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Abstract 

In the present study it was investigated if Vitamin A supplementation could protect rat kidney microsomes and mitochondria 
from in vitro lipoperoxidation. After incubation of rat kidney microsomes and mitochondria in an ascorbate-Fe ÷+ system, at 
37°C during 60 min, it was observed that the total cpm/mg protein originated from light emission (chemiluminescence) was 
lower in those organelles obtained from the control group when compared with the vitamin A supplemented group. The fatty 
acid composition of  microsomes and mitochondria from control group was profoundly modified when subjected to non- 
enzymatic lipoperoxidation with a considerable decrease of arachidonic acid, C20:4 (n-6) and doeosapentaenoic acid, C22:5 
(n-3) in mitochondria and docosahexaenoic acid C22:6 (n-3) in microsomes. As a consequence the peroxidizability index, a 
parameter based on the maximal rate of oxidation of specific fatty acids was higher in the supplemented animals than in those 
used as control. These results indicate that Vitamin A may act as antioxidant protecting rat kidney microsomes and mitochon- 
dria from deleterious effect. (Mol Cell Biochem 165: 121-125, 1996) 
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Introduction 

The polyunsaturated fatty acids located in biological mem- 
branes are excellent targets for peroxidation with peroxides 
formation [ 1, 2]. The consequence ofperoxidation of unsatu- 
rated fatty acids membranes is severe: damage of membrane 
function, enzymatic inactivation, toxic effects on the cellu- 
lar division, etc. [3, 4, 5]. There are good reason to consider- 
ate microsomes and mitochondria as interesting systems for 
lipoperoxidation studies [6, 7, 8], these organelles are a con- 
venient experimental model for detailed studies of kinetic re- 
action and peroxidation mechanism, in addition the damage 

e,f these membranes is the motive of  tissues alterations in 
many pathological process [9, 10]. The present study was de- 
signed to clarify whether or not microsomes and mitochon- 
dria obtained from rat kidney could be targets for non-enzy- 
matic lipoperoxidation and to determine the level of protec- 
tion of such organelles isolated from vitamin A treated animals. 
The degradative process was followed simultaneously by de- 
termination of chemiluminescence [11, 12] and fatty acid com- 
position of microsomes and mitochondria isolated from rat 
kidney. The peroxidizability index [ 13] was used to evaluate 
the fatty acid alterations observed during the process. 
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Materials and methods 

All trans retinol palmitate type IV and butylated hydroxy- 
toluene was from Sigma Chemical Co. (St. Louis, MO.). BSA 
(Fraction V) were obtained from Wako Pure Chemical Indus- 
tries Ltd., Japan. Standards of fatty acids methyl esters were 
generously supplied by NU Chek Prep, Inc., Elysian, MN. 
USA. All other reagents and chemicals were of analytical 
grade from Sigma. 

Animals and membrane preparation 

Female Wistar AH/HOK rats 7 weeks old, weighing 120-137 
g were used. Two groups of three rats each were considered, 
and designed A (vitamin A-supplemented), and B (control). 
All rats were fed commercial rat chow and water ad-libitum. 
Group A received one daily 0.39 g/kg body wt intraperito- 
neal injection ofretinol palmitate, dissolved in 0.15 M NaC1, 
for 7 days. On the eighth day all the rats were sacrificed by 
cervical dislocation and the kidney was rapidly removed, cut 
into small pieces and washed extensively with 0.15 M NaC1. 
An homogenate 30% (w/v) was prepared in solution 0.25 M 
sucrose, 10 mM Tris-HC1 (pH 7.4), 10 mM EDTA, using the 
potter-Elvejhem homogenizer. The homogenate was spun at 
10,000 g for 10 rain, 3 ml of the resultant supernatant was 
applied to a Sepharose column (1.6 x 12 em) equilibrated and 
eluted with 10 mM Tris-HC1 (pH 7.4), 0.01% NaN 3. The 
microsomal fraction appearing in the void volume (10-16 ml) 
was brought to 0.25 M sucrose by addition of solid sucrose. 
All operations were performed at 4°C and under dim light. 
The quality of this microsomal preparation is similar in com- 
position as regards concentrations and activities of certain 
microsornal enzymes to that obtained by ultracentrifugation 
[14]. Mitochondria was prepared as already described [15]. 

