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Abstract. Recent studies have shown that gamma-band oscillations are directly related to pain intensity.
Pain can be exacerbated or diminished via deactivation or activation of inhibitory interneurons in the dorsal
horn. We consider a biologically plausible network model with different proportion of inhibitory neurons
to emulate gamma elicited activity during pain processes. We perform an analysis using graph theory
to gain further insight in the functional state of the circuitry underlying nociceptive process, considering
all the possible gamma elicited configurations of pain when changing the number of inhibitory neurons.
The probability distribution of the signal associated with each node or neuron is estimated through the
Bandt and Pompe approach. We evaluate the Jensen–Shannon distance between all the possible pairs of
nodes/neurons, characterizing the different network configurations by calculating the closeness centrality.
Thus, by building the graph properties through the node strength distributions and using an information
theoretical approach, we characterize the dynamics of the network configurations of pain. This allows us
to identify the nonlinear dynamical structure underlying the nociceptive process. Importantly, our findings
show that a network configuration with a 20% of inhibitory neurons boosts information transmission of
the complex network circuitry associated with the pain processing.

1 Introduction

A network graph is a schematic representation of a
system that depicts the interrelation between objects
[1]. Complex networks are connections that depict pat-
terns of links between their components that are nei-
ther absolutely random nor simply deterministic. More
specifically, a complex network can be characterized by
a graph with certain non-trivial statistical and topolog-
ical properties where the system is composed of many
parts; each of them has its own internal structure and is
responsible for performing certain functions that affect
not linearly the entire network [2]. Our brain is a very
efficient complex network, formed by a large number of
different brain regions, where each of them has its own
task and functions and continually shares information
with each other. That is, they form a complex inte-
grated network of inter-connected regions that deter-
mine the dynamics and the existing relations between
different brain areas.

When talking about brain connectivity, three types
of concept must be distinguished that are although
related: structural, functional, and effective connectiv-
ity [3]. The structural connectivity is referred to the
connections between different brain areas, and it is
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linked to the anatomical connection properties. That
is, they are made by neuronal axons or neuronal tracts
that link the different regions, and it is related to the
physical environment in which the information trans-
mission is performed [4]. We say that two regions are
functionally connected when there is a statistical depen-
dence between the activities of the elements in question,
regardless of whether or not they are structurally con-
nected. This type of connectivity is highly dependent
on time domain, as opposed to structural, and does not
reference to specific directional effects (cause–effect).
Thus, that is a statistical concept that depends on the
metrics being used, i.e., correlation, covariance, or spec-
tral coherence, etc. [4,5].

When considering effective connectivity, we refer con-
nections that represent causal relationships between dif-
ferent elements. More specifically, when the activation
of an area causes a change (activation or depression)
in another area, it can be estimated the observed dis-
turbances that describe the directional effects of one
neural element on another. Causality can be deduced
from disturbances in the network or through analy-
sis of time series. Techniques based on network distur-
bances often require structural information, while tech-
niques based on time series analysis can be considered
“model free” [4]. The weighted links include informa-
tion about the strength of the connection, and within
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the framework of functional or effective networks, they
can be treated as the magnitude of the correlation or
the causality between the nodes [2]. In the study of com-
plex networks, a series of metrics are used to character-
ize the aspects of connectivity. Node centrality metrics
are needed to measure the relative importance of a node
within the network architecture. Some centrality met-
rics have been proposed to quantify the efficiency of a
node; among those, we can mention the closeness cen-
trality and the betweenness centrality [4]. The weight of
a node is a simple measure for the connectivity of a node
with the other nodes in a network. The distribution of
weights is defined as the fraction of nodes in the graph
that have a given weight. In terms of the shape of the
weight distribution, the networks can be classified into
different categories that have a different resistance to
node removal, for example, in scale-free networks where
the node weights are extremely heterogeneous [6].

The central nervous system is the part of the ner-
vous system consisting basically of the brain and spinal
cord, and could be considered as a complex network
[7–12]. Neuronal centers of the cortical and subcortical
areas respond to incoming and ascending pain indica-
tors, which can regulate them through activating the
inhibitory descending pathways. The action potential
signals descend to the dorsal horn of the spinal wire,
and the activated inhibitory interneurons launch neuro-
transmitters as noradrenaline and serotonine, modulat-
ing the pain transmission [8–12]. Endorphins also are in
charge within the inhibitory modulation of pain signals.
Pain is increased or decreased through the activation or
deactivation of inhibitory dorsal horn interneurons [7–
12]. Pain-related information inside the central nervous
system is managed via variations of inhibitory struc-
tures, for instance through the use of endogenous opi-
oids or different endogenous substances like serotonin
as inhibitory mediators. Importantly, the dorsal horn
gives various potential focuses to the advancement of
novel analgesics, and is thought to experience changes
that add to the pain aggravation after nerve injury
[8–12]. In spite of its conspicuous significance, we lack
of knowledge about the neuronal circuits that regulate
the inhibitory and excitatory population of neurons in
the spinal cord, due to the heterogeneity of the dif-
ferent neuronal segments that make up these circuits
[9]. The dorsal horn presents an inhibitory function on
the processing of sensory information as a large pro-
portion of inhibitory neurons has been associated with
antinociceptive process [9,13]. That is, neurons in the
spinal horn process important information, which is
then transmitted to a few brain areas, including those
accountable of discernment of pain perception. How-
ever, there is a huge deficit in understanding which kind
of complex network circuitry, with different neuronal
inhibitory and excitatory components, may favor the
transmission of pain [9,14,15].

