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Abstract
Assuming the universality of weak interactions, we have studied the weak processes such as β-decay and electron capture
using the nuclear gross theory of beta decay (GTBD). We evaluate the β± and electron capture decay rates and the neutrino–
nucleus cross sections as a function of the energy of the incident neutrino, for Eν < 250 MeV. The evaluation performed
some years ago for the electron neutrino–nucleus reactions in the mass region A < 70 is extended to the heavy one A < 220
for a set of 965 nuclear species of astrophysical interest. The nuclei are separated according to its parity in even–even, even–
odd, odd–odd, and odd–even nuclei, both for β±-decay and electron capture. The obtained cross sections are interpolated by
means of a fourth-degree polynomial function in Eν . The coefficients in these polynomials are obtained and later fitted as a
function of A and Z. The fitting procedure is described in detail paying special attention to the root mean square deviations
in the adjustment. These polynomial functions provide a tool for the systematic evaluation of the cross sections needed in
astrophysical processes like the r-process during the nucleosynthesis of supernovae.
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1 Introduction

In recent years, the weak neutrino–nucleus interactions have
been widely studied both experimentally and theoretically,
since neutrino properties that are still under discussion can
be inferred, such as their mass. Many experiments intended
to find exotic neutrino properties, such as oscillations,
use the 12C nucleus in the scintillation detectors. Other
nuclei such as 37Cl, 16O, 20Ne, and 56Fe [1–3] are used as
detectors, and others such as 40Ar and 208Pb are neutrino
targets in detectors such as ICARUS Collaboration [4],
ArgoNeut Collaboration [5], and HALO Collaboration [6].
In several works, it has been shown that the nuclear
structure calculations greatly affect the measurements
and uncertainties of the properties studied [7]. In this

� C. A. Barbero
cab@fisica.unlp.edu.ar

1 Departamento de Fı́sica, Universidad Nacional de La Plata,
C. C. 67, 1900 La Plata, Argentina

2 Instituto de Fı́sica La Plata, CONICET, 1900 La Plata,
Argentina

3 Departamento de Ciencias Exatas e Tecnologicas,
Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil

way, neutrino-nucleus cross sections are so important to
understand the exotic properties of neutrinos [8] as well
as the stellar models are to understand the stellar collapse
process. The physical quantity measurable is the average
cross section, �σ(Tν)�, which depends on the temperature of
the incident neutrino, Tν , and is calculated convolving the
cross section for the reaction νe + (Z, A) → (Z + 1, A) +
e−, σν(Eν), which depends on the energy of the incident
neutrino, Eν , with the theoretical thermal flux of neutrinos
emitted in supernovae, �ν(Eν, Tν), i.e., [9]

�σν(Tν)� =
� ∞

Eth

�ν(Eν, Tν)σ (Eν)dEν, (1)

where Eth is the reaction energy threshold, which is equal
to the Q value for stable nuclei and zero for unstable
cases. We have scarce experimental data of σ(Eν) for the
case of electron neutrino on the ground state of 12C in
the experiment LSND (liquid scintillator neutrino detector)
[10–14]. Depending on the neutrino flux used, it will give us
important information about some of the exotic properties
of neutrinos, such as their mass. Within the standard model
(SM), the neutrino mass is equal to zero for all neutrino
flavors, but for physics beyond the SM, the mass is different
from zero and even more, it would be different for each
neutrino, depending on its flavor. The calculation of the
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cross section depends strongly on the nuclear model used
and the energy of the incident neutrino. Within the nuclear
models describing interactions of neutrino with nucleus,
we can mention (i) microscopic models like the RPA
(random phase approximation), the QRPA (quasiparticle
random phase approximation), and the SM; (ii) macroscopic
models, such as the Fermi gas model, relativistic, and
non-relativistic; (iii) semi-microscopic models where shell
effects or pairing are included, such as the gross theory of
beta decay (GTBD) [9].

In nuclear astrophysics, the processes involving strong,
weak, and electromagnetic interactions are of fundamental
importance. Within nuclear reactions, we have thermonu-
clear and scattering reactions. The thermonuclear reactions
take place in the stars and include capture of nuclei and α

particles, relevant for the stellar energy balance, and also to
determine the relative abundance of the elements observed
in nature. Scattering reactions occur at low temperature
and low average densities and are produced by interactions
of particles thermally accelerated up to a few tenths of
MeV/nucleon with the stellar medium. The β-decay, as well
as the electrons capture (EC) or positrons capture are fun-
damental in the scenario of stellar evolution (presupernova
and supernova) and for nucleosynthesis (the r-process). The
observed capture rates compete, under certain stellar con-
ditions, with neutrino capture rates and, for example, can
modify the trajectory of the r-process [15]. The neutrino
capture rates are calculated using the neutrino–nucleus cross
sections.

The literature describing calculations of neutrino–
nucleus cross sections has varied since the early works of
O’Connell, Donnelly, and Walecka in the 1970s [16]. For
example, Borzov and collaborators [17] showed that, using
the interaction of neutrino with 16O, different calculations
of nuclear structure can be used with different energies of
the incident neutrino. As shown in Figure 1 from [17], the
cross sections as a function of the energy for SM have a
lower value than for the QRPA in the case of antineutrinos;
but they have values greater, equal, and smaller in the case of
neutrinos. For example, for electron neutrino (νe) energies
above 50 MeV, the cross sections obtained within the SM
and QRPA models have a similar behavior. As discussed in
that reference, none of these models is recommended for
neutrinos with energies 100 ≤ Eνe ≤ 500 MeV neither
exceeding this limit. For Eνe � 300 MeV, the relativistic
Fermi gas model give better results than the QRPA. For
Eνe ∼ 500 MeV, the QRPA and the relativistic Fermi gas
model give similar results. Otherwise, for the interaction
of muon neutrino (νμ) with nuclei, the authors compared
these two models for Eνμ < 200 MeV, noting that the
QRPA is not a good model for Eνμ ≥ 200 MeV. Our group
has calculated neutrino–nucleus cross sections using both
microscopic and macroscopic models: (i) for nuclei with