Peroxidation of microsomes and mitochondria 

Chemiluminescence and lipid peroxidation were initiated by 
adding ascorbate to microsomes or mitochondria [16, 17, 18, 
19]. Membranes at a concentration of 1-6 mg of protein were 
incubated at 37°C with 0.01 M phosphate buffer (pH 7.4), 
0.4 mM ascorbate, final volume 2 ml. Phosphate buffer is 
contaminated with sufficient iron to provide the necessary 
ferrous or ferric iron for lipoperoxidation [19]. Membrane 
preparations which lacked ascorbate were carried out simul- 
taneously. Membrane light emission was determined over a 
60 min period, chemiluminescence was recorded as cpm 
every 10 min and the sum of the total chemiluminescence was 
used to calculate cprrdmg protein. A maximal response ob- 
tained between 20-30 min after the addition of ascorbate, is 
used as maximal induced chemiluminescence. 

Measurement of fatty acid composition 

Microsomal or mitochondrial lipids were extracted with chlo- 
roforrrdmethanol (2:1 v/v) [20] from native and peroxidized 
membranes. Fatty acids were transmethylated with 5% HC1 
in methanol at 80°C for 60 min. Fatty acids methyl esters were 
analyzed with a GC-14A gas chromatograph (Shimadzu, 
Kyoto, Japan ) equipped with a DB-225 megabore column 
(30 m x 0.53 mm id, J and V Scientific, Folson, CA., USA). 
Nitrogen was used as a carrier gas. The injector and detector 
temperatures were maintained at 250°C, the column tempera- 
ture was held at 90°C for 1 min, 90-180°C at 15°C/min, 180- 
200°C at 3°C/min, 200-220°C at 3°C/min, 220°C for 7 min. 
Fatty acids methyl esters peaks were identified by compari- 
son of retention times with those of standards. 

Peroxidizability index 

Peroxidizability index (PI) was calculated according to the 
formula [ 13, 21 ], PI = (percent of monoenoic acids x 0.025) 
+ (percent of dienoic acids × 1) + (percent oftrienoic acids x 
2) + (percent oftetraenoic acids x 4) + (percent ofpentaenoic 
acids × 6) + (percent ofhexaenoic acids × 8). 

Protein determination 

Proteins were determined by the method of Lowry et al. [22] 
using BSA as standard. 

Estimation of retinoids 

For extraction of vitamin A compounds, fractions were gen- 
tly mixed with 2 vol ethanol-BHT, followed by successive 
additions of hexane-BHT. After brief centrifugation the up- 
per phase was withdrawn and concentrated under nitrogen 
and then dissolved in a final volume of 3 ml ofhexane-BHT. 
Retinoid concentration was measured with spectrophotom- 
eter Shimadzu at 330 nm using retinyl palmitate as standard 
[231. 

Statistical analysis 

Data were expressed as means + S.D. Analysis of variance 
(ANOVA) was used to test the difference among groups. 
Where differences were significant, statistical significance of 
the difference between two means was determined using an 
unpaired t-test with Tukey HSD adjustment. P < 0.05 was 
taken as significant. 



Results 

Vitamin A concentration in homogenate, microsomal and 
mitochondrial preparations was appreciably higher in vita- 
min A supplemented than in the control group (Table 1). 

After incubation of  microsomes and mitochondria in an 
ascorbate-Fe ÷+ system (60 min at 37°C) it was observed that 
the total cpm/mg protein originated from light emission 
(chemiluminescence) was lower in the supplemented than in 
the control group. Thus the percentage inhibition of lipo- 
peroxidation was 33% for microsomes and 32.4 % for mito- 
chondria, (Table 2). 

