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Abstract The preparation of N -sulfonyl-1,2,3,4-tetrahydro-
isoquinolines, N -sulfonyl-2,3,4,5-tetrahydro-1H -2-benzaze-
pines and N -sulfonyl-1,2,3,4,5,6-hexahydrobenzazocine
was catalyzed by a Preyssler heteropolyacid, H14[NaP5W30

O110], (PA), supported on silica (PASiO240) with excellent
yields by means of the Pictet–Spengler reaction of N -aralkyl-
sulfonamides with s-trioxane. The reactions proceed with
0.5 mol% of silica-supported catalyst in toluene at 70 ◦C. The
catalyst can be recycled without appreciable loss of the cat-
alytic activity.
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Introduction

Heterocycles are important compounds in organic chemis-
try. Most heterocycles have wide applications in medicine
and in the fine-chemicals industry. Due to their wide range
of biological activity, the suitable synthesis of these com-
pounds has recently received a great deal of attention for the
development of improved protocols toward clean, milder, and
high-yielding approaches.

The Pictet–Spengler reaction is one the key reactions for
the construction of the isoquinoline skeleton and indole alka-
loids, which constitute an important class of naturally occur-
ring bioactive substances. It was developed in 1911 by
Pictet and Spengler, who used an acid-catalyzed cyclization
of the intermediate imine formed by condensation of aryl-
ethylamine with a carbonyl compound [1]. Then, the reac-
tion was modified to accept other β-phenethylamines such as
N -alkyl, N -acyl, and N -sulfonyl derivatives, proceeding via
iminium, N -alkyliminium, N -acyliminium, or N -sulfonyli-
minium ion formation, respectively, and subsequent intra-
molecular electrophilic substitution [2]. An acyl or sulfonyl
substituent at the nitrogen atom increases the reactivity of
the electrophilic partner.

1,2,3,4-tetrahydroisoquinolines and their derivatives are a
common core structure of many alkaloids isolated from nat-
ural sources and show antitumoral, antimicrobial, anti-HIV,
and other biological activities [3–7]. In particular, N -sulfo-
nyl-1,2,3,4-tetrahydroisoquinolines and N -sulfonyl-2,3,4,5-
tetrahydro-1-H -2-benzazepines are important synthetic
intermediates in the preparation of 1,2,3,4-tetrahydroisoquin-
olines and 2,3,4,5-tetrahydro-1-H -2-benzazepines, respec-
tively, as well as exist as substructures of various biologically
active compounds [8]. The classical method to synthesize
these compounds involves a sulfonylaminomethylation of
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N -arylalkylsulfonamides [9–11] using various agents, for
example, s-trioxane in acid medium [12].

On the other hand, the environmental problems, mainly
associated with the handling and disposal of the inorganic
acid, and their potential hazards have attracted the chemists’
attention to the development of alternative processes using
novel catalysts. There are numerous acid-catalyzed organic
reactions, and the use of solid acid catalysts is very important
in several industrial and environmental processes [13]. The
use of solid (heterogeneous) catalysts in organic synthesis
and in the industrial manufacture of chemicals is increasingly
important since they provide green alternatives to homoge-
neous catalysts [14]. In recent times, the use of inorganic sol-
ids as catalysts in organic transformations is gaining much
importance due to the proven advantage of heterogeneous
catalysts, such as simplified product isolation, mild reaction
conditions, high selectivity, easy recovery and catalyst reuse,
and reduction in the generation of waste by-products [15–17].