A ≤ 70 using the GTBD model [9] where the convolution
of the cross sections, which depend of the energy of incident
neutrinos, with thermal neutrino spectra was carried out;
(ii) for the analysis of scattering of neutrinos with 12C
reanalyzing neutrino oscillations in the LSND experiment
[7]; (iii) estimating events of supernova’s neutrinos in 56Fe
using QRPA and projected QRPA (PQRPA) [18–21]; (iv)
in the analysis of the influence of the configuration space
for the scattering of νe with 12C in the exclusive processes
[22] (which take place from the ground state of the parent
nucleus to the ground state of the daughter nucleus) and in
the inclusive processes (when are included all transitions
of the daughter nucleus); and (v) using the universality of
weak interaction, the systematic in the calculation of muon
capture rates was studied in nuclei with A ≤ 60 [23].

We have used the original version of the GTBD [24]
with some improvements introduced, such as a realistic
description of the energy of the Gamow–Teller (GT)
resonance peak [9]. In Ref. [9], the parameter σN associated
with the width of the GT resonance was consistently
adjusted to reproduce the β-decay and the EC rates for
nuclei with A ≤ 70. For this purpose, a careful selection of
the most recent experimental data was performed, keeping
only those values associated to allowed transitions (since the
thermal fluxes used in current supernova simulations do not
go beyond the 100 MeV of neutrino energy). After having
fixed the parameters of the model, the reduced thermal
cross section �σν�/A was estimated for all selected nuclei.
From this study, we note that the results obtained for these
cross sections within this global model are in accordance
with the theoretical values obtained within more elaborated
microscopic models, such as EFTSI + CQRPA from Ref.
[17]. Thus, we can say that the GTBD is able to describe in
a systematic way the nuclear properties of elements both in
the β-stability line and in those exotic nuclei involved in the
composition of presupernova in the region A ≤ 70.

An extension of that work to nuclei with A > 70
would allow, due to the simplicity of the GTBD model,
to study efficiently the region of neutron-rich nuclei where
the r-process happens, as in the case of the neutrino
wind. Neutrino–nucleus cross sections, σ(Eν), are used to
calculate neutrino capture rates competing with β-decay, as
well as electron or positron captures, for example, in the r-
process of nucleosynthesis. Several nuclear models are used
to calculate these sections. When only allowed transitions
are considered, σ(Eν) can be written as a function of the
number of protons of the target nucleus, Z, and the energy of
the incident neutrino [8]. Our proposal consists of analyzing
the σ(Eν) obtained within the GTBD, and some particular
cases using the QRPA and PQRPA models. Some specific
sections will be compared with the expressions that appear
in Bahcall’s book [8] and others present in the literature.
Let us try to obtain a new dependence as a function of
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the atomic and mass numbers, Z and A, respectively, and
observe deviations with respect to the E2

ν dependence for
low energies. Disposing of such as polynomial expression
for the cross sections can reduce computational time in
calculations where many nuclei are taken into account, as
for example, in the r-process of nucleosynthesis and in
the calculation of the free-path medium for neutrinos in
a supernova. We will select a set of nuclei for which the
cross sections will be obtained within the GTBD models.
Subsequently, we will proceed to adjust these sections to
degree four polynomials as a function of neutrino energy.
The coefficients of these adjustments will again be adjusted
to a functional form, to be determined, depending on Z and
A. Similar calculations were performed for the half-life of
β-decay within the GTBD [25].

The paper is organized as follows. In Section 2, we
present the main characteristics of the GTBD formalism.
Still in this chapter, we deal with the cross-section σ(Eν)

which will be calculated using the GTDB. In Section 3, we
show the results and discussions, and final conclusions are
draw in Section 4.

2 Formalism

The evaluation of the νe-nucleus cross-section σ(Eν)

(which participates in the average cross section given in (1))
in a neutrino-rich environment, must be consistent with the
procedure employed in calculating the β-decay rates (see
Sect. 2 in Ref. [9]). The allowed transition approximation
can be applied for relatively small momentum transfer (see
Eq. (2.19) in Ref. [20]). Within this approximation, we have
in natural units � = c = me = 1 (n.u.):

σ(Eν) = G2
F

π

� Eν−me

0
peEeF (Z + 1, Ee)

×
�
g2

V |MF (E)|2 + g2
A |MGT (E)|2

�
dE. (2)

Here, GF = (3.045647 ± 0.0000002) × 10−12 n.u. is
the Fermi weak coupling constant, gV = gA = 1 are,
respectively, the vector and axial-vector effective coupling
constants, the argument of the matrix element, E, is the
transition energy measured from the parent ground state,
and Ee is the electron energy. Note that the true β-decay
transition energy is Eβ = Ee + Eν = −E > 0. The
integration covers all possible nuclear states allowed by the
selection rules, and the integration limits are determined
from the energy conservation condition. When the energies
are measured from the ground state of the parent nucleus
(Z, A), this condition reads as follows:

Eν + M(Z, A) = Ee + M(Z + 1, A) + Qβ− + E, (3)

where E = Eν − Ee > 0 is the excitation energy
of the daughter nucleus (Z + 1, A), and F(Z, E) is the
usual scattering Fermi function which takes into account the
Coulomb interaction between the electron and the nucleus.
The Qβ value is the difference between neutral atomic
masses of parent and daughter nuclei: Qβ− = M(A, Z) −
M(A, Z + 1) = B(A, Z + 1) − B(A, Z) + m(nH) with
B(A, Z) and B(A, Z + 1) being the corresponding nuclear
binding energies, and m(nH) = mn − m(1H) = mn −
mp − me = 0.782 MeV. The masses were obtained in the
same way as in [26]. This means that, when available, they
are taken from the Wapstra–Audi–Hoekstra mass table [27]
and, otherwise, they are determined from the Tachibana–
Uno–Yamada semi-empirical mass formula [28].