When the total chemiluminescence ratio control/vitamin 
A supplemented group corresponding to mitochondria and 
microsomes isolated from rat kidney was compared, similar 
values, in the range 1.48-1.49, were obtained, (Table 2). 
These results may indicate that the protection by vitamin A 
is similar in both kinds of membranes. To determine more 
precisely if administration of vitamin A produce changes in 
maximal induced chemiluminescence during ascorbate-Fe +÷ 
lipoperoxidation assayed in vitro, we compared maximal light 
emission as a function of protein concentration using rat kid- 
ney microsomes and mitochondria isolated from control and 
vitamin A treated group. Either using microsomes or mito- 
chondria, maximal induced chemiluminescence was higher 
in organelles isolated from control than from vitamin A 
treated group. The fatty acid composition of total lipids from 
rat kidney mitochondria and microsomes, native and peroxi- 
dized, obtained from vitamin A supplemented and control 
group is presented in Tables 3 and 4 respectively. As com- 
pared with native mitochondria, in the peroxidized organelles, 

Table 1. Vitamin A concentration in homogenate, mitochondria and 
microsomes from vitamin A supplemented and control group 

mg vitamin A/mg protein 

Fraction Vit A supp group control group 

Homogenate 0.223 + 0.004 0.039 ± 0.006* 
Mitochondria 0.083 ± 0.003 0.011 + 0.002* 
Microsomes 0.049 + 0.005 0.013 ± 0.002* 

Data are given as the mean ± S.D. of three experiments. Statistically 
significant differences between control and supplemented group are 
indicated by *p < 0.005 using Student's t test. 

Table 2. Total chemiluminescence of  rat kidney microsomes and 
mitochondria induced by ascorbate-Fe +÷ 

cpm/mg protein Control group 

Fraction Vit A supp group Control group Vit A supp group 

Mitochondria 859.999 ± 160.223 1.270.233 ± 198.738 1.48 
Microsomes 269.050 + 9.331 402.279 + 37.456* 1.49 

Data are given as the mean ± S.D. of three experiments. Statistically 
significant differences between control and supplemented group are 
indicated by *p < 0.05 using Student's t test. 
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Fig. 1. Effect of treatment with vitamin A on ascorbate-Fe ÷÷ lipo- 
peroxidation induced in vitro. Microsomal and mitochondrial membranes 
from control 0 - - 0  and vitamin A supplemented group O - - O .  A: 
mlcrosomes, B: mitochondria. Each point is the mean value + S.D. of three 
experiments. 

the levels ofC20:4 (n-6) and C22:5 (n-3) were lower. When 
fatty acid composition of  microsomal lipids was analyzed 
only C22:5 (n-3) decreased significantly. There were marked 
differences when the peroxidizability index of  native and 
peroxidized mitochondria and microsomes was compared. 
These changes were less pronounced in membranes derived 
from rats receiving vitamin A, Table 5. The changes in fatty 
acid composition of membranes subjected to lipoperoxidation 
in the presence of ascorbate-Fe *÷ produced an important de- 
crease in the relative content of the more polyunsaturated 
fatty acids. As a result the peroxidizability index of peroxi- 
dized membranes in the vitamin A group was significantly 
higher than in the control group. 
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Table 3. Fatty acid composition (Area %) &rat  kidney mitochondria native and peroxidized from vitamin A supplemented and control group 