The term oscillation or oscillatory activity is referred
to rhythmic fluctuations of post-synaptic potentials of
a neural ensemble, but also to the rhythmic discharge
pattern of action potentials of a neuron or a neuronal
group [9,14–16]. Importantly, there is a general con-

sensus that the oscillatory activity constitutes a basic
mechanism of the cerebral functioning. Decreases in
inhibition lead to changes in frequencies and charac-
teristics of the oscillations, as occurs for example in
Parkinson’s disease, within the cerebral cortex and
other levels. In this way, the appearance or modifica-
tion of the oscillatory activity can be considered as
an indicator of emerging properties of brain [9,14–16].
The central nervous system controls pain information
by increasing and decreasing the activity of inhibitory
neurons [9,13–15]. When the nociceptive process over-
comes, the pain is enhanced or decreased through the
deactivation or activation of inhibitory interneurons [7–
12]. The gamma-band peaks generated by transient
nociceptive boosts are one of the most encouraging
biomarkers, as an enhancement of the activity in this
band induces pain hypersensitivity [13–15,17–22], and
the underlying circuit structure behind the enhance-
ment of the gamma band during nociceptive states is
still unknown. In this paper, we investigate the differ-
ent pain configurations through a biologically plausi-
ble neuronal model [23,24]. To it so, we consider differ-
ent inhibitory and excitatory configurations to capture
the effective dynamics of the network when the gamma
elicited activity occurs. This allows us to explore the
different circuitry structure that may favor the noci-
ceptive process. The main objective of this work is
to characterize realistic networks using a simple mod-
els capable of capturing the most known firing pat-
terns of neurons, combined with graph theory and
information theory tools to identify the different cir-
cuitry topologies that present a nociceptive structure
related to gamma oscillations patterns. Thus, we take
into account different population ensembles with spike-
timing-dependent plasticity (STDP), in a convolutional
spiking neural network, considering different configu-
rations of inhibitory neurons as they have an impor-
tant nociceptive role on information transmission [7–
12]. We combine tools of graph theory and information
theoretical measures together with the application of
the Bandt and Pompe methodology for time series of
membrane potentials, calculating the Jensen–Shannon
distance through the different nodes [25]. We calcu-
late the closeness centrality, to identify possible nodes
that can mediate communication with others nodes,
and evaluating the node strength distributions, we esti-
mate the Shannon entropy, the MPR complexity, and
the Fisher information of all the possible nociceptive
configurations. This allows us to identify, by estimat-
ing Fisher information versus MPR statistical complex-
ity/Shannon entropy of the node strength distributions
[13,26–29], the circuitry structure that maximizes infor-
mation transmission of pain in a biologically plausible
neuronal network.
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2 Methodology

2.1 Modeling the neuronal system

Neurons fire spikes when they are close to a bifurca-
tion from resting to spiking action, and it is the fragile
harmony between chaotic behavior of the recovery vari-
ables and the membrane potential, the ion dynamics,
and the initial condition what decides the output of the
neural action potentials [23,24,30]. While there are an
enormous number of conceivable ionic ways of excitabil-
ity capable of producing an action potential, there are
just four bifurcation diagrams that can bring about
such progress for a two-dimensional neuron model. That
is, there are a lot of ionic ways for producing an action
potential, but let us remark that there are just four
bifurcations process that can generate them [23,24,30].
These bifurcations separate neurons into four classifica-
tions: integrators or resonators, monostable, or bistable
[23,24,30].

To understand how the brain works, we need to com-
bine experimental studies of the human and mammals
nervous system with numerical simulations on a large
scale. As we develop large-scale brain models consist-
ing of firing neurons, we must find a balance between
two requirements apparently mutually exclusive: the
model for a single neuron must be computationally sim-
ple, but capable of producing firing patterns exhibited
by biological neurons. The simple model of firing neu-
rons proposed by Izhikevich [23,24,30] is biologically
plausible as the Hodgkin–Huxley model [23,24,30], and
very efficient from the computational point of view
as the Leaky-Integrate-and-Fire Neuron Model [31–
33]. Through four parameters, the model successfully
reproduces the collective dynamics of the cortical neu-
ronal activity [13,23,24,30]. Bifurcations methodologies
allow an accurate reproduction of the biophysical prop-
erties of Hodgkin–Huxley neural models using a two-
dimensional system of ordinary differential equations
of the form: [23,24,30]:

dv

dt
= 0.04v2 + 5v + 140 − u + I (1)

du

dt
= a (bv − u) (2)

with the auxiliary reset after the action potential:

if, v ≥ 30mV, then
�

v ← c
u ← u + d

. (3)

Note that u and v are variables, and a, b, c, and d
are four different parameters. The quantity v represents
the neuron membrane potential, and u is the membrane
recovery variable that takes into account the ionic cur-
rent of activation of K+ and of inactivation of Na+, and
generates negative feedback to v. All types of known
neuron dynamics can be reproduced by taking different
values of the four parameters a, b, c, and d. After the
spike reaches its peak at +30 mV (not to be confused

with the firing threshold), the membrane voltage and
the recovery variable are restarted according to Eq. (3).
Variable I takes into account the input signals, either
injected from the outside or synaptic signals coming
from other neurons. The sum 0.04 v2 +5 v +140−u+ I
is obtained by adjusting the initiation dynamics of the
spike of a cortical neuron (other choices are possible
[13,23,24,30]), whereby the membrane potential v has
units of mV and time units of ms. The resting potential
in the model is between 70 mV and 60 mV depending
on the value of b. As in most real neurons, the thresh-
old is not fixed, which depends on the history of the
membrane potential before the spike; it can vary from
55 to 40 mV.

Parameter a describes the time scale of the recov-
ery variable u. Lower values result in slower recovery.
A typical value is a = 0.02. Parameter b describes the
sensitivity of the recovery variable u to subthreshold
fluctuations of membrane potential v. Large values of
b leads to u and v highly coupled, resulting in possi-
ble subthreshold oscillations and decreased threshold.
A typical value is b = 0.2. The case b < a (b > a)
corresponds to saddle-node (Andronov–Hopf) bifurca-
tion [30] from the resting state. Parameter c describes
the reset value of v after the spike. A typical value is
c = 65mV. Parameter d describes the restart, after
spike, of recovery variable u and a typical value is d = 2.
This model can be used to build networks of firing neu-
rons (each neuron can be described by a simple model of
firing neuron [23]) capable of exhibiting dynamics and
rhythms similar to those of the mammalian cortex. Due
to the extreme computational simplicity of the model,
thalamic–cortical networks can be simulated consisting
of tens of thousands of neurons in real time with a res-
olution of 1 ms [23,24,30].

