
Studia Logica (2012) 100: 1255–1269
DOI: 10.1007/s11225-012-9451-6 © Springer 2012

J. L. Castiglioni
H. J. San Mart́ın

On some Classes of Heyting
Algebras with Successor that
have the Amalgamation
Property

Abstract. In this paper we shall prove that certain subvarieties of the variety of S-

algebras (Heyting algebras with successor) has amalgamation. This result together with

an appropriate version of Theorem 1 of [L. L. Maksimova, Craig’s theorem in superintu-

itionistic logics and amalgamable varieties of pseudo-boolean algebras, Algebra i Logika,

16(6):643-681, 1977] allows us to show interpolation in the calculus IPCS(n), associated

with these varieties.

We use that every algebra in any of the varieties of S-algebras studied in this work

has a canonical extension, to show completeness of the calculus IPCS(n) with respect to

appropriate Kripke models.
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Introduction

In [16], Kuznetsov introduced an operation on Heyting algebras as an at-
tempt to build an intuitionistic version of the provability logic of Gödel-Löb,
which formalizes the concept of provability in Peano Arithmetic. This unary
operation, which we shall call successor [6], was also studied by Caicedo and
Cignoli in [6] and by Esakia in [12]. In particular, Caicedo and Cignoli
considered it as an example of an implicit compatible operation on Heyting
algebras.

A set E(f) of equations in the signature of Heyting algebras augmented
with a unary function symbol f is said to define an implicit operation if for
any Heyting algebra H there is at most one function fH : H → H. The func-
tion f is an implicit compatible operation provided all fH are compatible.

The successor, S, can be defined on the variety of Heyting algebras by
the following set of equations:

(S1) x ≤ S(x),
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(S2) S(x) ≤ y ∨ (y → x),

(S3) S(x) → x = x.

We shall call S-algebra to a Heyting algebra endowed with its successor
function, when it exists.

Recall that Esakia duality (see for example [11]) establishes a dual equiv-
alence between the category H of Heyting algebras and the category E of
Esakia spaces,

X : H � Eop : D

Here, X(H) is the set of prime filters of the Heyting algebra H and D(X)
is the set of clopen upsets of the Esakia space X. The morphisms of E
are called Esakia morphisms. The unit and counit of the adjuntion are
ϕH(x) = {P ∈ X(H) : x ∈ P} and εX(x) = {U ∈ D(X) : x ∈ U},
respectively.

Write SH for the category whose objets are S-algebras and whose mor-
phisms are the Heyting algebra morphisms that commute with the successor.
If X is a poset and V ⊆ X, we write VM for the set of maximal elements in
V . An Esakia space X is a S-space if for every U ∈ D(X) the set U ∪ (U c)M

is clopen. Observe that X is a S-space if and only if it is an Esakia space
such that for every clopen downset V the set VM is clopen. Let X and Y be
S-spaces. A morphism of Esakia spaces g : X → Y is a S-morphism if for
every V clopen downset in X it holds that g−1(VM ) = [g−1(V )]M . We shall
write SE for the category whose objects are S-spaces and whose morphisms
are S-morphisms. It was proved in [8] that there exists a dual categorical
equivalence between the category SH and the category SE and that if X is
a S-space then in D(X) the successor function takes the form

S(U) = U ∪ (U c)M .

In this paper we shall prove that certain subvarieties of the variety of
S-algebras has amalgamation (Theorem 3.4). This result together with an
appropriate version of Theorem 1 of [17] allows us to show interpolation in
the calculus IPCS(n), associated with these varieties (Corollary 4.4).

Interpolation is gaining importance in the applications of Logic to Com-
puter Science. Besides its applicability in software design, where it is con-
nected to the modularization property, the importance of interpolation has
been recently recognized in Model Checking, where non-classical logics are
used to specify and verify properties of software and reactive systems [10].

We use that every algebra in any of the varieties of S-algebras studied
in this work has a canonical extension (Proposition 2.3) to show complete-
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ness of the calculus IPCS(n) with respect to appropriate Kripke models
(Proposition 5.4).

