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The Newtonian Limit in a Family of Metric Affine
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A brief review of a first order theory with a quadratic Lagrangian L =
R+ woR? is presented. It is shown that a test particle follows a geodesic
of the metric connection. The theory behaves in the Newtonian limit
as the Newtonian theory with a correction which is proportional to the
matter density at the field point. This behavior can be produced by
a Yukawa potential with an atomic scale characteristic range A and a
coupling constant o proportional to 1/A2. This type of potential is not
excluded by the present experimental data.

1. INTRODUCTION

In the limit of small energies the superstring theories give an action for
spacetime in the form of the Einstein-Hilbert action plus terms which are
quadratic in the scalar curvature and the Ricci tensor. On the other hand
it is well known [1] that this action leads to a possible renormalizable
quantum theory of gravity in the second order formalism; i.e., when we
assume a Riemannian geometry and consider variations of the metric and
its first derivatives equal to zero on the boundary of a space time region /.

However, it is possible to modify the Einstein-Hilbert action by adding
a boundary term such that, when the variation of this term is taken into
account, it cancels the unwanted term which appears when we only impose
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a null variation of the metric on the boundary and leave its derivatives
unrestricted [2,3].

Alternatively, the Palatini approach or first order formalism can be
applied to obtain the field equations in general relativity assuming the
metric and the connection as independent variables. This formalism has
also been applied to more general Lagrangian densities, with quadratic
terms or a general function of the scalar curvature [4,5], to study other
geometrical theories of gravitation. More recently [6], the latter theories
have been extended by including a scalar field in the Lagrangian. One
apparent conceptual advantage of these theories is that quantum fluctua-
tions of the metric and the connection are independent of each other; i.e.,
the geometry of spacetime is less restrictive.

In general, the first and second order formalisms give different field
equations although they may be related to each other using the theory of
Ferraris et al. [7,8]. This theory associates an affine metric with a pure
metric theory in a non vacuum region.

For L = R + woR? it is easy to prove, by inspection, that the field
equations of the first order formalism are different from those equations
of the second order formalism. However, if we take the first order limit
(linear in the parameter wp) both sets of equations are equivalent [9]. It is
well known that the field equations in the second order formalism are of
fourth order and lead to inflationary cosmological models [10]. Probably,
the first order theory shares this kind of solution.

In this particular case (L = R+wpR?) it was found that the cosmolog-
ical solutions corresponding to dust and an equation of state p = (y — 1)p
were free of the initial singularity, due to the presence of an “antigravity”
force [11].

All the theories obtained from a Lagrangian density L = f(R), in the
first order formalism, share with the fourth-order equations corresponding
to a Lagrangian density L = R + woR? the vacuum solutions of general
relativity. This may suggest that the classical tests of general relativity are
automatically satisfied through the Schwarzschild solution [12,13]. How-
ever, the empty space solutions are to be matched to interior solutions
and it may well occur that the matching conditions are not satisfied [14].
We need a further study of all these alternative theories, and in partic-
ular we need their weak field limit and a comparison with experimental
data. Finally, we mention that many of the properties of the theories for
a general Lagrangian density L = f(R) are present in the simple case
L =R+ wyR? [4].
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2. THE GENERAL STRUCTURE OF THE THEORY

Let us consider a Lagrangian density L = R + woR? + Ly, where
the matter Lagrangian does not depend on the connection. Then the field
equations, if we vary with respect to the metric, are

R#V —_ %guuR + 2w0R(Rp,u - %guuR) = 87rGT[l.U . (1)

The variation with respect to the connection gives

vag/,w = bq Guv (2)
bo = [In(1 + 2woR) | & - (3)

From (1) we obtain
R = —8nGT, (4)

which shows that b, is determined by T" and its derivative. The connection
is
qu = C;?u - %(63171/ + 631);:. - guuba), (5)

where C};, are the components of the metric connection. The Riemann
tensor is defined as usual by

R),. =98, -8, +T5. I3, —T5,I2,. (6)

R_UT v ur T pv
The Ricci tensor and scalar curvature are
Ry, =R}, +3Dub, — 1D,by + 39, D - b— 3buby, + 39,0°  (7)
R=R°+3D-b+ 32, (8)

where Rg,,, R® and D, are the Ricci tensor, scalar curvature and covariant

derivative defined from the metric connection.
The Bianchi identity gives [5,11,4]

v _ G =0 (9)
P11 - 2we8nGT |~

Using the definition of Einstein tensor and the field equations (1) we get

(10)

v TF — (1/2)we8nGgbT?] 0
H (1 — 2wemGT)? R
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It is apparent from (10) that a dust particle does not follow a geodesic of
the affine connection.

However, we shall prove now that T} is covariantly conserved if we
use the metric connection D,, as the derivative operator. Equation (10)
can be put into the form

e e R

This last expression for the conservation law (9) can also be obtained as a
generalized Bianchi identity, from the matter action, in the case that the
matter Lagrangian does not depend on the connection.