The squares of the Fermi (F ) and GT matrix elements are
determined as follows:

|MX(E)|2 =
� �max

�min

DX(E, �)W(E, �)
dN1

d�
d�, (4)

for X = F, GT. Here, �min is the lowest single-particle
energy of the parent nucleus and �max is the energy of
the highest occupied state. The one-particle-level density
(proton or neutron), dN1

d�
, is determined by the Fermi gas

model for the parent nucleus, and the weight function
W(E, �), constrained by 0 ≤ W(E, �) ≤ 1, takes into
account the Pauli blocking. Finally, DX(E, �), normalized
as

� +1
−1 DX(E, �)dE = 1, is the probability that a nucleon

with single-particle energy � undergoes a β-transition. As in
[24], we neglect the �-dependence, i.e., it is assumed that
all nucleons have the same decay probability, independent
of their energies �, DX(E, �) = DX(E). For DX(E), we
adopt a Gaussian-like distribution as follows [9]:

DX(E) = 1√
2πσX

e−(E−EX)2/(2σ 2
X). (5)

Here, EX is the resonance energy, σX is the standard
deviation, and the other quantities are defined as in [24].
When isospin is a good quantum number, the total Fermi
strength

� |MF (E)| dE = N − Z is carried entirely by
the isobaric analog state (IAS) in the daughter nucleus.
However, because of the Coulomb force, the isospin is
not a good quantum number and this leads to the energy
splitting of the Fermi resonance. We will use the estimates
introduced by Takahashi and Yamada [24], namely

EF = ±(1.44Z1A
−1/3 − 0.7825) MeV, for β± decay,

σF = 0.157Z1A
−1/3 MeV, (6)

where Z1 is the proton number of the parent (daughter)
nuclei for β− (β+ and EC) decay. The total GT strength
in the (νe, e

−) channel is given by the Ikeda sum rule� |MGT (E)| dE � 3(N − Z), but its distribution cannot
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be established by general arguments, and therefore must be
either calculated or measured. Charge–exchange reactions
(p, n) have demonstrated that most of the strength is
accumulated in a broad resonance near the IAS [29–31].
In fact, even before these measurements were performed,
Takahashi and Yamada [24] used the approximation as
follows:

EGT � EF , (7)

while σGT is expressed as follows:

σGT =
�

σ 2
F + σ 2

N, (8)

with σN being the energy spread caused by the spin-
dependent nuclear forces. For the Fermi transitions, we
use the relation (6). Yet, for the GT resonance, instead of
employing the approximation (7), we use the estimate as
follows [24]:

EGT = EF + δ, δ = 26A−1/3 − 18.5
N − Z

A
MeV, (9)

obtained by Nakayama et al. [32, 33] from the analytic fit
of the (p, n) reaction data of nuclei near the stability line
[29–31], where δ is positive. For the standard deviation σGT,
we preserve the expression (8), and σN is treated as an
adjustable parameter. All these quantities: σN , σX, and EX,
for X = F , GT, are expressed in units of MeV. Following
Ref. [9], σN is determined through minimization of the
function as follows:

χ2 =
N0�
n=1

⎡
⎣ log



τ cal

1/2(n)/τ
exp

1/2(n)
�

�log


τ

exp

1/2(n)
�

⎤
⎦

2

, (10)

where τ cal

1/2 are the theoretical half-lives calculated within
GTBD, N0 is the number of experimental β-decay half-
lives, τ

exp

1/2, selected fulfilling the conditions: (i) the
branching ratio of the allowed transitions exceeds ∼ 50% of
the total β-decay branching ratio and (ii) the ground-state Q

value is ≥ 10A−1/3 MeV, and

�log


τ

exp

1/2(n)
�

= log
�
τ

exp

1/2(n) + δτ
exp

1/2(n)
�

− log
�
τ

exp

1/2(n)
�
, (11)

and δτ
exp

1/2(n) is the experimental error. This χ2-function
reinforces the contributions of data with small experimental
errors. Moreover, we perform different fittings for even N-
even Z (e−e), odd N- odd Z (o−o), odd N-even Z (o−e),
and even N-odd Z (e − o) nuclei. Needless to say that, for
τ

exp

1/2, we use here the most recent data [34], instead of those
that were available when the GTBD was formulated [24].
The condition logft < 6 is imposed to include only the
allowed β-decays.

3 Results and Discussions

The values of N0 and the adjustable parameter σN at the
minimal value of the χ2-function are listed in Table 1 for
the four different parity families of nuclei, for β± decay and
EC. The σN values obtained minimizing the χ2-function
for the complete set of nuclei with A < 220 deviate from
the underlined ones presented in Tables 1 and 2 from Ref.
[9], adjusted only for the set of nuclei with A ≤ 70, by
no more than 10%. By this reason, we prefer to continue
using the same values that in Ref. [9], which are shown in
Table 1. Using these values for the adjustable parameter σN ,
we have calculated the theoretical values of the decay rates,
τ cal

1/2, for the complete set of 965 nuclei separated according

to its parity. We show in Fig. 1 the results of log(τ cal
1/2/τ

exp
1/2 )

for β− as a function of A in the heavy nuclei region A <

220. Similarly, in Fig. 2, we present the corresponding
results for β+ decay and EC. The results between the lines
corresponding to the values −1 and 1 in those figures
correspond to those nuclei in which the theoretical value
differs from the experimental one in less than an order of
magnitude. From these graphs, we can see that for those
sets the model works well, since the experimental data are
mostly close to the theoretical values. In fact, from Fig. 1,
we see that the 72% of our calculated half-lives for the e–
e group differ by less than one order of magnitude with the
β− data, 76% for the e–o set, 63% for the o–e one and 66%
for the o–o set. Similarly, from Fig. 2, we see that the 52%,
60%, 55%, and 45% of our calculated half-lives for the e–
e, e–o, o–e, and o–o nuclei, respectively, differ by less than
one order of magnitude with the β+ and EC data.