In this work, we consider a network model in which
the number of inter-connected neurons is a parame-
ter under control, and each neuron can be randomly
inter-connected with two or more neurons. Inhibitory
contributions hyperpolarize the membrane and move it
further from the firing threshold. In contrast, the exci-
tatory contributions depolarize the membrane poten-
tial (that is, they carry it closest to the threshold). We
emulate a cortical column or hypercolumn that takes
into account the firing of cortical neurons with axonal
conduction delays and STDP as in Ref. [24]. The time
resolution of the network is 1 ms. For the simulation,
we consider a network made up of a population of
N = 1000 neurons, with a number Ne of excitatory neu-
rons (RS), and the number of neurons remaining say Ni

will be of inhibitory type (FS), such that N = Ne + Ni

[24]. Every excitatory neuron will be randomly con-
nected to M = 100 neurons, so that the probability
of connection is M/N = 0.1 [24]. Each inhibitory neu-
ron will be connected to M = 100 excitatory neurons.
Excitatory weights evolve according to the STDP rule.
Each synaptic connection has a fixed delay Dsc between
1 ms and 20 ms. In particular, inhibitory connections
have assigned a delay of 1 ms, while for all excitatory
connections, the delay will be an integer between 1 and
10 ms. Each neuron in the network is described by the
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simple firing neuron model [23]. For all neurons in the
network, the values used for the parameters are b = 0.2
and c = 65. For the excitatory neurons, the parame-
ters are a = 0.02 and d = 8, corresponding to pyrami-
dal neurons that exhibit regular spiking (RS) patterns.
For inhibitory neurons, the parameter are a = 0.01
and d = 2, corresponding to the cortical interneurons
that exhibit fast spiking patterns (FS). The variable
I combines two types of inputs to neurons: (1) tha-
lamic random input and (2) firing input from other
neurons. Synaptic connections are modified according
to the STDP rule [24]. We choose the parameters of
the STDP curve, so that depression is stronger than
potentiation and synaptic weight slowly decays to zero.
Conversely, if the pre-synaptic neuron often fires earlier
than the post-synaptic neuron, then the synaptic con-
nection is slowly boosted. In fact, this connection causes
post-synaptic spikes and must be strengthened. In this
way, STDP strengthens causal interactions in the net-
work. The magnitude of synaptic weights between pre-
synaptic neurons depends on the relative time between
spikes, in which the temporal order of the pre-synaptic
and post-synaptic spikes determines whether a synapse
is potentiated or depressed. Every time, a neuron fires
the STDP variable is reset to 0.1. Every millisecond,
STDP decreases as 0.95∗STDP, so that it decays to zero
as A×e(−t/τ). The parameters used here are τ = 20 ms
and A = 0.1. This function determines the magnitude
of the enhancement or depression. For each neuron that
fired an spike, we consider all of its pre-synaptic neu-
rons and we determined the times of the last excitatory
spikes that arrived from these neurons.

As these spikes caused the neuron to fire, synaptic
weights are enhanced according to the STDP value
in the pre-synaptic neuron adapted for the conduc-
tion delay. This corresponds to the positive part of the
STDP curve [24] where the largest increase occurs for
spikes that arrived just before the neuron fire, that is,
the spikes that actually caused the post-synaptic spike.
Furthermore, when an excitatory spike reaches a post-
synaptic neuron, we depress the synapse according to
the STDP value in the post-synaptic neuron. This cor-
responds to the negative part of the STDP curve [24].
In fact, this spike came after the post-synaptic neu-
ron is fired, and therefore, the synapse between neu-
rons should weaken (the synapse itself will be enhanced
when the post-synaptic neuron is activated). Instead of
modifying the synaptic weights directly, their deriva-
tives sd are changed as in [24], and then, we update
the weights once per second according to the rule s ←
s+0.01+sd, and sd ← 0.9 sd, where 0.01 describes the
independent increase in synaptic weight activity nec-
essary to enhance synapses that reach silent neurons.
Thus, the synaptic change is not instantaneous but
slow, and takes many seconds to develop. We manually
keep weights in the range between 0 and sm, where sm
is a parameter of the model, typically less than 10 mV.
This model network preserves important proportions
found in the cortex of the mammals. It can also dis-
play gamma frequencies in the range of 30–70 Hz, and
other interesting rhythms; these kinds of oscillations

are involved in cognitive tasks in humans and other
animals.

2.1.1 Bandt and Pompe symbolization methodology

Let X = {xt; t = 1, . . . , M} be a discrete time series,
where M is the data number. We consider D and τBP

two integers, such that D > 1, τBP ≥ 1, D being the
embedding dimension and τBP the delay time. From the
original time series, the following D-dimensional vector
could be generated [26,27,34]:

Xt
(D,τBP ) :=

�
xt, xt+τBP , . . . , xt+(D−2)τBP

, xt+(D−1)τBP

�
,

1 ≤ t ≤ M − (D − 1)τBP . (4)

Let us consider the alphabet AD≥2 := {π1, π2, . . . ,
πD! }; the set of all possible order permutations D of the
set J = {0, 1, . . . ,D − 1}. We name πi ∈ AD a symbol
of the alphabet AD. Let us denote πi = i0 i1 . . . iD−1.

