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Relevant aspects of the critical behavior of the site perco- 
lation model in a L x M geometry (L ~ M) are studied. 
It is shown that this geometry favors the growth of per- 
colating clusters in the L-direction with respect to those 
growing in the M-direction, causing pronounced finite- 
size effects on the percolation probabilities. Scaling func- 
tions have an additional parameter, namely M, which 
introduces a dependence of these functions on the aspect 
ratio L/M. At criticality, the probability of a site belong- 
ing to the percolation clusters (PL,~t) behaves like 
PL.MocL-P/v4)(L/M ) with /?=5/36 and v=4/3, where q5 
is a suitable scaling function. Using scaling arguments 
it is conjectured and then tested by means of Monte 
Carlo simulations, the following asymptotic behavior 
4(L/M)o~(L/M) ~, (L~  o% M ~ 0% c~ = 1), for the leading 
term. Systematic deviations of the Monte Carlo data 
from the conjectured behavior are due to second order 
corrections to the leading term which can also be under- 
stood on the basis of scaling ideas. Finite-size dependent 
"critical probabilities" are also functions of L/M as it 
follows from scaling arguments which are corroborated 
by the simulations. 

I. Introduction 

The percolation theory and percolation models are top- 
ics of permanent research due to their interesting appli- 
cations in many fields of experimental and theoretical 
physics and physical-chemistry (see for example the re- 
views [1 6] and references therein). Percolation prob- 
lems are studied by means of a number methods and 
techniques such as for example the percolative renormal- 
ization group [3], finite-size scaling [3, 5-7], Monte- 
Carlo simulations [-3, 7-9], etc. Particularly, finite-size 
effects in the standard percolation model (henceforth 
SPM) on the square lattice in two dimensions (2D) have 
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been extensively studied using a L x L geometry (L = lat- 
tice size) and assuming periodic boundary conditions [1 
9] or occasionally free boundary conditions [7]. The 
aim of the present work is to study some relevant aspects 
of the critical behavior of the SPM on the square lattice 
assuming the L x M (L ~ M) geometry. The lack of stu- 
dies of the SPM on a L x M geometry (within our best 
knowledge) is in contrast with extensive investigations 
of the Ising model on such geometry (see for example 
[1~12] and references therein). 

The investigation is based upon Monte-Carlo simula- 
tions and finite-size scaling arguments. It is expected that 
the present study will be useful for the understanding 
of finite-size effects on the behavior of adsorbed mono- 
layers on stepped surfaces assuming random adsorption 
on terraces L-lattice spacings wide. In fact, since substra- 
ta atoms at step sites account for the major contribution 
to structural defects in single crystal surfaces, the influ- 
ence of steps on adsorption phenomena has been experi- 
mentally [13 17] and theoretically [10-12, 18, 19] inves- 
tigated with growing attention (for a review see also ref- 
erence [20]). The present study would also be useful 
to qualitatively understand some properties of media 
constituted by consecutive layers; where for L<M, L 
becomes the only relevant dimension; such as for exam- 
ple diffusion and conductivity [6] in layered compounds, 
the flow of immiscible fluids [6] in layered porous media, 
etc. 

The manuscript is organized as follows: in Sect. II 
a brief description of the SPM and the simulation meth- 
od in presented. Finite-size scaling arguments are given 
in Sect. III, the results are presented and discussed in 
Sect. IV and the conclusions are stated in Sect. V. 

II. Brief description of the SPM 
and the Monte Carlo method 

Details on the SPM in 2D have been already published 
[1-9], so let us recall that the square lattice with a L x M 
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geometry is filled at random with probability p. A cluster 
is a group of particles connected by nearest-neighbor 
( n - n )  bonds. It has been established that, in the thermo- 
dynamic limit, there is a critical probability 
(pc---0.59275 _4-0.00003 [3]) such us for p < Pc clusters are 
confined to finite regions while just at p = Pc a percolation 
cluster (i.e. the so called incipient percolation cluster 
(IPC)) appears for the first time. 

The Monte-Carlo simulations are performed assum- 
ing free boundary conditions in both the M and L-direc- 
tions. Under  this assumption, clusters are identified using 
standard algorithms [-3]. Results are typically averaged 
over 103-105 different configurations, depending on the 
lattice size, in order to achieve reasonable statistics. 

