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Abstract. A study of the site percolation model on the 
square lattice in a L x M geometry at critically is present- 
ed. For L ~ M one observes the growth of numerous per- 
colation clusters in the L-direction in contrast to the ab- 
sence of percolation in the M-direction. Consequently, 
relevant properties of these clusters such us for example 
the average number of clusters (NcL), the cluster length 
distribution (P(l, L), with I= cluster length in the M direc- 
tion) and average cluster length (lcL), are studied by 
means of the Monte Carlo technique and analyzed on the 
basis of finite-size scaling arguments. The following be- 
havior is found: NcL~(3/8) (L/M) ~, with c~=l; and 
IcL ~ 2.0 L. Also the distribution P (l, L) is of the exponen- 
tial-exponential type and their characteristic exponents 
are evaluated. 

I. Introduction 

Percolation processes are being studied with increasing 
interest due to their useful applications in many fields 
of physics and physical-chemistry. There is now a vast 
literature on the subject such us, for example, the reviews 
[1-6] and references therein. Remarkably, most of the 
available work on percolation in two dimensions, per- 
formed using different techniques, has been done in a 
Lx L geometry [1-6]. Nevertheless, also numerous au- 
thors have considered non-quadratic shapes in percola- 
tion theory. In fact, L x M and strip geometries have 
been studied by means of transfer matrix and phenomen- 
ological renormalization methods, see for example [,7- 
11] and references therein. Furthermore, studies of other 
models in rectangular or strip geometries, such as for 
example the Ising model ([12-14] and references therein), 
have demonstrated that this is an useful approach which 
contribute to the understanding of the whole problem. 
In a recent work [,15] we have analyzed some aspects 
of the critical behavior of the site percolation model on 

the square lattice in a L x M geometry. This geometry 
is particularly suitable for the study of adsorption phe- 
nomena at stepped surfaces [-12-16] as well as for diffu- 
sion and conduction processes in layered media [6]. 

A remarkable feature of the percolation process under 
the constraint L< M is the preferential development of 
percolating clusters in the L-direction of the lattice (see 
for example Fig. 2 of [,15]). In fact, one has that for 
a relatively small site occupation probability (p=0.5) 
percolating clusters in the L-direction have already 
grown. Right at the critical threshold p = Pc--0.59275 one 
observes numerous percolation clusters along the L-di- 
rection. The development of a percolating cluster in the 
M-direction can hardly occur for L<M at Pc but it is 
frequently observed for p = 0.70 >>Pc [15]. 

Based upon these considerations, the aim of the pres- 
ent work is to study, at critically, some relevant proper- 
ties of the percolation clusters in the L-direction and 
their dependence on the aspect ratio (L/M) of the sample. 
Within this context the average number of percolating 
clusters, the average cluster length and the cluster- 
length-distribution, are evaluated by means of Monte 
Carlo simulations and discussed on the basis of finite 
size scaling arguments. It should be emphasized that the 
study of the above mentioned properties has not been 
addressed yet. Let us also note that the study of the 
appropriate distributions gives valuable information on 
structural cluster properties ([17] and references therein) 
and consequently is a subject of considerable interest. 
For example, probability distributions for several fractal 
properties such as the voltage distribution in percolation 
and the growth probabilities of diffusion-limited aggre- 
gation have been found to be of log-normal type [,18-20]. 
Also the distribution of mass within a certain radius 
has been evaluated for percolation clusters generated on 
a Cayley tree and diffusion-limited aggregates [21, 22]. 
In most cases, an infinite hierarchy of independent expo- 
nents is needed to characterize the different moments, 
so multifractal behavior is found. 
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II .  R e s u l t s  a n d  d i s c u s s i o n  

Details on the site percolation model have already been 
published in various reviews [1-6], so they do not need 
to be repeated here. In the present work, the Monte 
Carlo simulations are performed using free boundary 
conditions in both L and M-directions, clusters are iden- 
tified using standard algorithms and results are typically 
averaged over 103-10 s different configurations, depend- 
ing on the lattice size, in order to achieve reasonable 
statistics [15]. 