Catalysis by heteropolyacids (HPAs) and related com-
pounds is a field of increasing importance worldwide. Numer-
ous developments are being carried out in basic research as
well as in fine chemistry processes [17]. HPAs possess, on
the one hand, a very strong acidity, and on the other hand,
appropriate redox properties, which can be changed by vary-
ing the chemical composition of the heteropolyanion. Many
researchers [18–22] have reviewed the reactions catalyzed
by both heterogeneous and homogeneous systems. Although
there are many structural types of HPAs, the majority of
the catalytic applications use the most common Keggin-type
HPAs [23], especially for acid catalysts, owing to their avail-
ability and chemical stability. Other catalysts such as Wells–
Dawson and Preyssler heteropolyacids have begun to be used
[24]. The Preyssler polyanion consists of a cyclic assembly
of five PW6O22 units, each derived from the Keggin anion,
[PW12O40]3−, by the removal of two sets of three corner-
shared WO6 octahedra [25]. The Heravi group has researched
the efficiency of Preyssler heteropolyacids as a green and
recyclable catalyst. The catalyst is more active and selective
than the Wells–Dawson and Keggin heteropolyacids. Some
advantages described by this author are high pH stability (0–
12), high thermal stability, and a large number of acidic pro-
tons [26]. Preyssler catalyst molecule has a hole of 6.6 Å in
diameter, in that 14 acidic protons are attached. Acid strength
(butylamine valoration) of the Preyssler catalyst protons cov-
ers the range of 46.4–862.1 mV. Bulky substrate molecules
or substructures could easily reach the acid sites. An impor-
tant number of organic transformations using the Preyssler
tungsten heteropolyacid catalyst H14[NaP5W30O110] as well
as coumarins [27], 2-amino-4-H -chromenes [28], and ben-
zodiazepines [29] have been reported.

As part of a project in the field of Green Chemistry that
is being executed in Argentina, we have recently applied a
Keggin and Wells Dawson heteropolyacid for synthesizing

coumarins, by the Von Pechmann reaction [30], flavones and
chromones [31].

In this article, we describe a new and suitable procedure
for preparing N -sulfonyl-1,2,3,4-tetrahydroisoquinolines,
N -sulfonyl-2,3,4,5-tetrahydro-1H -2-benzazepines, and N -
sulfonyl-1,2,3,4,5,6-hexahydrobenzazocine using H14[NaP5

W30O110] as heterogeneous catalyst. The intramolecular sul-
fonamidomethylation of the corresponding N -aralkylsulf-
onamides with formaldehyde formed from s-trioxane was
carried out in toluene at 70 ◦C. The corresponding final des-
ulfonylation of a number of selected compounds II was car-
ried out using sodium bis(2-methoxyethoxy) aluminum
hydride (Vitrider) in toluene at 80 ◦C, or HCl 3M hydroly-
sis at 75 ◦C, according to a reported procedure [12] to obtain
1,2,3,4-tetrahydroisoquinolines (Scheme 1).

The overall process defined as an intramolecular sulfo-
namidomethylation reaction was initially studied using sub-
strate Ia (compounds: Table 1, Entry 1). Different reaction
conditions were checked, such as reaction temperature, cat-
alyst/reagent molar ratio, and reaction time. The best result
was obtained using toluene as solvent at 70 ◦C, and a cat-
alyst/reagent molar ratio of 0.005. Under these conditions,
product IIa (product: Table 1, Entry 1) was obtained with
high selectivity and free of by-products in 60 min (Table 1,
Entry 1a). For PASiO240 Ia and a molar ratio 0.005, the
yields of product IIa raised from 25% to 82% in 15–60 min
at 70 ◦C (Table 1, Entries 1b and 1a). However, the yield was
similar when the reaction time increased to 180 min (Table
1, Entries 1a and 1d). When the catalyst/Ia molar ratio was
increased to 0.03, the observed yield of IIa was comparable
to the results obtained with a molar ratio of 0.005 (Table 1,
Entries 1c and 1a). When the reaction temperature was low-
ered to 50 ◦C, the yields decreased to 30% (Table 1, Entry 1e).
No reaction was detected at room temperature. In the blank
experiments conducted without Preyssler acid1 and under the
same conditions, no product was detected when substrate Ia
dissolved in toluene was warmed at 70 ◦C for 2 h.