Let us note that the study is restricted to single (inde- 
pendent) L x M samples, which is consistent with the 
assumption of random occupancy of lattice sites. So, this 
restriction implies absence of interactions between, on 
one hand absorbed species at neighboring terraces and 
on the other hand, diffusing particles on different layers 
of the layered sample. 

III. Theoretical background on finite-size scaling 

III.a. The largest cluster close to Pc 

In order to analyze some relevant properties of the IPC 
let us define the probability Poo(P) of a site belonging 
to the infinite cluster as a function ofp.  In the thermody- 
namic limit it holds [3-7] 

P~(p)oc(p-pc) p L=o%p>p~,p~pc,  (1) 

with f l= 5/36 in 2D. Working with finite (L x L) lattices 
one determines the probability of a site belonging to 
the largest cluster PL(P) and it is necessary to use finite- 
size scaling arguments to analyze the data. So, one has 
[3, 7] 

PL(p) oc r (L, ~)ocL-P/~q~((p-Pc) La/') (2) 

where q5 and q~ are suitable scaling functions and v = 4/3 
is the correlation length exponent; viz. the correlation 
length ~ in the infinite system behaves as 

~oc(p--pc)-L (3) 

In the L x M geometry one has an additional scaling 
variable, so 

PL, M(p)ocO~ (L, M, ~)oc L-~/~ ~)t (L-, (p-- pc) L a/~) (4) 

where r and q~a are also suitable scaling functions. Note  
that working with a constant aspect ratio L/M, Eq. (1) 
is recovered from (4) assuming the following asymptotic 
behavior 

6a (L/M, (p --Pc) L1/~) ~ {(P --Pc) L1/') ~, 
L/M=cte, M,L~oo .  (5) 

The existence of two scaling variables in (4) allows us 
to study the dependence of PL, M(P) on the aspect ratio 
by keeping constant e-(p-Pc)  L1/L In this case and right 
at criticality the second variable vanishes and we conjec- 
tured the following behavior of the scaling function 

~I(L/M,O)oc(L/M) ~, L,M---,oo, P=Pc. (6) 

In order to estimate the exponent 5 one has to use 
the fact that the IPC has a fractal structure and the 
average mass M(p =pc) of this cluster depends on L as 

M(p=pc)ocLD% L--* o% (7a) 

Dv=d-fl/v=91/48, (2D). (7b) 

Now using the approximation M(p=pc)oCPz,M(pc). 
LM and replacing PL,M(Pc) by (4) and (6), one has 

L 0 
M(p=pc)ocL-B/~(-~) LM 

=LI+~-~/~Ma-~ocL D~ L,M ~oo. (8) 

Then, using (7 b) it follows that ~ = d -  l in d-dimensions, 
so 5 = 1 in 2D. 

III.b. The percolation probability 

The percolation probability P.P.(p), is defined as the 
probability to find a percolation cluster for a given value 
of p. In the thermodynamic limit one has that P.P. (p)= 0 
for p < p~ and P.P. (p) = 1 for p > Pc- Nevertheless, for finite 
systems, one expects in principle, a no-vanishing value 
of P.P.(p) for all p (P.P.(p)4=0 for 0<p__<l, see Fig. 1 
Sect. IV) and consequently it is only possible to deter- 
mine lattice-size-dependent values of the "critical proba- 
bility" (say pc(L) for L x L systems) [3, 8]. Using finite- 
size scaling arguments it follows that [-3, 8] 

Pc =pc(L) + AL- a/v (9) 

where A is a constant. Working with a L x M geometry 
one can determine the percolation probabilities in the 
L and M-directions and their respective finite-size-de- 
pendent critical probabilities pcL(L, M) and pcM(L, M). 
So, like in the previous analysis of the larger cluster 
properties, there is an additional scaling variable (namely 
M) and (9) becomes 

PcL (L, M) = Pc + C i (L/M) L- 1/~, (10 a) 

PcM(L, M) = Pc + Ca (L/M) M -  a/v, (10b) 

where C a and C2 are constants for fixed values of the 
aspect ratio. 

In order to symmetrize (10a) we conjectured that 

Cl (L/M)= C~o + C~(L/M) ~, L, M ~ oo. (11) 

Replacing Eq. (11) in (10a) it follows 

PcL(L, M) = Pc + Cto L- 1/~ + C~ L ~- t/~ M-~ (12) 

Now, Eq. (12) becomes symmetric under the inter- 
change of the lattice dimensions by setting ~ = 1/v. Note  
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that (9) can be recovered from (12) for M=L.  Similar 
arguments can also be used in order to symmetrize (10b), 
i.e. 

pc~(L, M) = Pc + C,,o M -  ~/~ + C,, L- ah. (13) 

Comparing Eq. (12) and (13) it follows that Cm= C~ and 
Ct0=C,,o in order to be consistent with the symmetry 
of the problem. 