II.a. The average number of percolating clusters at p~ 

As it has been already discussed, right at pc there are 
few percolating clusters in the L-direction, but not in 
the M-direction, due to the fact that L ~ M .  In order 
to analyze the average number of percolating clusters 
in the L-direction <NcL) at critically, let us make two 
simple considerations: 

i) Since in two dimensions right at p~ there exist a single 
percolating cluster the behavior <NcL)-~ 1 for L, M 
--+ oo, p=p~ is expected to hold. This behavior should 
also hold for L~-M. 
ii) Keeping L=cons tan t  and M ~ o o  one expects 
< NcD oo. 

So, under assumptions i) and ii) it is natural to suggest 
the following power law approach 

-~ L<M, (1) 

where 3 > 0 is an exponent which has to be determined. 
Figure 1 shows a log-log plot of <NcL) versus L/M for 
samples of different sizes. The plot shows a reasonable 
data collapsing into a straight line with slope 6 -- 1. Nev- 
ertheless, a careful inspection of Fig. 1 reveals systematic 
deviation of the data for fixed values of L/M. Similar 
deviations appear analyzing the probability of a site be- 
longing to the biggest cluster and can be understood 
as due to scaling corrections of the order L-~ to the 
leading term [15]. 

According to assumption ii) and the fact that ~5 = 1, 
(NcL) should increase linearly with M for constant 
values of the sample width L. Figure 2 shows that the 
expected behavior holds because data points define 
straight lines with different slopes (Sx (L)) for fixed values 
of L. A plot of S~(L) vs. L -~, as it is suggested by (1), 
gives a straight line (Fig. 3) with slope C~ ~- 3/8. So, from 
Figs. 1-3 and the above discussion, it follows that 

(NcL)=SI(L)M~(3/8)(L/M) ~, c5=1,  L<M.  (2) 

This result will be further discussed below. 

ll.b. The average length of the percolating clusters at Pc 

The growth of percolating clusters in the L-direction, 
due to the constraint L<  M, can be qualitatively com- 
pared with the development of domains of spins-up and 
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Fig. 1. Log-log plot of the average number of percolating clusters 
(NcL> at Pc versus L/M for samples of different size as indicated 
by the symbols. The straight line with slope 6 = - 1 has been drawn 
for comparison. More details in the text 
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Fig. 2. Plot of <NcL ) at Pc versus M for samples of different width 
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Fig. 3. Plot of the slope SI(L), as determined from Fig. 2, versus 
U a with 6 = 1. Individual choices of the lattice width L are indicated 
by different symbols. The straight line with slope C1 = 3/8 has been 
drawn for comparison 

spins-down crossing through the sample (L-direction), 
observed for the same geometry, working with the ferro- 
magnetic Ising model in absence of both bulk and surface 
fields [12-14]. From conformal invariance [23] and 
Monte Carlo results [12, 13] it follows that the average 
distance (Id> between the border of domains with differ- 
ent spins is given by (le>=(n/2)-lL. Similarly, for the 
percolation process at Pc in the L x M geometry one can 
define the average length (IcL) (along the M-direction) 
of percolating clusters in the L-direction. Now, let us 



show that (lcL) should be of the order of L. It is known 
from finite-size scaling arguments that the average prob- 
ability of a site belonging to the largest (percolating) 
cluster P~(L, M) behaves like [15J 

Pa (L, M) = L- ~/o F (L/M, (p - Pc) L~/~ (3) 

where f l= 5/36, v =4/3, F is a suitable scaling function 
and the subindex _a stress the fact that we are referring 
to the average probability taken over all those clusters 
percolating in the L-direction. Note that right at Pc the 
second scaling variable vanishes. So, assuming the aver- 
age mass (m (p = Pc)) of the cluster is given by 

m(p = pc) oc P~ (L, M) (lcL) L, (4a) 

and it behaves like [3-6] 

rn(p=pc)ocL DF, DF=d-fl/v, (4b) 

and taking into account that F(L/M, O)~-(L/M) [15] it 
follows that 

(IcL) ocL, L/M = constant. (5) 

That is, the finite-size scaling analysis gives the same 
power dependence of (lcL) on L than conformal invar- 
iance applied to the Ising model ((ID), see above), but 
in contrast the proportionality constant is not fixed at 
all by scaling arguments. Equation (5) can also be obtain 
in a somewhat more qualitative manner. In fact, it is 
natural to assume that 