The νe-nucleus cross section evaluated consistently with
the β-decay rates (see (2)) is shown in Figs. 3 and 4 for
β± decay and EC process. These figures show the behavior
of σ(Eν) up to 250 MeV of incident neutrino energy. The
multiple lines in these figures correspond to different values
of A and Z. As previously discussed in Ref. [8], we clearly

Table 1 Number N0 of nuclei with A ≤ 70 used in the minimization
process and σN standard deviations (in units of MeV) for β±-decay
and EC

N-Z (parent) β− decay β+ decay and EC

N0 σN N0 σN

Even–even 139 15.8 149 9.9

Even–odd 187 16.5 198 12.2

Odd–even 175 7.2 204 11.8

Odd–odd 220 15.8 194 10.4

σN indicates the results obtained with EGT approximated from (9)
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Fig. 1 log(τ cal
1/2/τ

exp
1/2 ) as a function of A for β−-decay of nuclei with A < 220

Fig. 2 log(τ cal
1/2/τ

exp
1/2 ) as a function of A for β+-decay and EC of nuclei with A < 220
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Fig. 3 Cross-section σ(Eν) (in units of 10−42 cm2) as a function of the neutrino energy (in units of MeV) for β−-decay. The multiple lines in
these figures correspond to different values of A and Z
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Fig. 4 Cross-section σ(Eν) (in
units of 10−39 cm2) as a
function of the neutrino energy
(in units of MeV) for β+-decay
and EC. The multiple lines in
these figures correspond to
different values of A and Z
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Fig. 5 Comparison of the neutrino–nucleus cross-section σ(Eν) (in units of 10−42 cm2) as a function of the neutrino energy (in units of MeV) for
56Fe and 208Pb within different models. See text for details

observe a growth with the neutrino energy of the quadratic
type, that is, σ(Eν) ∼ E2

ν , and also a growth with the value
of mass number A.

We have compared our results obtained within the GTBD
with those obtained using other more elaborate models.
Indeed, in Fig. 5, we present the comparison of the cross
sections for the electron neutrino–nucleus scattering process
in the cases of 56Fe and 208Pb. There, we compare with the
following models: (i) GTBD with other parametrization and
including forbidden transitions [1, 2]; (ii) QRPA [35]; (iii)
relativistic QRPA (RQRPA) [36]; (iv) PQRPA [18]; and (v)
RPA obtained by interpolating between the Fermi function
and the modified effective momentum approximation (RPA-
(F-E)) [37, 38]. From Fig. 5, we observe that (a) for
56Fe both GTBD approximations, the present one and
that of Ref. [1, 2], are above the microscopic models up
to an incident neutrino energy of ∼ 50 MeV; only the
QRPA model presents a different result than the other
microscopic models, a situation that will require a more
detailed study in the future; (b) for 208Pb, the GTBD
calculation is below the microscopic models up to 70 MeV
of energy of the incident neutrino. Another comparison
with microscopic models can be made using the average
cross section defined in (1). However, it is not our goal
to calculate these averaged sections in the present work.
A systematic calculation of them was carried out in Ref.
[36] using the microscopic model RQRPA for even–even
nuclei from oxygen to lead. As indicated above, the sections
obtained within the microscopic models do not include all

the degrees of freedom included in the GTBD. Therefore,
we estimate that these �σν�RQRPA should show differences
with our �σν�GTBD, as in the example given previously for
σ(Eν) for 56Fe and 208Pb.

In order to obtain an expression that allows us to
systematically calculate the neutrino–nucleus cross sections
for a large group of nuclei, such as those usually needed
in astrophysical calculations in presupernova stage, we
propose a polynomial dependence of degree four in the
incident neutrino energy for the cross section:

σ(Eν) =
4�

i=0

Ai(A, Z)Ei
ν . (12)

We hope this expression to be an improvement compared
to the proportionality to E2

ν mentioned in Ref. [8]. The
coefficients Ai(A, Z) are a function of the mass and atomic
numbers, A and Z, respectively. As an example, we show
in Fig. 6 these coefficients for the odd–odd group of nuclei
decaying by β−. We observe that the terms A0 and A2 grow
with A and Z, while A1 decreases. Also, the terms A3 and
A4 decrease with A and Z, but being five to seven orders of
magnitude smaller that the others. A similar behavior was
observed for the coefficients for the other parity groups,
both for β± decay and EC. Therefore, it makes sense to try
to obtain a polynomial approximation of these coefficients
Ai(A, Z) as a function of A and Z, for each one of the eight
sets we use. Kodama and Takahasi used such an expansion
in Ref. [25] for the half-lives of beta decay and capture rates
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Fig. 6 Coefficients Ai(A, Z) (in units of 10−42 cm2/MeVi ) for odd–odd nuclei decaying by β− emission
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Table 2 Coefficients d
(i)
nm (in