Multiplying (11) by [1 — 2wy GT)? and using (3) we obtain

V,T¥¢ + 2T#b, = 1T, . (12)
From (5) we can express V in terms of D. Then,
V. T¥ = D,T¢ — 2b,T¥# + b, T. (13)
Finally, from this last equation and (12) we get
D,T# =0. (14)

We may conclude then that a test particle will follow the geodesics of the
metric connection.

3. THE NEWTONIAN LIMIT

To solve the system of equations (1)-(2) we trace the metric field
equations to replace R by —87GT and use (3) and (7) to obtain

RE) = 2 [87GT,, — 47GTg, (1 - 87GT)]

Fuw 3FuFy 1

+ T 5 T F? +ﬁgﬂyDF (15)

where F = 1 - 167woGT. The factor F' in front warrants a modification of
Newton’s gravitational constant. Writing g,, = 7., + k., the linearized
Ricci tensor is found to be

RfB/) = aaa(uh'u)a - %aaaah;w - %ap,a.,h
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The linearized field equation obtained from (15) is

T
O(huy — 167Gwen,, T) = —167G (Tu,, -3 77,,,,,), (16)

where we have used a gauge similar to the harmonic one:
0*hyy — %auh + 2w (87G)T, = 0. 17)

When gravity is weak and the velocities are small the source has a
Newtonian behavior,
Tub  ptats, (18)

where t* = (8/8z°)* is the time direction of our global inertial coordinate
system. With these assumptions eq. (16) becomes

V2(hoo — 2wo(87G)p) = —8rGp,
V2hg; =0, (19)
V2(hi; + 6i52w0 (87G)p) = —81Gpb;; .
Then, in the Newtonian limit the equation of motion of a test particle is

given by (14) with u® ~ 6§, and the proper time of the particle may be
approximated by the coordinate time £. Thus we find

d2:ri _ l ahoo
dz2 ~ 2 Oz’
-%hoo = —W + wo(87G)p. (20)

The integration constant in (20) is chosen to satisfy the condition that
the metric be locally flat. We have a departure of the acceleration of a
test body from the Newtonian theory value which is proportional to the
gradient of the mass density.

This departure from the Newtonian value has to be measured when
the body is moving “through” a matter filled region. Of course this state-
ment can only be considered in the statistical sense. On the other hand,
the experimental search for an extra force in the gravitational potential,
between two mags points, has been put into the form of a Yukawa po-
tential which is added to the Newtonian interaction through a coupling
constant o and force range A. The presence of a term proportional to the
mass density, in the gravitational potential, would be precisely manifested
as a Yukawa potential in the limit of a very short range A (A ~ atomic
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scale), i.e., mediated by a very massive particle, and a coupling constant
@ = wy/)2. This can be proved by considering the expression

oo pm 2 —|3-5
tim [T [ s S b 2 - a2l
= wo p(Z) (21)
where we have used that
lim ” L e~ Prdr =1. (22)
A—0 fo A2

On the other hand, it is interesting to notice that in the corresponding
limit of the fourth-order theory, the gravitational potential is [1]

V= —G’/(l + (1/3)7‘6_r/\/m)pd32:. (23)

Thus, in the linear order in wg we obtain

G i e~/ VBuo & v
V-W- 3 6wo wolgo Two;_ pd’x = VN — 2woG4rp, (24)

where we have again used (22). Thus the fourth-order theory, which is
different from the theory obtained by Palatini’s method, shares with the
latter the same behaviour when we take the weak field limit and consider
up to the linear term in the parameter wg.

4. EXPERIMENTAL CHECK

It would be interesting to obtain some experimental bound for the
constant wp in the present theory. However, this does not seem an easy
task: all the Cepartures from Newtonian behaviour are both very small
and masked by other effects.

Bounds on a Yukawa tail of the gravitational interaction have been
set in recent years, motivated by theoretical results similar to those in
the present work. A review of them may be seen in [15,16]. The most
accurate existing experimental data [17,18] do not strongly exciude the
possibility that Newtonian gravity is violated for distances smaller than
1000 km, nor that there might exist some, as yet undiscovered, ultra-weak
interactions of macroscopic range, coupling approximately to mass. On
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the other hand, the experimental data [19] would allow a to be very large
if X is very small. Then, the possibility that the term w(87G)p be the
limit of a Yukawa potential, as explained above, would not be excluded.
We have then a good example of a composition dependent force of a very
short range.

Finally, let us mention that the range A would be small, let us say
smaller than the electron radius, but larger than the Planck length so we
are not bound to use quantum gravity.

5. CONCLUSIONS

We have seen that the theories obtained by the Palatini formalism,
when it is applied to the quadratic Lagrangian, behave in the Newtonian
limit as the Newtonian theory with a correction which is proportional to
the matter density at the field point. This behavior can be produced
by a Yukawa potential with an atomic scale characteristic range X and a
coupling constant a proportional to 1/A2. It is important to note that this
type of potential is not excluded by the present experimental data.
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