1. The height in posets, topological spaces and algebras

Let X be a poset and let N be the set of natural numbers greater than 1.
For every n ∈ N we define an increasing sequence of sets {Xn}n≥1 as follows:

X1 = XM ,

Xn+1 = Xn ∪ (Xc
n)M .

Then for n ≥ 2 we define the sets X̂n by

X̂1 = X1 ,

X̂n = (Xc
n−1)M = Xn\Xn−1.

We say that the poset X has height n if X = Xn and n is the minimum
natural number with this property.

Remark 1.1. (i) For every n ∈ N, Xn is an upset.
(ii) For every n ∈ N,

Xn =
n⋃

i=1

X̂i.

In fact,

Xn = X̂n ∪ Xn−1 = X̂n ∪ X̂n−1 ∪ Xn−2 = · · · =
n⋃

i=1

X̂i,

so we can equivalently say that the poset X has height less or equal to n iff
X =

⋃n
i=1 X̂i.

We define the height of a S-space as the height of its underlying poset.
We write SEn for the full subcategory of SE whose objects are S-spaces of
height less or equal to n.

Remark 1.2. It is customary to define the height of an element x of a poset
X as the length of a maximal upward chain starting at x (when this length
exists) and, when each element of X has a length, the height of the poset X,
as the maximum of the heights of its elements. Note that in case that X is of
height n, X̂i = {x ∈ X | height(x) = i}, for i = 1, . . . , n, and Xj =

⋃j
i=1 X̂i

(j = 1, . . . , n). In particular, X = Xn =
⋃n

i=1 X̂i.
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If X is a poset of height n ∈ N, then the family F = {X̂i}n
i=1 is completely

characterized by the following properties (see Lemma 2.2 bellow):
1. F is a partition of X with n elements,
2. if x ≤ y and x ∈ Fi, then there exists j < i such that y ∈ Fj , and
3. for i ≥ 2, if x ∈ Fi then there exists y ∈ Fi−1 such that x < y.

We say that an S-algebra H has height n if S(n)(0) = 1 and n is the
minimum natural number with this property. We write SHn for the class of
S-algebras of height less or equal to n. This class is a variety with defining
equations of S-algebras and the additional equation

S(n)(0) = 1,

or, equivalently, the equation S(n)(x) = 1. Note that SH1 is just the variety
of Boolean algebras, and that we have that

SH1 ⊆ SH2 ⊆ . . .SHn ⊆ . . .

We also write SHn for the category of S-algebras of height less or equal
to n.

The following is an immediate consequence of theorems 4.4 and 4.10
of [8]:

Theorem 1.3. There is a categorical dual equivalence betweenSHn and SEn.

The next lemma and proposition will be used to give a characterization
of the morphisms in SEn.

Lemma 1.4. Let f : (X,≤) → (Y,≤) be a morphism of S-spaces. Then the
following conditions hold:

(a) f−1(Yi) = Xi.

(b) f−1(Ŷi) = X̂i.

(c) If X and Y are S-spaces of height k and l respectively then k ≤ l.

(d) If f is surjective in (c) then k = l.

Proof. (a) We will do the proof by induction. Case i = 1: we have that
f−1(Y1) = f−1(YM ) = XM = X1. Suppose that the assertion holds for some
i ∈ N. Then

f−1(Yi+1) = f−1(S(Yi)) = S(f−1(Yi)) = S(Xi) = Xi+1.

(b) It follows from item (a). The case i = 1 is immediate. For i > 1
we have that f−1(Yi) = Xi, so f−1(Yi−1) ∪ f−1(Ŷi) = Xi−1 ∪ X̂i. Taking
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the intersection with respect to X̂i in both members (and using (a)) we
conclude that X̂i ⊆ f−1(Ŷi). Taking the intersection with respect to f−1(Ŷi)
in both members (and using (a) again) we conclude that f−1(Ŷi) ⊆ X̂i.

(c) By (a) we have that X = f−1(Y ) = f−1(Yl) = Xl. Thus k ≤ l.
(d) By (c) we only prove that l ≤ k. Suppose that Y c

k 	= ∅. By (a) and
surjectivity of f , we conclude that Xc

k 	= ∅. It is a contradiction because
Xk = X.