We can assign to Xt
(D,τBP ) a symbol πi ∈ AD. This

assignment must be defined in such a way as to preserve
the desired relevant relationship between the elements
xt ∈ Xt

(D,τBP ), and all t = 1, . . . , M that share this
pattern must be uniquely mapped to the same sym-
bol πi ∈ AD. In the literature covering Permutation
Entropy, there are two ways of defining this mapping
of patterns to symbols [26,27,34]:

1. Permuting the ranges: sorting the ranges of the
xi ∈ Xt

(D,τBP ) in chronological order: for an arbi-
trarily given t, the D actual values xt ∈ Xt

(D,τBP )

are replaced by their ranks, where the rank function
is defined as:

R (xt+n) =
(D−1)τ�

k=0

1 (xt+k < xt+n) , (5)

where 1 is the characteristic function. That is,
1 (Z) = 1 if Z is true, and 0 otherwise; xt+n, xt+k ∈
Xt

(D,τBP ). In addition, 0 ≤ R (xt+n) ≤ (D − 1) τBP .
This means that each xt ∈ Xt

(D,τBP ) value is
replaced by its rank. Thus, the vector Xt

(D,τBP ) =�
xt, xt+τBP

, . . . , xt+(D−2)τBP
, xt+(D−1)τBP

�
is repre-

sented by the symbol πi = (R (xt) , R (xt+τBP
) , . . . ,

R
�
xt+(D−1)τBP

�� ∈ AD.
2. Permutating the chronological indices: sorting

the i indexes into xi ∈ Xt
(D,τBP ). Given the vector

Xt
(D,τBP ), the D values can be ordered in increasing

order according to their amplitude, that is:

xt+i0τBP
≤ xt+i1τBP

≤ · · ·
≤ xt+iD−2τBP

≤ xt+iD−1τBP
.

Hence, the vector Xt
(D,τBP ) = (xt, xt+τBP

, . . . ,

xt+(D−2)τBP
, xt+(D−1)τBP

�
is represented by the
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symbol πi = (i0, i1, . . . , iD−2, iD−1) ∈ AD.
The relative frequencies for each of the D! possible
permutations πi of order D can be calculated accord-
ing to the number of times a rearranged sequence
corresponding to πi is founded in the time series,
divided by the total number of sequences:

p (πi) =
# { t| t ≤ M − (D − 1) τBP ; t is of type πi}

M − (D − 1) τBP
.

(6)

In this way, the probability distribution is obtained.
Here, each symbol πi representing a pattern in the
time series is associated with a probability P =
{p (πi) , i = 1, . . . , D!} . For practical reasons, Bandt
and Pompe recommended working with D = 3, . . . , 6
and τBP = 1 [35,36]. To work with reliable statistics,
it is needed to accomplish the condition M � D!.

2.1.2 Permutation entropy

Quantifiers from information theory are a very powerful
tool to characterize important properties of the prob-
ability density function associated with a time series
[13,26–29]. Entropy can be interpreted as a measure of
the “degree of disorder”, or the uncertainty we have
about a system being in a certain state, or of the
amount of information that can be obtained through
observations of disordered systems [26,27]. When using
the Bandt and Pompe probability density function to
describe a physical process, the time structure of the
signals generated by that process is being taken into
account. This allows us to discover important details
concerning the ordinal structure of the time series
[35,36] and also provides useful feedback about the
underlying temporal correlations [37,38].

Below, we introduce the concept of entropy [39],
which is a measure of uncertainty/lack of information of
a random variable [39,40]. Consider a discrete random
variable X, the state space X of X, that is, the set of
possible outcomes, and the probability density function
p(x) = P (X = x) of X. The entropy S [X] of a discrete
random variable X is defined by:

S [X] = −
�
x∈X

p (x) log (p (x)) . (7)

Entropy is a measure of the average uncertainty in
the random variable. Note that entropy is a function
of the distribution of X and does not depend on the
values that the variable X takes, but instead on the
probabilities.

The relative entropy or Kullback–Leibler divergence
between two probability functions p (x) and q (x) is
defined by:

DKL (p�q) =
�
x∈X

p (x) log
p (x)
q (x)

. (8)

Relative entropy is always non-negative and is zero
if and only if p = q. For this property, it is often used
the Kullback–Leibler divergence as a measure of dis-
similarity between probability distributions. However,
it is not an actual distance between distributions, since
it is not symmetric and does not satisfy the triangular
inequality.

2.2 Jensen–Shannon divergence

The Kullback–Leibler divergence is not symmetrical,
does not qualify as a statistical metric, and does not
has an upper bound. Because of these limitations, let
us introduce the so-called Jensen–Shannon divergence:

The Jensen–Shannon divergence between two prob-
ability density functions p (x) and q (x) is defined as:

DJS (p�q) =
1

2

�
DKL

�
p

�
�
�

p + q

2

�
+ DKL

�
q
�
�
�

p + q

2

��
.

(9)

We can rewrite the Jensen–Shannon divergence as:

DJS (p�q) = −1
2

(S [p] + S [q]) + S

�
p + q

2

�
. (10)

The Jensen–Shannon divergence is symmetric, non-
negative, and is equal to zero if and only if p = q and
the square root of the Jensen–Shannon satisfies the tri-
angular inequality. These properties make DJS a metric
and a good measure of dissimilarity between two prob-
ability distributions.

2.3 Fisher information

Fisher’s measure of information can be interpreted as a
measure of the quality of a parameter estimation pro-
cess, such as the amount of information which can be
taken from a set of measures, or as a measure of the
disorder of a system or phenomenon: [41].

F [f ] =
� |−→∇f (x) |2

f (x)
dx, (11)

where f is a continuous density function, and
−→∇ is the

gradient operator. The presence of the gradient implies
a sensitivity of this quantifier to small perturbations
of the probability density function, so this quantifier is
called “local”.

It would be convenient if f(x) did not appear in the
denominator in Eq. (11), since it could happen that
f (x) → 0 for certain values of x. One way to avoid
this possible drawback is to work with an “amplitude”
function ψ, f (x) = ψ2 (x). From this and from Eq. (11),
we obtain that:

F [f ] = F [ψ] = 4
�

|−→∇ψ|2 dx, (12)
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is an equivalent form where it is clearly seen that
Fisher’s information measure is a measure of the gradi-
ent content of ψ (x) and therefore of f (x).