Using the optimized conditions—a molar ratio of sub-
strate/catalyst of 0.005, 70 ◦C, toluene as solvent, and 60 min
reaction time—several N -sulfonyl aryl alkylamines were
tested. The catalytic activity of the PASiO240 acid was tested
in the preparation of N -sulfonyl-1,2,3,4-tetrahydroisoquino-
lines, N -sulfonyl-2,3,4,5-tetrahydro-1H -2-benzazepines,
and a N -sulfonyl-1,2,3,4,5,6-hexahydrobenzazocine. The
use of just 0.5 mmol% of HPA is enough to push

1 The Preyssler acid H14[NaP5W30O110], PA, was prepared by a
literature method [32]. Silica-supported Preyssler acid was prepared
by wet impregnation of Grace Davison silica (Grade 59, specific
area = 250 m2/g) with an acetone solution of the synthesized PA. A cat-
alyst containing 40 wt% of PA was prepared. After impregnation, the
samples were dried at room temperature in a vacuum desiccator for 8 h.
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Table 1 Preparation of
N -sulfonyl-1,2,3,4-tetrahydro-
isoquinolines,
N -sulfonyl-2,3,4,5-tetrahydro-
1H -2-benzazepines and
N -sulfonyl-1,2,3,4,5,6-hexa-
hydrobenzazocine catalyzed by
Preyssler catalysta

a Reactions were performed at
70 ◦C in toluene, using
0.5 mmol% of Preyssler acid
supported on silica, reaction
time 60 min, substrate/s-trioxane
molar ratio 1:3
b Yields in parentheses
correspond to the first and
second reutilization of the
catalyst
c Reaction time 15 min
d Molar ratio 0.03
e Reaction time 180 min
f Reaction temperature 50 ◦C
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     7 1 4-CH3O H 60 

     8 1 3,4-(O CH3)2 H 78 

9 2 HH 81 

10 2 HCH 3 91 

11 3 HH 76 

12 4 HH - 

the reaction forward; higher amounts of the catalyst did not
improve the results. The experiments were run until the sub-
strate was consumed or until no changes in the composition
of the reaction mixture were observed by TLC. In all the
cases, the desired products were obtained with high selectiv-
ity, and almost free of secondary products. Product IIe with

n = 4, bearing a nine-membered ring was not formed (Table
1, Entry 12). In this case, the unchanged starting materials
were recovered nearly quantitatively.2

2 General procedure to prepare N -sulfonyl-1,2,3,4-tetrahydroiso-
quinolines, N -sulfonyl-2,3,4,5-tetrahydro-1H -2-benzazepines, and
N -sulfonyl-1,2,3,4,5,6-hexahydrobenzazocine II: to a mixture of
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The use of the supported catalysts allows an easy separation
and recovery of the catalyst for its immediate reutilization. It
is noteworthy to mention that the catalyst is recyclable and
could be reused without significant loss of activity. It could
be recovered by filtration by washing with toluene and dry-
ing. The recycled catalyst could be subjected to a second or
even a third reaction. In the model reaction, the results of the
first experiment and the subsequent ones were almost consis-
tent in yield after three runs (82%, 79%, 78%; Table 1, Entry
1a).

The removal of the N -sulfonyl group from compounds II
to give the fused heterocycles III was performed by reduc-
ing it with sodium bis(2-methoxyethoxy) aluminum hydride
(Vitride◦) reported previously by one of us [12].

The method described above provides a clean, simple,
and useful alternative to prepare N -sulfonyl-1,2,3,4-tetrahy-
droisoquinolines and their ring analogs. The use of silica-
supported Preyssler catalysts provides very good yields, also
leading to an easy separation and recovery of the catalysts for
further use. The catalytic activity, which is practically con-
stant in consecutive reaction batches, and the high recovery
of the catalysts allow for both low environmental impact and
low cost. Other “green” advantages of the method are the
low formation of wastes and the replacement of corrosive,
soluble mineral acids.3
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