units of 10−42 cm2/MeVi ) for
the odd–even set of nuclei
decaying by β−

i 0 1 2 3 4

d
(i)
01 7.1934 1.1045 2.6613 × 10−1 − 1.9562 × 10−1 − 1.5337 × 10−1

d
(i)
02 − 1.8493 × 102 1.2192 × 101 − 8.9291 × 10−1 6.8325 × 10−1 3.4767 × 10−1

d
(i)
11 − 7.1896 9.98659 × 10−1 − 3.5646 × 10−2 2.9960 × 10−2 1.2479 × 10−2

d
(i)
12 1.5819 × 101 − 5.1828 1.2537 × 10−1 − 9.7811 × 10−2 − 1.5499 × 10−2

d
(i)
21 2.0586 × 10−1 − 5.4498 × 10−1 1.6877 × 10−3 − 1.1415 × 10−3 −2.0892 × 10−4

d
(i)
22 − 2.4176 × 10−1 2.4316 × 10−1 − 5.6416 × 10−3 3.237 × 10−3 − 6.8046 × 10−4

d
(i)
31 − 1.6028 × 10−3 9.0797 × 10−2 − 2.3653 × 10−5 1.5254 × 10−5 − 9.6772 × 10−7

d
(i)
32 − 4.5427 × 10−3 − 3.78807 × 10−3 6.1422 × 10−5 −3.0764 × 10−5 3.0722 × 10−5

d
(i)
41 − 4.3762 × 10−6 − 4.5341 × 10−6 5.5783 × 10−8 −5.9883 × 10−8 2.4321 × 10−8

d
(i)
42 9.3438 × 10−5 1.7733 × 10−5 1.0888 × 10−7 8.8220 × 10−9 − 2.5739 × 10−7

Table 3 Coefficients d
(i)
nm (in

units of 10−42 cm2/MeVi ) for
the even–odd set of nuclei
decaying by β−

i 0 1 2 3 4

d
(i)
01 − 1.7545 × 101 − 0.6950 × 101 −0.2953 × 101 − 3.3867 × 10−2 4.3911 × 10−1

d
(i)
02 6.2798 × 101 1.4239 × 101 0.6853 × 101 − 4.1965 × 10−1 − 0.1065 × 101

d
(i)
11 32.6134 × 10−1 −1.5547 × 10−1 1.2207 × 10−1 − 1.1295 × 10−2 − 2.4716 × 10−2

d
(i)
12 − 99.4070 × 10−1 7.3306 × 10−1 − 1.5663 × 10−1 9.1952 × 10−2 4.1825 × 10−2

d
(i)
21 −8.1073 × 10−2 2.1472 × 10−3 − 1.6157 × 10−3 5.5998 × 10−4 3.3358 × 10−4

d
(i)
22 2.2008 × 10−1 8.9318 × 10−3 − 1.1190 × 10−3 − 3.7350 × 10−3 3.8568 × 10−4

d
(i)
31 9.5802 × 10−4 6.0690 × 10−5 1.0327 × 10−5 − 9.8016 × 10−6 5.0512 × 10−7

d
(i)
32 −2.7956 × 10−3 − 6.4131 × 10−4 2.7297 × 10−5 6.0277 × 10−5 − 2.4431 × 10−5

d
(i)
41 − 4.3256 × 10−6 − 7.6861 × 10−7 − 4.8613 × 10−8 5.5492 × 10−8 − 2.2525 × 10−8

d
(i)
42 1.4165 × 10−5 5.5313 × 10−6 4.2132 × 10−9 − 3.2689 × 10−7 1.9788 × 10−7

Table 4 Coefficients d
(i)
nm (in

units of 10−42 cm2/MeVi ) for
the even–even set of nuclei
decaying by β−

i 0 1 2 3 4

d
(i)
01 2.0672 × 101 3.1424 − 8.4394 × 10−2 −1.3943 × 10−1 − 1.1945 × 10−1

d
(i)
02 − 3.4471 × 101 − 5.1573 2.2805 × 10−1 − 5.2186 × 10−1 2.6770 × 10−1

d
(i)
11 − 4.3301 × 10−1 − 1.3765 × 10−1 7.1454 × 10−3 − 5.0853 × 10−2 6.3113 × 10−3

d
(i)
12 − 2.2975 − 1.1347 × 10−1 − 8.4843 × 10−3 2.7527 × 10−1 − 2.3949 × 10−3

d
(i)
21 − 2.5635 × 10−2 8.0678 × 10−4 6.0837 × 10−5 2.5666 × 10−3 − 6.9838 × 10−5

d
(i)
22 2.0375 × 10−1 1.7911 × 10−2 − 9.5185 × 10−4 − 1.1007 × 10−2 − 6.4909 × 10−4

d
(i)
31 5.238 × 10−4 2.40278 × 10−5 − 2.0185 × 10−6 − 3.3749 × 10−5 − 1.4719 × 10−6

d
(i)
32 −2.1393 × 10−3 − 3.7893 × 10−4 1.5002 × 10−5 1.0977 × 10−4 2.2745 × 10−5

d
(i)
41 8.7827 × 10−7 − 2.3612 × 10−7 1.1042 × 10−8 8.9829 × 10−8 2.3857 × 10−8

d
(i)
42 − 1.7172 × 10−5 2.2964 × 10−6 − 6.6630 × 10−8 2.2563 × 10−8 − 2.0806 × 10−7