Let f : X → Y be a morphism in E and X, Y be S-spaces. Consider the
following condition:

(E) For every x, y ∈ X, x < y implies that f(x) < f(y).

Proposition 1.5. If f satisfies condition (E) then f is a morphism in SE .
Conversely, if f : X → Y ∈ SEn for some n ∈ N then f satisfies condition
(E). In particular, f ∈ SEn iff f satisfies condition (E).

Proof. Suppose that f satisfies condition (E) and let U ∈ D(X). We
know that (f−1(U c))M ⊆ f−1(U c

M ). Conversely, let x ∈ f−1(U c
M ) and let

x ≤ z with z ∈ f−1(U c). If x < z then f(x) < f(z) (by condition (E)), a
contradiction. Then f is a morphism in SE .

Conversely, suppose that f : X → Y ∈ SEn and let x < y, so f(x) ≤
f(y). Suppose that f(x) = f(y). Thus there is i a natural number such that
f(x) ∈ Ŷi, so by item (b) of Lemma 1.4 we have that x, y ∈ X̂i. Using that
x ≤ y we conclude that x = y, a contradiction.

2. Canonical extension of S-algebras

Canonical extensions of distributive lattices with operators were introduced
by Gehrke and Jónsson [3] as a natural generalization of canonical extensions
of Boolean algebras with operators. They were further generalized to lattices
with operators by Gehrke and Harding [2].

Definition 2.1. (Def. 2.1 of [5]) Suppose that L is a lattice. A pair (C, e)
is a completion of L if C is a complete lattice and e : L → C is a lattice
embedding. A completion (C, e) of L is dense if each c ∈ C is a join of meets
and a meet of joins of elements of e(L). A completion (C, e) of L is compact
if for each pair of sets A,B of L with

∧
e(A) ≤ ∨

e(B), there are finite
subsets A0 ⊆ A and B0 ⊆ B such that

∧
e(A0) ≤ ∨

e(B0). A canonical
extension of L is a dense and compact completion of L.
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Throughout the paper we will slightly abuse notation and call a complete
lattice C a completion of a lattice L. Every lattice admits a unique, up to
isomorphism, dense and compact completion (Theorem 2.2 of [5]).

If H is a Heyting algebra, a canonical extension of H is a complete
Heyting algebra H ′ such that there is a Heyting algebras embedding e :
H → H ′ for which, as a lattice, H ′ is a canonical extension of H.

If X is a poset, we write X+ for the Heyting algebra of upsets of X.
Then for a Heyting algebra H we have that X(H)+ is a canonical extension
of H. Similarly, we shall define a canonical extension of an S-algebra.

In this section we show that the canonical extension of an algebra in
SHn is in SHn.

Lemma 2.2. Let X be a poset. Then

(a) If i 	= j then X̂i ∩ X̂j = ∅.
(b) If x ≤ y, x ∈ X̂i and y ∈ X̂j then j ≤ i.

(c) If i ≥ 2 and x ∈ X̂i then there is y ∈ X̂i−1 such that x < y.

Proof. (a) Suppose that X̂i ∩ X̂j 	= ∅ and i < j. Then there exists x ∈ X
such that x ∈ X̂i ∩ X̂j and i ≤ j − 1. In particular x /∈ Xj−1, so x /∈ Xi.
Thus x /∈ X̂i, a contradiction.

(b) Let x ≤ y, x ∈ X̂i and y ∈ X̂j . We have that x ∈ Xi and hence,
y ∈ Xi. Then there is k ≤ i such that y ∈ X̂k. By (a), we have that
j = k ≤ i.

(c) Let us consider two cases:
Case i = 2. Suppose that x ∈ X̂2, then x /∈ XM . Thus there is y ∈ X

such that x < y. Using that x ∈ X2 we have that y ∈ X2. Hence, since
x < y we conclude that y ∈ X̂1.