Vitamin A supp group Control group 

FattyAcid Native Peroxidized Native Peroxidized 

C16:0 15.326 ± 4.439 15.487 ± 1.893 17.043 ± 1.939 19.018 ± 1.138 
C 16:1 (n-7) tr tr tr tr 
C18:0 19.788 + 0.913 20.920 ± 5.489 21.134 ± 2.479 27.286 + 1.026 
C18:1 (n-9) 4.334 ± 0.183 4.519 ± 1.089 4.639 ± 0.545 5.989 ± 0.225 
C18:2 (n-6) 22.357 ± 6.503 29.314 ± 5.165 26.140 ± 3.947 30.181 ± 5.191 
C18:3 (n-3) 0_715 + 0.918 1.123 ± 0.586 1.669 + 1.105 2.445 + 0.532 
C20:4 (n-6) 24.566 ± 3.531 14.690 ± 5.077* 16.319 + 2.552 10.469 ± 3.987* 
C22:5 (n-3) 2.766 + 2.488 0.858 + 1.247" 4.310 + 2.750 0.580 + 0.316" 
C22:6 (n-3) 0.850 + 1.472 1.846 ± 2.028 0.442 ± 0.765 tr 

Data are given as the mean + S.D. of three experiments. Statistically significant differences between native and peroxidized mitochondria are indicated by 
*p < 0.05 using Student's t test. 

Table 4. Fatty acid composition (Area %) of rat kidney microsomes native and peroxidized from vitamin A supplemented and control group 

Vitamin A supp group Control group 

Fatty Acid Native Peroxidized Native Peroxidized 

C16:0 15.519 + 2.200 12.832 ± 4.18l 17.911 + 2.427 8.236 + 3.872 
C16:1 (n-7) tr tr tr tr 
C18:0 14.473 + 1.924 9.033 ± 1.458 11.957 + 2.535 7.830 + 1.613 
C18:1 (n-9) 8.874 ± 1.174 5.988 + 1.962 7.336 ± 1.552 4.784 + 0.966 
C18:2 (n-6) 22.680 ± 3.019 10.973 + 2.526 18.843 ± 4.741 10.015 ± 1.818 
C18:3 (n-3) 6.934 + 7.617 2.593 + 0.633 2.647 ± 0.702 2.960 ± 0.645 
C20:4 (n-6) 12.484 + 3.373 13.352 ± 2.953 12.189 ± 0.640 13.532 + 2.858 
C22:5 (n-3) 0.840 + 0.401 0.949 ± 0.584 1.249 ± 0.640 1.293 ± 0.000 
C22:6 (n-3) 1.262 ± 0.534 0.691 ± 0.122" 0.419 ± 0.098 tr* 

Data are given as the mean + S.D. of three experiments. Statistically significant differences between native and peroxidized microsomes are indicated by *p< 
0.05 using Student's t test. 

Table 5. Peroxidizability index of native and peroxidized mitochondria and microsomes from vitamin A supplemented and control group 

Vitamin A supp group Control group 

Fraction Native Peroxidized Native Peroxidized 

Mitochondria 144.812 + 5.827 110.380 + 19.015 124.267 + 17.689 80.546 + 10.611 
Microsomes 95.110 + 7.121 79.102 + 8.225 81.744 + 4.644 72.139 + 7.489 

Data are given as the mean + S.D. of three experiments. Statistically significant differences between native and peroxidized groups are indicated by *p < 
0.05 using Student's t test. 

Discussion 

T h e  r e t i n o i d s  p l a y  a n  i m p o r t a n t  ro le  in  s eve ra l  b i o l o g i c a l  

ac t iv i t ies ,  i nc lud ing :  m o d u l a t i o n  o f  ce l lu la r  d i f fe ren t ia t ion ,  

i m m u n e  func t ion ,  gap j u n c t i o n  m o d i f i c a t i o n s  [24] and  inter-  

ac t ion  w i t h  g r o w t h  fac tors  [25],  bu t  u n f o r t u n a t e l y  the  ac t ion  

m e c h a n i s m  r e m a i n  up  to n o w  u n k n o w n  [25]. 