Table 5 Coefficients d
(i)
nm (in

units of 10−42 cm2/MeVi ) for
the odd–odd set of nuclei
decaying by β−

i 0 1 2 3 4

d
(i)
01 4.7132 × 101 − 5.5607 6.2888 × 10−2 − 9.8699 × 10−2 − 2.1587 × 10−1

d
(i)
02 6.6852 × 101 1.9867 × 101 − 2.0013 × 10−1 3.5424 × 10−1 5.9745 × 10−1

d
(i)
11 3.3158 × 10−1 1.4310 − 3.6336 × 10−4 1.8663 × 10−2 2.4444 × 10−2

d
(i)
12 7.3914 − 4.2508 1.8127 × 10−2 − 6.3638 × 10−2 − 6.0399 × 10−2

d
(i)
21 5.7069 × 10−2 − 6.1935 × 10−2 4.7533 × 10−4 − 9.3344 × 10−4 − 8.6593 × 10−4

d
(i)
22 − 4.3740 × 10−1 1.3463 × 10−1 − 3.1180 × 10−3 3.0061 × 10−3 1.6129 × 10−3

d
(i)
31 − 1.0313 × 10−3 7.9729 × 10−4 − 1.7720 × 10−5 1.7194 × 10−5 1.1223 × 10−5

d
(i)
32 6.2091 × 10−3 − 2.5550 × 10−4 9.5345 × 10−5 − 5.0721 × 10−5 − 6.3774 × 10−6

d
(i)
41 5.3930 × 10−6 − 1.9005 × 10−6 1.3390 × 10−7 − 1.0662 × 10−7 −4.0686 × 10−8

d
(i)
42 − 2.9579 × 10−5 − 1.7422 × 10−5 − 6.3824 × 10−7 2.7754 × 10−7 − 1.2204 × 10−7
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Table 6 Coefficients d
(i)
nm (in

units of 10−39 cm2/MeVi ) for
the odd–even set of nuclei
decaying by β+ and EC

i 0 1 2 3 4

d
(i)
01 −2.5020 − 2.5140 × 10−1 6.7651 × 10−1 − 4.4468 − 2.7059 × 10−1

d
(i)
02 4.2320 4.2473 × 10−1 − 9.3563 × 10−1 5.7657 − 2.5728 × 10−1

d
(i)
11 1.0481 × 10−1 5.3570 × 10−3 − 2.9265 × 10−2 1.6275 × 10−1 1.1502 × 10−2

d
(i)
12 1.0691 × 10−1 2.3011 × 10−2 − 5.5515 × 10−2 4.9517 × 10−1 1.2883 × 10−1

d
(i)
21 − 3.3106 × 10−4 1.2848 × 10−4 − 4.8998 × 10−5 1.2229 × 10−3 8.1307 × 10−4

d
(i)
22 − 1.5708 × 10−2 − 1.6728 × 10−3 6.2967 × 10−3 − 4.5245 × 10−2 − 1.0745 × 10−2

d
(i)
31 − 2.6474 × 10−5 − 3.4646 × 10−6 1.3377 × 10−5 − 1.0307 × 10−4 − 3.1766 × 10−5

d
(i)
32 3.3961 × 10−4 2.5941 × 10−5 − 1.4577 × 10−4 1.0355 × 10−3 2.5547 × 10−4

d
(i)
41 2.4524 × 10−7 2.0098 × 10−8 − 1.2589 × 10−7 9.5328 × 10−7 2.6306 × 10−7

d
(i)
42 −2.1361 × 10−6 − 1.2499 × 10−7 1.0090 × 10−6 − 7.3498 × 10−6 − 1.8076 × 10−6

Table 7 Coefficients d
(i)
nm (in

units of 10−39 cm2/MeVi ) for
the even–odd set of nuclei
decaying by β+ and EC

i 0 1 2 3 4

d
(i)
01 1.3767 3.6476 2.6241 4.9956 × 10−1 5.2905 × 10−1

d
(i)
02 − 2.3979 − 6.5005 − 4.6551 − 3.8442 − 5.3881 × 10−1

d
(i)
11 − 6.1000 × 10−2 − 2.1056 × 10−1 − 1.2487 × 10−1 − 1.1455 × 10−1 −5.3331 × 10−3

d
(i)
12 −2.6139 × 10−2 1.1200 × 10−2 − 4.7679 × 10−2 6.2206 × 10−1 − 1.1259 × 10−1

d
(i)
21 5.9520 × 10−4 2.1909 × 10−3 9.7726 × 10−4 4.9713 × 10−3 − 7.4539 × 10−4

d
(i)
22 6.4347 × 10−3 2.1805 × 10−2 1.4826 × 10−2 − 2.5144 × 10−2 7.1409 × 10−3

d
(i)
31 7.1725 × 10−6 3.4346 × 10−5 2.3731 × 10−5 − 7.9085 × 10−5 1.9192 × 10−5

d
(i)
32 − 1.5433 × 10−4 −6.1210 × 10−4 − 3.7193 × 10−4 3.8903 × 10−4 − 1.3285 × 10−4

d
(i)
41 − 1.0118 × 10−7 −4.7733 × 10−7 − 2.8348 × 10−7 4.3174 × 10−7 − 1.2931 × 10−7

d
(i)
42 1.0585 × 10−6 4.5406 × 10−6 2.6197 × 10−6 − 2.0972 × 10−6 7.9559 × 10−7

Table 8 Coefficients d
(i)
nm (in

units of 10−39 cm2/MeVi ) for
the even–even set of nuclei
decaying by β+ and EC

i 0 1 2 3 4

d
(i)
01 2.8838 1.6427 1.6104 1.8038 1.6629

d
(i)
02 4.7557 − 2.8714 − 2.8723 − 2.8527 − 2.6823

d
(i)
11 1.1589 × 10−1 − 8.5894 × 10−2 − 7.8135 × 10−2 − 8.9227 × 10−2 − 8.5644 × 10−2

d
(i)
12 1.2389 × 10−1 − 3.7724 × 10−3 − 7.1815 × 10−3 − 6.2733 × 10−2 − 4.4314 × 10−2

d
(i)
21 − 4.0612 × 10−4 8.5373 × 10−4 7.7885 × 10−4 6.3748 × 10−4 6.8888 × 10−4

d
(i)
22 − 1.6735 × 10−2 8.3397 × 10−3 7.3022 × 10−3 1.2176 × 10−2 1.0979 × 10−2

d
(i)
31 − 2.7001 × 10−5 1.0791 8.5810 × 10−6 2.0792 × 10−5 1.8643 × 10−5

d
(i)
32 3.5435 × 10−4 − 2.1181 × 10−4 − 1.8010 × 10−4 − 3.0514 × 10−4 − 2.8353 × 10−4