Case i > 2. Let x ∈ X̂i, so by (a) we have that x /∈ X̂i−1. Thus there is
y /∈ Xi−2 such that x < y. Besides there is j = 1, . . . , i such that y ∈ X̂j .
If j = i, using that x, y ∈ X̂i and x < y, we have a contradiction. Suppose
that j ≤ i− 2. Using the fact that y /∈ Xi−2, we have that y /∈ X̂k for every
k = 1, . . . , i − 2. Thus y /∈ X̂j , a contradiction. Therefore j = i − 1.

If X is a poset and V ⊆ X we write

[V ) = {x ∈ X : x ≥ v for some v ∈ V },

(V ] = {x ∈ X : x ≤ v for some v ∈ V }.

If x ∈ X we write [x) in place of ({x}].
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Proposition 2.3. Let X be a poset. If X has height n ∈ N then X+ is a
S-algebra of height n, where for every U ∈ X+ we have that

S(U) = U ∪ (U c)M .

Proof. First, we will prove that function S : X+ → X+ is the successor
function. Equations (S1) and (S2) follows from an easy computation (see
page 352 of [12] for an alternative approach). To prove equation (S3) we
only need to prove that for every downset V in X it holds that V = (VM ].
Take x ∈ V . We have that there is i ∈ {1, . . . , n} such that x ∈ X̂i. Thus
[x) ∩ V ∩ X̂i 	= ∅. We consider the set

M = {k = 1, . . . , n : [x) ∩ V ∩ X̂i 	= ∅}.

Since i ∈ M , we conclude that M 	= ∅ and take j = min M . Then [x)∩V ∩
X̂j 	= ∅, so there is v ∈ [x) ∩ V ∩ X̂j . Thus x ≤ v and v ∈ V . Suppose that
v ≤ w for some w ∈ V . There exists k ∈ {1, . . . , n} such that w ∈ X̂k, so
w ∈ [x) ∩ V ∩ X̂k. Thus [x) ∩ V ∩ X̂k 	= ∅, and k ∈ M . Then j ≤ k.

On the other hand by (b) of Lemma 2.2 we have that k ≤ j, so k = j.
Using that v ≤ w with v, w ∈ X̂k we conclude that v = w, and hence v ∈ VM .
Thus x ∈ (VM ]. Therefore equation (S3) holds. Finally by hypothesis we
have that S(n)(∅) = Xn = X. If S(k)(∅) = Xk = X then n ≤ k.

Note that not every S-algebra have an extension of the form of previous
Proposition. For instance, if N

0 is the set of natural numbers with its inverse
order, and ⊕ is the ordinal sum of posets (see [1], p. 39), then N ⊕ N

0 is a
S-algebra. However, (X(N ⊕ N

0))+ is not a S-algebra.

3. Amalgamation property in SHn

The amalgamation property was first considered by Schrwier in [20], where
it was investigated for groups. In a general form, the amalgamation property
was first formulated by Fräıssé ([14]) in connection with certain embedding
properties.

Definition 3.1. Let K be a class of algebras. We say that K has the
amalgamation property if for H0,H1,H2 ∈ K, and embeddings i1 : H0 → H1

and i2 : H0 → H2, there exists some H ∈ K and embeddings ε1 : H1 → H
and ε2 : H2 → H such that ε1i1 = ε2i2. That is, if the following diagram
commutes:
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H0
i1 ��

i2
��

H1

ε1

��
H2 ε2

�� H

In this section we will prove that for every n ∈ N, SHn has the amal-
gamation property. In order to prove it, we will use the dual categorical
equivalence given in Theorem 1.3, and Proposition 1.5.

For j = 1, 2, let ij : H0 → Hj be embeddings in SHn. If we take
α : X(H1) → X(H0), given by α = X(i1) and β : X(H2) → X(H0), given
by β = X(i2), we have that α and β are epimorphisms in SEn. Take X =
X(H1), Y = X(H2), Z = X(H0) and consider the set

W = {(x, y) ∈ X × Y : α(x) = β(y)}.

By (d) of Lemma 1.4 we have that X, Y and Z are S-spaces of the same
height h ≤ n. Note that

W ⊆
h⋃

i=1

X̂i × Ŷi. (I)

In order to prove this, let α(x) = β(y). Then there is i ∈ {1, . . . , h} such
that x ∈ X̂i. By (b) of Lemma 1.4 we have that β(y) = α(x) ∈ Ẑi. Thus
y ∈ Ŷi, and (x, y) ∈ X̂i × Ŷi.