Let us consider the probability function P = {pi,
i = 1, . . . , N}, corresponding to a discrete random vari-
able X, where N is the number of possible states of the
system under study. In the current work, we use the
normalized discrete Fisher information [29], which is
given by:

F [P ] = F0

N−1�
i=1

	√
pi+1 − √

pi


2
, (13)

where F0 is a normalization constant:

F0 =

�
1 if pi∗ = 1 for i∗ = 1 or i∗ = N and pi �= 0 ∀i �= i∗,
1

2
opposite case

.

(14)

2.4 Statistical complexity

The notion of zero “complexity” in physics begins with
the perfect crystal and the isolated ideal gas as exam-
ples of very simple models. In a perfect crystal, the
atoms are organized in a symmetrical way, the proba-
bility density is concentrated in a single state, that is,
there is a most likely state xc that has p (xc) ∼ 1, and
for all the other states xi = xc, the probabilities accom-
plishes p (xc) ∼ 0. The “information” stored in this sys-
tem may be considered minimal. On the other hand, if
we consider the isolated ideal gas that is completely
disordered, the system can be founded in any of its
xi accessible states with the same probability; that is,
p (xi) ∼ 1

N . Thus, the “information” needed to describe
the system is maximum. These two simple systems are
located at opposite ends of “order” and “information”.
It follows that the definition of “complexity” should not
be made uniquely in terms of “order” or “information”.

Suppose that we have a system with N states,
(x1, x2, . . . , xN ) with their corresponding probabilities
P = {p1, p2, . . . , pN}

�
such that

�N
i=1 pi = 1


. A pos-

sible definition of disequilibrium E of the system could
be associated with some type of distance between the
distribution of the system and the distribution of the
equiprobable states, for example, when we take the
Euclidean distance:

E [P ] =
N�

i=1

�
pi − 1

N

�2

. (15)

The Euclidean-like measure of statistical complexity
C associated with the physical process described by P
is defined as an interaction between a distance of the
system distribution to the equiprobable distribution (or
equilibrium), and the entropy [42], as follows:

C [P ] = S [P ] · E [P ] (16)

=

�
−

N�
i=1

pi log pi

��
N�

i=1

�
pi − 1

N

�2
�

.

(17)

This definition conforms to intuitive reasoning. For a
crystal, E is great, but the information S is very small,
so C ∼ 0. On the other hand, S it is large for an ideal
gas, but E is small, so C ∼ 0. Any other system will
have a behavior in between and therefore C > 0.

For the above described complexity, C = S · E, one
can get a family of measures of statistical complexity
using the different standard entropies. That is, we could
use for instance the Shannon [39], Tsallis [43], or Rényi
[44] entropy measures. In addition, the disequilibrium
can be assessed with measures of distances that could
be based for instance on the Euclidean standard idea
[42], the Wootters’ distance [45], the Kullback–Leibler
divergence [46], or the Jensen–Shannon divergence [47–
50]. However, the definition above using the Euclidean
distance has been widely criticized [45]. The main prob-
lem is that it ignores the fact that we are dealing
with a probability space, and therefore, it bypasses the
stochastic nature of the P distribution [45]. To account
for the stochastically nature of the data, we choose in
this paper a disequilibrium measure based on Jensen–
Shannon divergence [47–50]. The complexity that uses
Jensen–Shannon’s distance is known as MPR complex-
ity, since it was introduced by Mart́ın, Plastino, and
Rosso [49,50]. Let us say that P is the distribution
of the system to be analyzed, Pe is the equilibrium
probability distribution, N is the number of possible
states, H = S [P ] / log(N) is the normalized Shannon
entropy, DJS is the Jensen–Shannon divergence [47–50],
and Q0 is a normalizing constant equal to the inverse
of the maximum possible value of DJS (P�Pe) which is
obtained when one of the components of P , say pj , is
equal to one and the remaining components are zero.
The MPR complexity is given by:

CMPR [P ] = Q0 · DJS (P�Pe) · H [P ] , (18)

where:

Q0 = −2
�

N + 1
(N + 1) − log (2N) + log (N)

�−1

. (19)

Note that the MPR complexity is also a normalized
quantifier 0 ≤ CMPR [P ] ≤ 1. We introduce in the fol-
lowing paragraph some measures of centrality to quan-
tify the structure of a network. If we know the structure
of a network, we can calculate from it a variety of use-
ful quantities or measurements that capture particular
characteristics of the network topology [25,51–56].

2.5 Centrality measures

Let us consider a weighted graph (G,w) with N nodes,
the shortest path, or geodesic path between two nodes ni

and nj , is a path for which the sum of the edge weights
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is minimal. The geodesic distance between two nodes ni

and nj , noted by dw (ni, nj), is the sum of the weights
of the edges of a geodesic path between the nodes ni

and nj .
Given a weighted graph (G,w) with N nodes, the

closeness centrality of a node ni is given by:

Cw
c (ni) =

N − 1�N
j=1

nj �=ni

dw (ni, nj)
.

The closeness centrality provides higher values for
more central nodes and lower values for less central
nodes. This quantity takes higher values for nodes that
are separated from others by a short geodesic distance.
Such nodes could have a better access to information
or a more direct influence on other nodes. In a social
network, for example, a person with a high degree of
closeness centrality may find that their opinions reach
other people in the community more quickly than the
opinions of someone with a lower level of closeness cen-
trality [25,51–56].

Given a weighted graph (G,w), with ni, nj , nk ∈
V (G) (with V (G) being the ensemble of all the node
graphs), i, j, k = 1, . . . , N . The betweenness centrality
of the node nk is given by:

Cw
b (nk) =

�
ni,nj∈V (G)
ni,nj �=nk

gij (nk)
gij

,

where gij (nk) is the number of geodesics between ni

and nj that pass through nk, and gij is the number of
geodesics between ni and nj .

Betweenness centrality quantifies the occasions a
node lies on the shortest path between other nodes.
This measure shows which node are bridges between
nodes in a system. It does this by identifying all the
shortest paths and then counting how many times each
node falls on them [51–56].