d
(i)
41 2.5357 × 10−7 − 1.4494 × 10−7 − 1.1902 × 10−7 − 2.3645 × 10−7 − 2.2094 × 10−7

d
(i)
42 −2.2206 × 10−6 1.4466 × 10−6 1.2136 × 10−6 2.1447 × 10−6 2.0201 × 10−6

Table 9 Coefficients d
(i)
nm (in

units of 10−39 cm2/MeVi ) for
the odd–odd set of nuclei
decaying by β+ and EC

i 0 1 2 3 4

d
(i)
01 −3.1196 × 10−1 1.9459 − 3.2099 × 10−1 − 4.5446 × 10−1 5.7636 × 10−1

d
(i)
02 1.7499 − 2.0284 5.4321 × 10−1 7.9027 × 10−1 − 1.2834

d
(i)
21 3.0529 × 10−2 − 6.5969 × 10−2 2.0838 × 10−2 2.9783 × 10−2 −3.2473 × 10−2

d
(i)
12 − 1.9419 × 10−1 − 2.9302 × 10−1 7.9067 × 10−3 1.1096 × 10−4 3.7132 × 10−2

d
(i)
21 −1.3532 × 10−3 − 1.1191 × 10−3 − 8.6955 × 10−5 − 2.3547 × 10−4 6.7488 × 10−4

d
(i)
22 8.7049 × 10−3 2.3812 × 10−2 − 3.4884 × 10−3 − 3.9085 × 10−3 5.2720 × 10−4

d
(i)
31 2.5348 × 10−5 5.3479 × 10−5 − 9.3705 × 10−6 − 9.4518 × 10−6 − 3.7210 × 10−6

d
(i)
32 −1.5891 × 10−4 − 4.9837 × 10−4 1.0289 × 10−4 1.1890 × 10−4 −3.7051 × 10−5

d
(i)
41 −1.6052 × 10−7 − 4.2675 × 10−7 1.0145 × 10−7 1.1156 × 10−7 − 1.7893 × 10−8

d
(i)
42 9.8059 × 10−7 3.2122 × 10−6 − 7.8774 × 10−7 − 9.1394 × 10−7 3.8888 × 10−7
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Table 10 Values of the rmsi (in
units of 10−42 cm2/MeVi ) for
the set of nuclei decaying by β−

rms0 rms1 rms2 rms3 rms4

Even-odd 1.46 × 102 4.92 5.59 × 10−1 1.38 × 10−1 1.27 × 10−1

Odd–even 5.81 × 101 1.18 × 101 5.51 × 10−1 7.39 × 10−2 5.13 × 10−2

Even–even 1.33 × 101 3.46 × 10−1 9.51 × 10−2 6.98 × 10−1 4.51 × 10−2

Odd–odd 1.48 × 101 4.85 2.90 × 10−1 3.79 × 10−2 3.58 × 10−2

within the GTBD model. We propose the dependence as
follows:

Ai(A, Z) =
4�

m=1

4�
n=0

d(i)
nmZnαm(A), (13)

where the polynomial dependence with Z is implicit, while
for the dependence with A, we include the terms α1(A) =
A, α2(A) = A2/3, α3(A) = A−1/3, and α4(A) = A−1.
This dependence with the mass number A was inspired
by the adjustment of coefficients in the liquid drop model,
with a volumetric term proportional to A, a surface term
proportional to A2/3, a Coulombian term proportional to
A−1/3, and an asymmetry term proportional to A−1. In order
to reduce the number of free parameters and for simplicity,
we decided not to use in this work the terms proportional to
A−1/3 and A−1, that is,

Ai(A, Z) =
�
d

(i)
01 + d

(i)
11 Z + d

(i)
21 Z2 + d

(i)
31 Z3 + d

(i)
41 Z4

�
A

+
�
d

(i)
02 + d

(i)
12 Z + d

(i)
22 Z2 + d

(i)
32 Z3 + d

(i)
42 Z4

�

×A2/3. (14)

Following the procedure used in Ref. [39] to fit the
coefficients of the mass formula, the coefficients d

(i)
mn

will be determined by following the least squares method
on the coefficients Ai(A, Z). Naming Acalc

i (Aj , Zj ) to
the coefficient Ai calculated within the GTBD for the
nuclear specie with atomic and mass numbers Aj and

Zj , respectively, this method select the coefficients d
(i)
mn

appearing in (14) that minimizes the “square error” function

�2 = �
j

�
Ai(Aj , Zj ) − Acalc

i (Aj , Zj )
�2

and also gives
the value of the root mean square (rms) deviation of the

interpolation. This leads to the following set of ten linear
equations with ten unknowns for each indexes i = 0, · · · , 4,
n = 0, · · · , 4, m = 1, 2:

∂�2

∂d
(i)
nm

= 2
N0�
j=1

�
Ai(Aj , Zj ) − Acalc

i (Aj , Zj )
�

×Zn
j αm(Aj ) = 0, (15)

which has exact solution. The rms will be calculated as
follows:

rmsi =

����� 1

N0

N0�
j=1

�
Ai(Aj , Zj ) − Acalc

i (Aj , Zj )
�2

. (16)