Let W be the poset with the order induced by the product order of X×Y .
With the above notation, we have the following

Lemma 3.2. The poset W has height h.

Proof. We first prove by induction on the level index i ∈ N that

W ∩ (X̂i × Ŷi) ⊆ Ŵi. (II)

Let (x, y) ∈ W , x ∈ XM and y ∈ YM . Suppose that (z, w) ∈ W and
(x, y) ≤ (z, w). Using that x ∈ XM and y ∈ YM we conclude that (x, y) =
(z, w), and (x, y) ∈ WM . Then W ∩ (X̂1 × Ŷ1) ⊆ Ŵ1.

Suppose that W ∩ (X̂i × Ŷi) ⊆ Ŵi for all i ≤ k (k ∈ N). Take (x, y) ∈
W ∩ (X̂k+1 × Ŷk+1). Thus α(x) = β(y), x ∈ X̂k+1 and y ∈ Ŷk+1. Suppose
that (x, y) ∈ Wk, so there is i ≤ k such that (x, y) ∈ Ŵi. By (b) of Lemma
2.2 there is xi ∈ X̂i such that x < xi, so by Proposition 1.5 we have that
α(x) < α(xi). On the other hand, as β is surjective we have that there
is zi ∈ Y such that α(xi) = β(zi), so by (b) of Lemma 1.4 we have that
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zi ∈ Ŷi. Using that β is a p-morphism and the fact that β(y) < β(zi), we
have that there is yi ∈ Y such that y ≤ yi and β(yi) = β(zi), so by (b)
of Lemma 1.4 again we have that yi ∈ Ŷi. Thus (x, y) ∈ Ŵi and (x, y) <
(xi, yi) ∈ W ∩ (X̂i × Ŷi) ⊆ Ŵi, a contradiction. Therefore (x, y) ∈ (Wk)c.
Let (x, y) ≤ (z, w) with (z, w) ∈ (Wk)c. Suppose that x < z, so by (b) of
Lemma 2.2 we have that z ∈ X̂i for some i ≤ k. Using Proposition 1.5 we
have that α(x) < α(z), so β(y) < β(w). Using that (z, w) ∈ W , (I), the
fact that z ∈ X̂i and (a) of Lemma 2.2, we conclude that w ∈ Ŷi and thus
(z, w) ∈ W ∩ (X̂i × Ŷi) ⊆ Ŵi, a contradiction because (z, w) ∈ W c

k . Thus
(x, y) ∈ Ŵk+1, and W ∩ (X̂k+1 × Ŷk+1) ⊆ Ŵk+1. Then condition (II) holds
for every i ∈ N. By (I) and (a) of Lemma 2.2, we conclude that

W ∩ (X̂i × Ŷi) = Ŵi

for every i ∈ N. Therefore by (I) we conclude that

W =
h⋃

i=1

(W ∩ (X̂i × Ŷi)) =
h⋃

i=1

Ŵi.

In particular, Wh = W . In order to prove that h is the minimum natural
number with the previous property, let m be a natural number such that
Wm = W and suppose that h is the height of (X,≤). We will prove that
X = Xh = Xm. Let x ∈ Xh, so there is i ∈ {1, . . . , h} such that x ∈ X̂i. By
(b) of Lemma 1.4 we have that α(x) ∈ Ẑi. As β is surjective, there is y ∈ Y
such that α(x) = β(y) (note that by (b) of Lemma 1.4 we have that y ∈ Ŷi).
Then (x, y) ∈ W = Wm. Thus there is j ∈ {1, . . . , m} such that (x, y) ∈ Ŵj ,
so x ∈ X̂j and then x ∈ Xm. Hence X = Xh ⊆ Xm, i.e , X = Xh = Xm.
As the height of X is h we have that h ≤ m. Therefore the poset W has
height h.

By lemmas 3.2, 2.3 and with the notation of above, we have the following

Corollary 3.3. W+ is a S-algebra of height h.