( Ncr.) ( IcL) ~-- M (6) 

and using (1) with (5 = 1 one recovers (5). Figure 4 shows 
a plot of (lcL) versus M for lattices of different aspect 
ratio, O.O15625<L/M<0.5. It is found that the data 
points nicely define straight lines only for fixed values 
of L/M and that the slopes of such lines {$2 (L/M)} also 
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Fig. 4. Plot of the average cluster width (lcL) at Pc versus M for 
samples of different aspect ratio L/M as indicated by the symbols. 
The straight lines are obtained by least square fits of the data 
points 
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depend on L/M, that is 

(IcL) = S2(L/M ) M. (7) 

A plot of Sz(L/M), versus L/M is shown in Fig. 5. It 
is interesting to note that, in the limit L ~  M, Fig. 5 sug- 
gests that the following behavior should hold 

$2 (L/M) = C2 L/M, C2 ~- 2.0. (8) 

Therefore, using (7) and (8) it follows 

(lcz)~- 2.0 L, L~ M, (9) 

in agreement with the scaling result and the qualitative 
estimation (5) but the proportionality constant has now 
been determined with the aid of the Monte Carlo data. 
Note that deviation from the straight line behavior ob- 
served in Fig. 5 for L/M = 1/4 and 1/2 are due to the 
fact that for these cases one has severe restrictions to 
the growth of clusters with length larger than (IcL) or 
even than L. Coming back to our comparison with re- 
sults of the ferromagnetic Ising model [12] one has that 
(l~) < L i n  contrast to (lCL) >L. 

Summing up, Monte Carlo data suggest that in the 
asymptotic regime M >> L the average cluster length does 
not depend on the aspect ratio but is a function of L 
only. A plot of (IcL)/2L vs. M (Fig. 6) shows that the 
above statement holds and that for M>>L the average 
cluster length tends to a saturation value close to 2L 
in agreement with (9). Nevertheless, a careful inspection 
of Fig. 6 reveals that, for L ~  M, data points are not uni- 
formly scattered around the straight line given by 
(lcL)/2 L =  1, as it should be caused by statistical fluctua- 
tions characteristics of the Monte Carlo results. In fact, 
most points lie above than the expected value suggesting 
either that Cz should be slightly greater than 2 or that 
scaling corrections to the leading term would be neces- 
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sary. Regrettably, we are not able to elucidate the actual 
reason because it requires the study of large lattices with 
huge statistics and consequently prohibitive computing 
time. 

II.c. The cluster length distribution at Pc 

This section is devoted to the discussion of the cluster 
length distribution P(/, L), defined as the probability to 
have a cluster of length l in a sample of width L, assum- 
ing L <  M. Notice that all clusters have to be percolating 
clusters in the L-direction and consequently the cluster 
length is measured in the perpendicular M-direction. 
Also note that in the limit L < M  the dependence of 
P(l, L) on M can be neglected. Figure 7 shows log-log 
plots of P(l, L) versus l for samples of different size. An 
inspection of Fig. 7 reveals that the curves are not sym- 
metric around the maximum and that the magnitude 
of such maxima decreases when increasing L, irrespective 
of the sample length. In order to understand the above 
mentioned dependence it is convenient to analyze the 
scaling behavior of P(I, L). So, let us first evaluate the 
average cluster length (lcL), already discussed in 
Sect. II.b. Using the distribution function one has 

<IcL> = ~ l P(l, L). (10) 
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Fig. 7. Log-log plot of the cluster length distribution P(l, L) versus 
1 for different choices of the lattice size as indicated by the symbols. 
The straight line with slope - 1  has been drawn for comparison 
in order to show the behavior of the distribution maximum. More 
details in the text 

Fig. 6. Plot of (lcL)/2Lversus M for different choices of the 
lattice size as indicated by the symbols. The dashed straight 
line given by (IcL)/2L= 1 has been drawn for comparison. 
More details in the text 

Now we assume that at critically P(1, L) is an homoge- 
neous function, so 

P(I, L)=L-~ f ( I /L )  (11) 

where co is an exponent and f is a suitable scaling func- 
tion. Inserting (11) into (10) and integrating the summa- 
tion using standard techniques [3] it follows 

