand,  t he  expe r imen ta l  d a t a  [19] would allow a to be very large 
if A is ve ry  small .  Then ,  the  poss ib i l i ty  t h a t  the  t e rm  wo(SzcG)p be the  
l imi t  of a Yukawa poten t ia l ,  as expla ined  above, would not  be excluded.  
We have then  a good  example  of a composi t ion  dependen t  force of a very  
shor t  range.  

Final ly ,  let  us ment ion  t h a t  the  range A would be small ,  let  us say 
smal ler  t h a n  the  e lec t ron radius ,  bu t  larger  t han  the  P lanck  length  so we 
are  not  b o u n d  to  use q u a n t u m  gravity.  

5. C O N C L U S I O N S  

We have seen t h a t  the  theor ies  ob ta ined  by  the  Pa la t in i  formalism, 
when it  is app l i ed  to  the  quad ra t i c  Lagrangian ,  behave in the  Newtonian  
l imi t  as the  Newton ian  t heo ry  wi th  a correct ion which is p ropor t iona l  to  
the  m a t t e r  dens i ty  at  the  field point .  This  behavior  can be produced  
by  a Yukawa po ten t i a l  wi th  an a tomic  scale character is t ic  range A and a 
coupl ing cons tan t  a p ropor t iona l  to  1/A 2. I t  is i m p o r t a n t  to  note  t h a t  this  
t y p e  of  po ten t i a l  is not  exc luded by  the  present  exper imenta l  data .  
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