For i = 1, 2 we define maps fi : Hi → W+ by

fi(b) = {(P1, P2) ∈ W : b ∈ Pi}.
These maps are embeddings of Heyting algebras such that f1i1 = f2i2 (see
[15], section 2.5). Using that ϕHi(S(b)) = ϕHi(b) ∪ (ϕHi(b))

c
M we can prove

that fi(S(b)) = S(fi(b)) (for i = 1, 2). Therefore we have the following

Theorem 3.4. SHn has the amalgamation property.
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4. Craig’s interpolation theorem

Let L be the language of formulas of the intuitionistic propositional calculus
(IPC), built in the usual way from the connective symbols →, ∧, ∨, ¬, corre-
sponding to implication, conjunction, disjunction and negation, respectively,
and the propositional variables πi, i = 0, 1, . . . We write ϕ ↔ ψ as a short
hand for (ϕ → ψ) ∧ (ψ → ϕ).

Let ∇ be a distinct connective symbol (of arbitrary arity), and L(∇) will
denote the propositional language obtained by allowing ∇ in the formation
rules of formulas. To each set of formulas A(∇) ⊆ L(∇), associate the
axiomatic system having A(∇) ∪ Int for axiom schemas, where Int is a
complete system of schemas for the intuitionistic propositional calculus (as
given for example in [18] and [19]), and substitution in axiom schemas and
Modus Ponens as only rules. Only this kind of systems will be considered.
Given Γ ∪ {ϕ} ⊆ L(∇), the notation Γ �A(∇) ϕ will indicate that ϕ is
deducible from Γ in this calculus. We write �A(∇) ϕ if Γ = ∅. It is immediate
that the deduction theorem is satisfied:

Γ ∪ {α} �A(∇) ϕ implies Γ �A(∇) α → ϕ.

Each formula ϕ ∈ L(∇) may be seen as a term in the variables πi,
in the type τ ∪ ∇ of Heyting algebras enlarged with the operation symbol
∇. Therefore, to each extension A(∇) of the intuitionistic calculus we may
associate the system of equations E(∇) = {ϕ = 1 : ϕ ∈ A(∇) ∪ Int}, and
the corresponding variety of Heyting algebras

V (A(∇)) = V (E(∇)).

Definition 4.1. (Def. 4.2 of [6]) A set of formulas A(∇) will be said to
define axiomatically a connective ∇ provided that

�A(∇)∪A(∇̂) ∇(π1, . . . , πn) ↔ ∇̂(π1, . . . , πn),

where ∇̂ is a new n-ary connective and A(∇̂) = {ϕ(∇/∇̂) : ϕ ∈ A(∇)}.
In the following we will assume that A(∇) defines axiomatically a con-

nective. We write IPC∇ for the propositional intuitionistic calculus with
the additional axioms given by the formulas of A(∇). For the logic IPC∇
we consider the variety V (A(∇)).

Definition 4.2. By the Craig’s interpolation theorem (CIT) in the logic
IPC∇ we mean the following proposition: for any formulas α, β ∈ L(∇),
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if �A(∇) α → β, there is a formula γ in L(∇) such that �A(∇) α → γ,
�A(∇) β → γ and γ contains only those variables which occur simultaneously
in both α and β.

Suppose that K is an arbitrary class of algebras partially ordered. If x is
a set of k variables and p(x) is an equation in K, we write |=K p(x) in case
that for any H ∈ K and for any a1, . . . , an ∈ H we have that equality given
by p(a1, . . . , ak) is true in H. Besides, we define |=K t(x) ≤ u(x) (where t
and u are terms) in case that for any H ∈ K and for any a1, . . . , ak ∈ H we
have that inequality given by t(a1, . . . , ak) ≤ u(a1, . . . , ak) is true in H.

By the interpolation principle for identities (IPE) in the class K we mean
the following proposition: for any pairwise disjoint sets of variables x, y, z
and identities p1(x, y), . . . ,pn(x, y), q(x, z), if

|=K

n∧

i=1

pi(x, y) ⇒ q(x, z)

then there exist m and identities τ1(x), . . . , τm(x) such that

|=K
∧n

i=1 pi(x, y) ⇒ ∧m
j=1 τj(x) and |=K

∧m
j=1 τj(x) ⇒ q(x, z).