(IcL) = S d l l L- ~ f (1/L) = L 2- o, ~ u f (u) d u, (12) 

where u = 1/L and consequently 

(IcL)ocL z-'~ (13) 

But according to (5) or (9) one has that (IcL)OcI2, so 
comparing to (13) it follows ~o= 1. Before checking the 
validity of the above statement it is convenient to analyze 
the dependence on L of the abscissa of the maxima exhib- 
ited by P(I, L), say l,,. Figure 8 shows that a plot of 
l,, versus L, for lattices of different size, exhibits a straight 
line behavior with slope close to 4/3, so from our Monte 
Carlo data it follows that 

lm~4/3L , L ~ M .  (14) 

Deviations from the straight line behavior in Fig. 8 ob- 
served for the biggest lattice is presumably due to the 
lack of appropriate statistic. Now, replacing (14) in (11) 
one has 

- o 3  ~ - ( #  P(lm, L ) = L  f (1 , ]L)=L f(4/3) (15) 
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Fig. 8. Plot of lm versus L for various choices of the lattice size. 
The straight line with slope 4/3 has been drawn for comparison 
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the lattice size as specified by the symbols. Note that for certain 
values of L, differences due to changes on the lattice length M 
are smaller than the size of the points itself. The straight line has 
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that  is the magn i tude  of the m a x i m a  of P(l, L) should 
decay as L - ' ~  1). F igure  9 shows a plot  of  P(Im, L) 
versus L -~' for lattices of  different size. The  ob ta ined  
s t raight  line confirms the validi ty of  the scaling hypo the -  
sis (11) with o =  1. F r o m  the slope of Fig. 9 one can 
also evalua te  the scaling funct ion for a par t icular  value 
of its a rgument ,  i.e. f ( 4 / 3 ) ~  1/2. Point ing  now again  our  
a t ten t ion  to Fig. 7, the s t raight  line with slope = -  1 
can also be used to check the L - '~ dependence  of P(1,,, L) 
by vir tue of  the l inear re la t ionship given by  (14). 

A m o r e  conclusive test of  the scaling hypothes is  in- 
volved in (11) is shown in Fig. 10 where  P(l, L)/P(I,,, L) 
is p lo t ted  against  l/L for samples  of  different size. The  
excellent da ta  col lapsing observed  s t rongly suppor t s  the 
validity of  (11). Also, the shape  of the col lapsed curve 
suggests tha t  the d is t r ibut ion funct ion m a y  be of the 
exp-exp type, i.e. 

P(I, L) L" = exp [A + B(1/L)-m + C(I/L)A2] (16) 

where  A, B and C are cons tan ts  and  As and  A2 are 
the character is t ic  exponents .  A least squared  regression 
of the da ta  points  gives for the best  fit (shown by a 

- -  ' I T T r 

/ - J  

h-" 0 , 5  

0.0 r I 
0 2 4 6 

L / L  

Fig. 10. Plot of the cluster length distribution normalized with re- 
spect to its maximum versus l/L for lattices of different size. The 
full line corresponds to the best fit obtained with the exp-exp distri- 
bution given by (16) using the constants and exponents listed in 
(17) 
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solid line in Fig. 10) the following result: 

A_~84.9, B ~- - 4 6 . 6 ,  

C = - 3 8 . 6  and  A l ~ A 2 ~ 0 . 2 1 .  (17) 

I t  is interest ing to note  that,  at  critically, the dis t r ibut ion 
of mass  within the topological  dis tance for percola t ion  
clusters genera ted  in both,  Cayley trees [21] and  the 
square  lattice [17], also exhibits an exp-exp behavior .  

III. Concluding remarks 

Relevant  proper t ies  of  percola t ing clusters of  the site 
percola t ion  mode l  in the L x M ( L <  M) geomet ry  at criti- 
cally have  been studied by means  of  M o n t e  Car lo  s imula-  
t ions and  a finite-size scaling analysis. In  order  to gain 
further  insight on the subject, a s tudy of the corre la t ion 
funct ion behav io r  is under  progress.  
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