The coefficients obtained with this method are given in
Tables 2, 3, 4 and 5 for nuclei that decay by β− and
Tables 6, 7, 8 and 9 for nuclei that decay by β+ and
EC. For completeness, we present in Tables 10 and 11
the correspondent rms values. They are indicative of the
confidence we can have in our results when we use the (12)
and (14) to evaluate the neutrino–nucleus cross sections.
Another way to quantify the fidelity of our results is to
compare the graphs of Acalc

i (A, Z) with the values of

Ai(A, Z) obtained from (14) using d
(i)
nm from the Tables 2,

3, 4, 5, 6, 7, 8 and 9. For example, in Fig. 7, we present
the graph of Acalc

i (A, Z) and Ai(A, Z) for the odd–odd set
of nuclei that decay via β−. There, we observe that only
A0(A, Z) follows on average the values of Acalc

0 (A, Z) for
all the nuclei within this set, while A1(A, Z), A2(A, Z),
A3(A, Z) and A4(A, Z) show notable deviations in the last
nuclei of the set (A > 120). Returning to Table 10 to look
at the rms, we see that for A0(A, Z), we have an rms0 of
14.8, which is the highest value for the rms of this set. The
problem of deviations for values with A > 120 leads us to
assume that it is necessary to include the other coefficients
proportional to α3(A) = A−1/3 and α4(A) = A−1.

Table 11 Values of the rmsi (in
units of 10−39 cm2/MeVi ) for
the set of nuclei decaying by
β+ and EC

rms0 rms1 rms2 rms3 rms4

Even–odd 3.29 × 10−1 1.43 × 10−1 1.12 × 10−1 3.52 × 10−1 3.51 × 10−1

Odd–even 4.58 × 10−1 2.21 × 10−1 7.42 × 10−2 1.00 1.91 × 10−1

Even–even 3.29 × 10−1 1.43 × 10−1 1.12 × 10−1 3.52 × 10−1 3.51 × 10−1

Odd–odd 7.08 × 10−1 1.83 × 10−1 5.76 × 10−2 5.16 × 10−2 5.16 × 10−2

Braz J Phys (2020) 50:331–345342



Fig. 7 Comparison of the coefficients Acalc
i (A, Z) and Ai(A, Z) (in units of 10−42 cm2/MeVi ) for odd–odd nuclei decaying by β− emission
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4 Concluding Remarks

We have studied the weak processes such as β-decay and
electron capture within the standard elementary particle
model using the GTBD nuclear model to describe the nuclei
in the region A < 220 that participate in these reactions.
Using the universality of weak interactions, where the same
weak Hamiltonian can be used to describe the neutrino–
nucleus scattering, we have calculated the neutrino–nucleus
cross section for 965 nuclides. All these nuclei were
separated into sets according to the mode of decomposition
(β± and EC) and the parity of neutrons and protons (e − e,
e − o, o − e, and o − o).

The experimental β± and EC decay rates that were used
were selected by imposing the logft < 6 condition to
include only allowed transitions in each set. As we have
already mentioned, the processes β± and EC are fundamen-
tal in the scenario of stellar evolution (presupernova and
supernova) and for nucleosynthesis (r-process). The decay
rates mentioned compete, under certain stellar conditions,
with neutrino capture rates and, for example, can modify the
trajectory of the r-process. Neutrino capture rates are cal-
culated with the neutrino–nucleus cross sections. The first
estimates for these neutrino–nucleus cross sections were
made by Bahcall who estimated that, at low energies of
neutrinos incident, cross sections have a dependency pro-
portional to E2

ν . As we mentioned above, we have calculated
these neutrino–nucleus cross sections using GTBD model
that treats the nuclear matrix element obtained by the sum
rule in parametric form, based on Fermi gas and including
shell effects. For the single-particle distribution function, we
used a Gaussian with a standard deviation that includes an
adjustment factor σN , which comes from the propagation of
energy caused by forces dependent on nuclear spin. For the
parameter σN , we used the same values obtained in Ref. [9]
for the set with A < 70, since we verified that the cross
sections are only slightly modified when the parameter is
varied by ∼ 10%. The neutrino–nucleus cross sections as
a function of the incident neutrino energy, σ(Eν), obtained
for Eν < 250 MeV, show in general a growth with the
energy of the type E2

ν , and also a growth with the mass num-
ber A. We also noticed that our results for cross sections
show a good agreement with other previous evaluations
within microscopic models such as QRPA [35], relativistic
QRPA [36], projected QRPA [18], and RPA [37, 38] for 56Fe
and 208Pb.

In order to improve the function that describes the
behavior of the cross section as a function of neutrino
energy, we have adjusted σ(Eν) to a four-degree polynomial
in the incident neutrino energy through the formula (12). We
have approximated the coefficients assuming a polynomial
dependence with Z and a dependence with A, inspired by
the adjustment of binding energies in the liquid drop model,

with a volumetric term proportional to A, a surface term
proportional to A2/3, a coulombian term proportional to
A−1/3, and an asymmetry term proportional to A−1. This
fitting can be useful for those nuclei that are far from the β-
stability line. The coefficients d

(i)
nm of (13) were determined

using the method of minimum squares for each set of nuclei
and for each process β± and EC, leading to the results
shown in Tables 2, 3, 4, 5, 6, 7, 8 and 9. For simplicity, to
reduce the number of free variables we have decided not to
use the terms proportional to A−1 and A−1/3 in this work.
From the rmsi obtained (see Tables 10 and 11), we can
say that in principle there is no correlation between every
Ai(A, Z) for each set. Another way to analyze the quality of
our results was to compare the graphics of the Acalc

i (A, Z)

with those of Ai(A, Z) given by (14) with the d
(i)
nm obtained

from our least squares method. We have observed that the
deviations between both results are notorious for heavy
nuclei. A possible improvement in these results could be
obtained if terms proportional to A−1 and A−1/3 were
included. This will be a motivation for research in our
future work. Additionally, we also plan to calculate the
cross section averaged with the flows of thermal neutrinos
to extend to the mass region A < 220 our results already
discussed in [9] for A < 70.
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