3 Results

It has been documented that neural oscillations are able
to cover a wide spectrum of frequencies. These oscilla-
tions are observed at all levels of the central nervous
system and are generally classified into five frequency
bands: delta 0.5–3.5 Hz, theta 4–7 Hz, alpha 8–12 Hz,
beta 13–30 Hz, and gamma > 30 Hz [16]. Gamma band
is the essential feature for understanding information
processing in pain perception and the structures under-
lying the neural circuits behind the activity patterns
[13–15,17–19,21,22].

In this section, we study the degree of network
inter-connectivity, and how closeness centrality and
betweenness centrality vary by changing the number
of inhibitory neurons in the network for “pain” con-
figurations; that is, those configurations for which the

network exhibits gamma oscillations. The modeled net-
work consists of a population of N = 1000 neurons,
with Ne excitatory and Ni inhibitory neurons, so that
N = Ne+Ni. Each excitatory neuron will be connected
randomly with M = 100 neurons. Excitatory weights
evolve according to the STDP rule [24]. Using the
Bandt and Pompe approach to generate probability dis-
tribution [26,27,34], which take into account the causal-
ity of the signal, and based on the degree of network
inter-connectivity, we build in this section the informa-
tion quantifiers normalized Shannon Entropy vs. MPR
Statistical Complexity [26,27], H × CMPR, normalized
Shannon Entropy vs. Fisher information H ×F [26,27],
and MPR Statistical Complexity vs. Fisher information
CMPR × F [26,27].

To select the gamma settings in neuronal network, we
display the spiking activity of the population through
the figure so-called raster plot, as shown in Fig. 1, where
each point represents an action potential and each row
represents the activity of a neuron in a 1 s window.
The y-axis corresponds to the neuron index, and the x-
axis corresponds to the simulation time. The presence
of a point with coordinates (t, i) indicates that the i−th
neuron produced an action potential at time t. Figure 1
depicts an example of a particular pattern of activity,
“recorded” during 1 s, for a simulations carried out with
N = 1000 neurons, with Ne = 798 and Ni = 202. Fig-
ure 1 depicts a quite remarkable oscillatory activity.

To explore better the information underlying neu-
ronal dynamics during the oscillation process, we esti-
mated the histogram of the number of action potentials
in the network in each ms and we performed an analy-
sis of the power spectrum using Fast Fourier Transform
(FFT) [57]. The FFT breaks down the signal in a series
of sinusoidal components [57]. The square of the coeffi-
cients is named power. The spectrogram of the popula-
tion spikes reveals the presence of oscillations. We set
the simulation to stop when there are gamma rhythms,
i.e., when there is peak in the 30–70 Hz frequency range.
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Fig. 1 Raster plot. As synaptic weights evolve following
the STDP rule, the gamma oscillations dominate
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Fig. 2 Power spectrum of the number of action potentials
in each spike trains of 1 ms. A peak is observed around 31 Hz
(gamma rhythmic)

That is, we only select the configurations that present
gamma oscillations. Figure 2 shows the gamma band
elicited peak due transient nociceptive circuitry dynam-
ics considering a population of neurons with Ne = 798
and Ni = 202 and taking 1000 ms of sustained activity.

To apply the centrality measures described above,
for each of the neuronal configurations that present
gamma rhythmic elicited activity, we will now explain
the procedure used to construct the weighted graphs.
Each neuron in the network is represented by a node,
so in each network, the total number of nodes is 1000.
To assign weights and connections between the nodes,
we will first select the membrane potential v of each
of the neurons. These membrane potentials are the
time series to which we will apply the symboliza-
tion proposed by Bandt and Pompe [26,27,34], using
the mapping of patterns to symbols according to the
chronological order, dimension D = 5, and delay time
τBP = 1, as the time series length is 1000 � 5!.
That is, we have 1000 points in the time series Xi =
{xt; t = 1, . . . , 1000}, associated with 5! = 120 possible
patterns. For each pair of these density functions Pi(x)
and Pj(x), we calculate the Jensen–Shannon diver-
gence: Dij := DJS (Pi�Pj) , i, j = 1, . . . , N, i = j,
which assigns the inter-connectivity (weight) between
neuron i and neuron j. We construct weighted graphs
where the set of vertices represents the neurons and
each pair of vertices is connected by an edge whose
weight is given by wij = Dij .

Figure 3 shows the weighted network nodes and their
closeness centrality, while Fig. 4 shows the weighted
network nodes with their betweenness centrality.

The weighted network in both figures is constructed
using the divergence from Jensen–Shannon with N =
1000 neurons, Ni = 202 are inhibitory neurons, and
Ne = 798 excitatory neurons. In Figs. 3 and 4, the
shape of the nodes indicates whether it represent exci-
tatory (circle) or inhibitory (pentagram) neurons. In

Fig. 3 The weighted network nodes and their closeness
centrality (normalized values). The weighted network are
constructed using the Jensen–Shannon divergence. The
total number of neurons is N = 1000; Ni = 202 represents
the inhibitory neurons (pentagrams); Ne = 798 represents
the excitatory neurons (circles)

the colorbar, blue represents lower values and yellow
represents higher values. We do not show the diagrams
of the weighted graphs, since the edges make it difficult
to appreciate the calculated measures of closeness and
betweenness centrality. We estimate the closeness and
betweenness centrality of the previous network consid-
ering gamma band elicited responses due to transient
nociceptive circuitry dynamics. Note that Fig. 3 depicts
higher values of closeness centrality for the excitatory
neurons, while the inhibitory ones are close to zero. In
addition, Fig. 4 depicts a betweenness centrality very
close to zero independently if the neurons are excita-
tory or inhibitory.