We also define the interpolation principle for inequalities (IPI): for any
terms t(x, y) and u(x, z), if |=K t(x, y) ≤ u(x, z), then there is a term v(x)
such that |=K t(x, y) ≤ v(x) ≤ u(x, z).

A class K is called strongly amalgamable if for any H0,H1H2 ∈ K Defi-
nition 3.1 is satisfied and ε1(H1)∩ ε2(H2) = ε1i1(H0). A class K of partially
ordered algebras is called superamalgamable if Definition 3.1 is satisfied for
H0,H1,H2 ∈ K, and if for j, k ∈ {0, 1}, if εj(x) ≤ εj(y) then there is z ∈ H0

such that x ≤j ij(z) and ik(z) ≤k y (where ≤i is the order in Hi for i = 1, 2).

Let K be a class of algebras such that in each H ∈ K we can define the
supreme of two elements. We say that H is completely connected if for all
x, y ∈ H, if x ∨ y = 1 then x = 1 or y = 1.

The following theorem is a reformulation of Theorem 1 given in [17],
using also Theorem 4.1, Theorem 4.2 and Corollary 4.4 of [6].

Theorem 4.3. We suppose that the set of formulas A(∇) defines axiomat-
ically a connective ∇. Then the following conditions are equivalent:

1) CIT is true in IPC∇;

2) The variety V (A(∇)) satisfies the IPI;
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3) The variety V (A(∇)) satisfies the IPE;

4) V (A(∇)) is superamalgamable;

5) V (A(∇)) is strongly amalgamable;

6) V (A(∇)) has the amalgamation property;

7) Definition 3.1 is satisfied for any completely connected H0, H1,H2 ∈
V (A(∇)).

Let n ∈ N. The following set A(S)n (see Example 5.2 of [6]) of schemas
defines an implicit connective of intuitionistic calculus:

(Sn1) α → S(α),

(Sn2) S(α) → (β ∨ (β → α)),

(Sn3) (S(α) → α) → α,

(Sn4) S(n)(α).

In particular, we have that V (A(S)n) = SHn. We write IPCS(n) for the
propositional intuitionistic calculus with the additional axioms (Sn1)-(Sn4),
with Modus Ponens and substitution as the only rules. Then by theorems
3.4 and 4.3 we have the following

Corollary 4.4. IPCS(n) satisfies the CIT.

5. Kripke models

Associating algebraic models to propositional logics is often achieved by an
easy transcription of syntactic specifications of such logics. As a conse-
quence, semantic modeling by such algebras is often not far removed from
the syntactic treatment of the logics.

In [7] X. Caicedo proposes a Kripke semantics for IPCS . In this section
we apply a variation on this semantics to the study of completeness results
for IPCS(n).

Let n ∈ N. Set M = (X, K), where X is a poset of height less or equal
to n and K : L(S) → X+ is a function. For α in L(S) and p ∈ X, write

|=p α if and only if p ∈ K(α)

If the relation |=p satisfies the following conditions, we say that M is a
Kripke model [13] of IPCS(n) :
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(1) |=p ¬α iff q ≥ p implies |=q/ α,
(2) |=p α ∨ β iff |=p α or |=p β,
(3) |=p α ∧ β iff |=p α and |=p β,
(4) |=p α → β iff for q ≥ p: if |=q α then |=q β,
(5) |=p S(α) iff for every q > p we have that |=q α.

It can be proved that condition (5) is equivalent to

K(S(α)) = K(α) ∪ (K(α)c)M .

Notice that, although the displayed equation does not hold for any poset,
it holds in this case because any subset of X has maximal elements.

Let T be a theory of IPCS(n). We define the following equivalence
relation in L(S):

α ≡T β iff T �A(S)n
α ↔ β.