V i t a m i n  A has  a l ow  capac i ty  to s c a v e n g e  free  rad ica l s  bu t  

it c a n n o t  q u e n c h  s ing le t  o x y g e n  [26]. T he  a n t i c a n c e r i g e n  ac- 

t iv i ty  o f  v i t a m i n  A m a y  be  due,  at  leas t  in  pa r t  to  its an t iox i -  

d a n t  a c t i v i t y  [27] .  H o w e v e r  t h e  a n t i o x i d a n t  a c t i v i t y  o f  

r e t ino ids  does  no t  cor re la te  w i t h  the  capac i ty  to inh ib i t  neo-  

p las ia  [24] or  ce l lu lar  t r a n s f o r m a t i o n  [28]. M a n y  s tudies  h a v e  

b e e n  ca r r i ed  out  in  o rder  to cha rac t e r i ze  the  c h a n g e s  in s t ruc-  

ture  and  c o m p o s i t i o n  o f  m e m b r a n e s  [29, 30, 31, 32],  e x p o s e d  

to o x i d a t i o n  and  to d e t e r m i n e  h o w  a n t i o x i d a n t s  agen t s  c o u l d  

p ro tec t  m e m b r a n e s  aga ins t  de l e t e r ious  ef fec ts  p r o d u c e d  b y  

free radicals ,  bu t  on ly  f ew s tudies  h a v e  b e e n  d i rec ted  to s tudy  

those  effects  in kidney.  B y  v i r tue  o f  its l iposo lub i l i ty ,  v i t a -  

m i n  A can  pa r t i t i on  in to  l ip id  m e m b r a n e s  w h e r e  it p l ays  an  

i m p o r t a n t  a n t i o x i d a n t  ro le  [33, 34, 35]. M a n y  s tud ies  a b o u t  

o x i d a t i v e  s t ress  c a r r i e d  ou t  w i t h  m e m b r a n e s  e n r i c h e d  in  

r e t i no id s  h a v e  d e m o n s t r a t e d  the  p r o t e c t i o n  b y  t h e s e  c o m -  

p o u n d s  aga ins t  in vivo and  in vitro l i pope rox ida t ion  [36, 37]. 

Previous  works  in our  labora tory  have  s h o w n  that  the  fatty ac id  

compos i t i on  o f  ra t  l iver  m i c r o s o m e s  and  m i t o c h o n d r i a  m e m -  



branes  was  m o d i f i e d  af ter  pe r ox i da t i on  in an  ascorba te -Fe  +* 

sys t em [38]. In the  p r e s en t  w o r k  we  o b s e r v e d  that  as a conse -  

quence  o f  the n o n - e n z y m a t i c  l ipoperoxidat ion ,  the  po lyunsa tu -  

r a t ed  fa t ty  ac ids  p r e s e n t  in  m i c r o s o m e s  and  m i t o c h o n d r i a ,  

i sola ted f rom rat k idney  were  more  d a m a g e d  in the control  than  

in the  s u p p l e m e n t e d  v i t a m i n  A g r o u p  as i n d i c a t e d  b y  the  

pe rox id izab i l i t y  index  and  the  va lues  o f  c h e m i l u m i n e s c e n c e .  

Fa t ty  acid ana lys i s  s h o w e d  a cons ide rab l e  decrease  o f  arachi-  

donic  acid, C20 :4  (n-6)  and  d o c o s a p e n t a e n o i c  acid,  C22:5  (n- 

3) in m i t o c h o n d r i a  a n d  d o c o s a h e x a e n o i c  acid,  C22:6  (n-3)  in  

m ic ro somes .  T h e s e  ch anges  m a y  p roduce  m a r k e d  a l tera t ions  

in s t ructure  and  func t ion  o f  rat  k i d n e y  m i t o c h o n d r i a l  and  mi-  

c ro soma l  m e m b r a n e s  w i th  the  c o r r e s p o n d i n g  pe r tu rba t ions  in  

severa l  b i o l o g i c a l  ac t iv i t ies  .These  obse rva t ions  are in  agree-  

m e n t  w i t h  p r e v i o u s  resul t s  f r o m  our  l abora to ry  [38] and  those  

o f  Ciacc io  et  aL [37] and  ind ica te  a poss ib le  role  for  v i t amin  

A as a phys io log ica l  an t iox idan t  in m e m b r a n e s .  
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