To gain some insight about the behavior of the close-
ness centrality for the different pain configurations, in
Fig. 5, we show trend of the average of this quantity for
different nodes and for each configuration. The results
showed in Fig. 5 suggest that there is a network config-
uration with a given number of inhibitory neurons close
to Ni = 200 that might enhance information transmis-
sion when gamma activity patterns dominate the neu-
ronal dynamics. As we change the properties of a neu-
ron, that is, we replace an excitatory type neuron of reg-
ular spiking (RS) by a fast spiking inhibitory type (FS),
the value of the closeness centrality increases reach-
ing a maximum around Ni = 200 (see averaged val-
ues in Fig. 5). That is, configurations with nodes with
the higher closeness score are close to Ni = 200 and
have the shortest distances to all other nodes. When the
number of inhibitory neurons is bigger than Ni = 200,
it results in a lower average network closeness central-
ity and therefore represents a curtailed efficiency of the
transmitted information (through a given node to all
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Fig. 4 The weighted network nodes and their betweenness
centrality (normalized values). The weighted networks are
constructed as in Fig. 3
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Fig. 5 Averaged closeness centrality, considering 21 differ-
ent configurations of inhibitory neurons, Ni

available nodes). In addition, when taking the average
values of betweenness centrality, by varying the num-
ber of inhibitory neurons, they all result close to zero.
This is due to the fact that several of their edges con-
nect neurons who are already connected through oth-
ers. This circuit structure behind the enhancement of
the gamma band is of fundamental relevance for under-
standing dynamics underlying the nociceptive states.

An effective way to represent a data set is to use
a bar chart to plot the frequency. In this case, the
data set which we are interested in is that of node
strength values. However, the number of different values
is very large to use this approach (weight distribution).
In these cases, you can divide the values in groups or
class intervals, and then plot the number of data values

Fig. 6 Histogram of node strength (HNS). The relative fre-
quency histogram taking 25 intervals class, Ni = 202 and
Ne = 798
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Fig. 7 Causal plane H × CMPR considering the different
configurations which presented a gamma-band elicited peak.
The black line shows the fit of polynomial of degree 5

that fall at every class interval. Each class is a bin of
the histogram [58]. The number of class intervals cho-
sen must be a compensation between choosing (i) very
few classes, in exchange for losing too much informa-
tion on the values of the data in a class and (ii) choos-
ing too many classes, which will result in frequencies of
each class are too small for a pattern to be visible [58].
Although 5 − 10 bins are normally used, the appropri-
ate number of bins and of the extremes is a subjective
choice and, of course, you can try different class interval
numbers to see which of the resulting graphs appears to
be more revealing about the data. It is common, though
not essential, to choose class intervals of equal duration
[58].

To gain further insights of the emergent properties
of the nociceptive processing, we estimate the node
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Fig. 8 Causal plane C × F taking into account all the
different configurations which presented a gamma-band
elicited peak as in Fig. 7. The different points correspond to
dissimilar number of inhibitory neurons Ni. The black line
shows the fit of polynomial of degree 5
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Fig. 9 Causal plane H ×F taking into account all the con-
figurations where the network exhibits gamma oscillations.
The peak is reached when the number of inhibitory neurons
Ni is equal to 202. The black line shows the fit of polynomial
of degree 5

strength as the averaged sum of weights of links con-
nected to a given node. Figure 6 shows the relative
frequency histogram of the node strength taking 25
intervals class, for the network considered in Figs. 1,
3, and 4. We decided to work with 25 class inter-
vals. We then apply the NSB technique (see [59] for a
detailed explanation of this methodology), as it ensures
bias-free estimations [59,60]. Thus, we built thereafter
the information planes using H × CMPR, H × F and
CMPR × F , as shown in Figs. 7, 8, and 9, taking into
account the different pain configurations. The curves
in black being depicted in these figures are polynomial
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Fig. 10 Fisher information versus the number of
inhibitory neurons, Ni × F considering all the config-
urations depicting gamma oscillations. The peak is reached
when Ni = 202. The black line shows the fit of polynomial
of degree 5
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Fig. 11 Three-dimensional portrayal of the causal data
quantifiers: CMPR × F × H. Note the structure behind the
network dynamics quantifying dissimilarities among differ-
ent gamma configurations

adjustment. Figure 7 shows the causal plane H×CMPR,
and the statistical complexity MPR decreases as Shan-
non entropy becomes higher for the network topologies
and dynamics used previously. The degree of disorder
increases as entropy increases; therefore, a system with
a higher degree of entropy is characterized by a higher
degree of randomness. Figure 8 depicts the causal plane
CMPR ×F , delineating a distinction between the differ-
ent topologies and dynamics. In other words, Fisher’s
information increases non-linearly as a function of MPR
statistical complexity. Figure 9 depicts the causal plane
H × F . Let us remark from Fig. 9 that Fisher’s infor-
mation reaches a maximum that occurs when the neu-
ronal population is composed of N = 1000 neurons, of
which Ni = 202 are of the inhibitory type (FS) and the
remaining Ne = 798 are of the (RS).
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Moreover, Fig. 10 depicts the behavior of Fisher
information versus the number of inhibitory neurons,
Ni, emphasizing that the maximum is achieved at Ni =
202. This network configuration, exhibiting gamma
oscillations, corresponds to the number of inhibitory
neurons that boost information transmission during
pain-associated process, when considering a biologically
plausible neuronal model. This is consistent with the
idea that Fisher information peaks due to changes at
both excitatory and inhibitory synapses as it function
like a prime mechanism underlying neuronal circuits
of pain [61–63]. Finally, Fig. 11 depicts the emerg-
ing dynamic properties of the system causal informa-
tion through a three-dimensional representation: MPR
statistical complexity versus Fisher information versus
Shannon entropy, CMPR × F × H. Notice that there
is an structure defining the network dynamics quanti-
fying dissimilarities among different network centrality
graphs that characterize the gamma elicited nociceptive
circuitry activity. That is, statistical complexity is max-
imal as entropy is in typical chaotic zone [64] and Fisher
complexity increases to the highest values. Complexity
decreases as entropy becomes bigger and Fisher infor-
mation is curtailed, approaching non-linearly to zero.