Write [α]T for the class of equivalence of α. Note that the binary relation in
L(S) given by α ≤ β iff T �A(S)n

(α → β) is a pre-order (i.e reflexive and
transitive). Then we have the following order in the quotient: [α]T ≤ [β]T
iff α ≤ β.

Lemma 5.1. Let α ∈ L(S) and let T be a theory of IPCS(n). Then

(a) [α]T = 1 iff T �A(S)n
α.

(b) L(S)/ ≡T is a S-algebra of height less or equal to n. In this case we
define

S([α]T ) = [S(α)]T .

Proof. The first assertion is proved in the same way as for the intuitionistic
case. The second one follows from the fact that S is an implicit connective
(see Theorem 4.1, Theorem 4.2 and Corollary 4.4 of [6]).

Definition 5.2. Let α ∈ L(S) and let T be a theory of IPCS(n). We say
that α holds in a Kripke model M = (X,K) of T iff for each p ∈ X, we
have that if for all γ ∈ T , p ∈ K(γ) then p ∈ K(α).

Any function v : {π1, π2, . . . } → Domain(H) with H ∈ V (A(S)n) (called
H-valuation) may be extend to a unique homomorphism v : L(S) → H. Here
we see L(S) as the algebra of terms in the signature of Heyting algebras
with S. Then we define for any set Γ∪{ϕ} ⊆ L(S) an algebraic consequence
relation as follows

Definition 5.3. (Def. 4.1 of [6])
Γ �A(S)n

ϕ iff for any H ∈ V (A(S)n) and H-valuation v: v(γ) = 1 for
all γ ∈ Γ implies v(ϕ) = 1.
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It is easy to check, by induction on the length of proofs, that �A(S)n
is

sound with respect to this semantics. That is,

Γ �A(S)n
ϕ implies Γ �A(S)n

ϕ. (III)

Proposition 5.4. Let α ∈ L(S) and let T be a theory of IPCS(n). Then

T �A(S)n
α iff α holds in every Kripke model of T .

Proof. Let M = (X, K) be a Kripke model of T and suppose that T �A(S)n

α. By (III) we have that T �A(S)n
α. Using that X is a poset of height

less or equal to n and Proposition 2.3, we have that X+ ∈ SHn, where
S(U) = U ∪ (U c)M for every U ∈ X+. Then K(S(α)) = S(K(α)). Thus
K : L(S) → X+ is an homomorphism, so if K(γ) = X for all γ ∈ T then
K(α) = X. Therefore α holds in the Kripke model M.

For the converse we shall use Theorem 1.3 and Proposition 2.3. Let
ρ : L(S) → L(S)/ ≡T given by ρ(α) = [α]T . By (b) of Lemma 5.1 we have
that L(S)/ ≡T ∈ SHn, so in particular X(L(S)/ ≡T ) is a poset of height less
or equal to n. Let i : D(X(L(S)/ ≡T )) → (X(L(S)/ ≡T ))+ be the inclusion
morphism, and define K : L(S) → (X(L(S)/ ≡T ))+ as K = iϕρ, with
ϕ = ϕL(S)/≡T

. By (b) of Lemma 5.1 we have that K(S(α)) = iϕρ(S(α)) =
iϕ(S(ρ(α))) = i(ϕ(ρ(α)) ∪ [ϕ(ρ(α))]cM ) = ϕ(ρ(α)) ∪ [ϕ(ρ(α))]cM . On the
other hand, by Proposition 2.3 we have that S(K(α)) = K(α) ∪ K(α)c

M =
i(ϕ(ρ(α)) ∪ [i(ϕ(ρ(α))]cM = ϕ(ρ(α)) ∪ [ϕ(ρ(α))]cM . Hence, it follows that
M = (X(L(S)/ ≡T ),K) is a Kripke model of T .

Suppose that T �A(S)n
γ for all γ ∈ T . By (a) of Lemma 5.1 we have that

[γ]T = 1 for every γ ∈ T . In particular we have that K(γ) = X(L(S)/ ≡T )
for every γ ∈ T , and hence K(α) = X(L(S)/ ≡T ). Using that iϕ is injective
we have that [α]T = 1. Using (a) of Lemma 5.1 again, we conclude that
T �A(S)n

α.
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