4 Conclusion and discussion

The synchronized activity of many neurons communi-
cating with each other generates brain wave activity
[16]. Brain waves are rhythmic oscillation patterns, and
in particular, the gamma-band oscillations are related
to the modulation of perception and awareness that are
directly linked to pain processing. In recent studies on
human subjects, pain-linked gamma oscillatory activity
has been reported [15,17,20,21]. However, several crit-
ical matters about what is the role of circuitry behind
functional dynamics during gamma elicited pain pro-
cess remain yet to be solved. Neurons in the dorsal horn
process sensory information, which is then transmitted
to different ensembles of neurons in the brain, including
those related to pain processing [9]. The circuity in the
dorsal horn is highly heterogenous making difficult to
understand the mechanisms underlaying the processing
of pain in the nervous system [9]. Nociceptive process
can be exacerbated or decreased by means of deactiva-
tion or activation of inhibitory interneurons in the dor-
sal horn [7–12]. In the current work, we aim to deliver a
very simple tool to gain a deeper understanding of the
circuitry structure behind pain processing.

Very little is known about the neuronal circuits that
process the sensory information of pain, mainly due
to the heterogeneity that makes the different compo-
nent of the circuits [9]. However, it is well established
that the inhibitory interneurons play a crucial role on
the transmission of pain as spontaneous variations in
the inhibitory number of neurons can increase the pain
sensations [9]. To emulate the firing activity patterns
of a population of neurons, we use a biologically plau-
sible neuronal model, where excitatory weights evolve

according to the STDP rule, capable to reproduce
the prominent dynamical features of biological neurons
[23,24]. From the spectral analysis of signals of the neu-
ronal populations, it is possible to detect the presence of
gamma-band oscillations patterns that are directly cor-
related to pain intensity [21]. We use the current model
as it exhibits gamma oscillation patterns and other
interesting regimes [23,24]. A similar model can be
used to investigate learnable conduction delays where
the high activity strongly potentiates the inhibitory
synapses [65] and for spatio-temporal pattern storage
[66]. Nevertheless, this would not explicitly encode the
binding relations between low- and high-level features
that might develop through polychronization within a
hierarchical model of visual processing [67]. That is, the
approach presented in this paper has broader applica-
tions, although the neuronal modeling would require
some modifications depending on the subject of inves-
tigation. Gamma frequency band activity is induced in
cognitive tasks and is thought to reflect underlying neu-
ral processes. Moreover, let us remark that inhibitory
neurons are specially tuned to keep the gamma rhythm
stable [68], and it constitutes the specific consideration
guiding the current model and methodological approach
to investigate pain processing.

Identifying how the network circuitry handles noci-
ceptive information, coming from different gamma
elicited oscillation patterns is of ultimate help for find-
ing recognizable nociceptive boost in the brain and
defining the dynamic framework of the modulation of
pain. We study different circuitry configuration with
various degree of network inter-connectivity, estimat-
ing how the closeness centrality changes when we vary
the proportion of inhibitory neurons in the network, for
nociceptive configurations eliciting gamma-band activ-
ity. More specifically, we use the Bandt and Pompe
approach to generate probability density functions,
which take into account the causality of the signal, and
based on the degree of network inter-connectivity calcu-
lated through the Jensen Shannon distance, we estimate
graph centrality measures. The present study allowed
us to characterize the dynamics of the cortical distribu-
tions of different pain configurations, through the esti-
mation of the closeness centrality. The averaged close-
ness centrality peaks when the number of inhibitory
neurons is about the 20% of the total amount of neu-
rons. That is, the averaged closeness centrality increases
as the number of inhibitory neurons becomes larger
reaching a peak at 20%, and for higher values of Ni,
it is significantly curtailed.

To gain a deeper understanding of which configura-
tion enhances information transmission during nocicep-
tive process, not just based on a simple calculation of
average values of the closeness centrality, we estimate
the node strength distributions to investigate the Shan-
non entropy, the MPR complexity, and the Fisher infor-
mation as the proportion of inhibitory neurons changes.
Our finding shows that these types of oscillations opti-
mize pain information transmission when the percent-
age of inhibitory neurons is 20% of the total number of
neurons. That is, through the estimation of the informa-
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tive planes H×CMPR, H×F , and CMPR×F , we charac-
terize the configurations that process information more
efficiently. When the number of inhibitory neurons is
Ni = 202 on a population of 1000 neurons, the informa-
tion transmission peaks maximizing the transmission of
information [61–63], and this might act as prime mech-
anism underlying neuronal circuits of pain. In addition,
the causal plane H × CMPR proves that the complexity
diminishes as Shannon entropy gets higher, while the
plane CMPR × F shows that Fisher information raises
non-linearly as complexity increases. We show that the
plane H × F reaches a maximum when Ni = 202 neu-
rons for a populations of 1000 neurons.

In conclusion, a network configuration with a given
number of inhibitory neurons close to the 20% of
the total of population improves data transmission
for gamma elicited nociceptive process ruling the neu-
ronal dynamics behind pain. Investigating the emerging
dynamic properties using a three-dimensional represen-
tation CMPR ×F ×H allows us to determine the struc-
ture defining the network dynamics for the different
gamma elicited pain circuitries. In this way, we deter-
mine which pain settings have maximum Fisher infor-
mation, which means that they have a concentrated dis-
tribution, and maximum complexity, i.e., a system far
from equilibrium showing a chaotic behavior [64]. This
information is then conveyed efficiently, though a cir-
cuit structure with an optimal value of inhibitory neu-
rons close to 20% of inhibitory neurons, which depicts
gamma-band oscillations, can be of major significance
for understanding basic elements of nociceptive states.
The computer model used in this work is a highly reli-
able and biologically plausible model. The methodology
presented in this work that combines spectral analysis
techniques, with graph theory and information theory
tools, is completely novel as well as the results obtained.
The current work introduces a robust methodology that
would be helpful for planning future experimental anal-
ysis, including indicators of deactivation or activation of
inhibitory interneurons in real neurophysiological data,
to characterize the dynamics of the gamma elicited
topologies’ configurations of pain.
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