IV. Results and discussion 

1V.a. The percolation probability 

Figure 1 shows the percolation probabilities P.P.r(P) and 
P.P.~t(P) in the L and M-directions of the lattice, respec- 
tively, as a function of p for a system of size L = 6, M = 48. 
A comparison between these results and the behavior 
corresponding to the thermodynamic limit, i.e. a step 
right at Pc, shows up the existence dramatic finite-size 
effects such as rounding and shifting of the transition. 
The shift of both P.P.L(P) and P.P.~t(P) to the left and 
the right side with respect to Pc, respectively, can be 
qualitatively understood after inspection of snapshot fig- 
ures of the system taken at different values of p (Fig. 2). 
In fact, for p = 0.40 one has only no-percolating clusters 
in Fig. 2a. At p-0.50, Fig. 2b shows that a percolating 
cluster in the L-direction has been already growth. At 
P=Pc and due to the constraint L<M,  one observes 
the growth of numerous percolation clusters along the 
L-direction (four clusters in Fig. 2 c). On the other hand, 
the development of a single percolation cluster along 
the M-direction mostly occurs for P>Pc (Fig. 2e for p 
=0.70), but even for this high value of p one can find 
configurations with clusters percolating in the L-direc- 
tion only (Fig. 2d). It is interesting to compare these 
results with Monte-Carlo simulations of the ferromag- 
netic Ising model on the L x M geometry is absence of 
both surface and bulk magnetic fields [103 (Fig. 3). In 
fact, while at low temperature (T=<0.85 T~, where T~ is 
the critical temperature) the system exhibits spin do- 
mains with a very large typical length in the M-direction, 
this typical length decreases rapidly as one approaches 
T~ and becomes there of the order of L. So, on one hand 
for the Ising model close to T~ one has patterns of spin-up 
domains (high-coverage islands) followed by spin-down 
domains (low-coverage islands) while, on the other hand 
for the SPM close to Pc the snapshots show a sequence 
of percolating clusters alternated by regions having 
smaller (no-percolating) clusters. 

In order to analyze more quantitatively the observed 
finite-size effects one has to find out a method suitable 
to measure both pc~(L, M)  and pc~(L, M), that is the 
finite-size-dependent "critical probabilities". According 
to previous works these thresholds are defined by de- 
manding [8, 9], P.P.~(pJ=~0.9 and P.P.~(pc~)--0.9, re- 
spectively. Figure 4 shows plots of Pcc and p ~  vs L- ~/~ 
and M -  ~/~, respectively, for different values of the aspect 
ratio L/M. Straight lines are only obtained for each set 
of points with the same aspect ratio, in agreement with 
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Fig. 1, Plots of the percolation probabilities in the L and M-direc- 
tions of the lattice (e) P.P.z and (x)  P.P.g, respectively, versus 
the site occupation probability p. Results averaged over 105 differ- 
ent configurations for the lattice size L=6,  M=48. The dashed 
line shows the stepped transition characteristic of the SPM in the 
thermodynamic limit right at p~ 
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Fig. 2a-e. Typical snapshot configurations for rectangular samples 
of size L = 12, M =  132 at different values of the occupation proba- 
bility p. Sites taken by both, the largest and percolating clusters, 
are shown in black squares, other occupied sites are shown in 
black points and empty sites are left white, a p=0.40, b p=0.50, 
e p=p~, d p=0.70 showing two percolating clusters in the L-direc- 
tion and e p=0.70 with a single percolating clusters in the M- 
direction. More details in the text 

o) 

Fig. 3a-c. Snapshot pictures of a L=24,  M=288 ferromagnetic 
Ising lattice in absence of both surface and bulk magnetic fields 
and temperatures T=0.95 T~ (a), T= T~ (b)and T= 1.05 T~ (e); where 
T~ is the critical temperature. Lattices sites taken by an up spin 
are indicated by a black square, others are left white. The configura- 
tions shown resulted after 18.000 Monte-Carlo steps per spin. (Tak- 
en from reference [10]) 
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Fig. 4. Plots of the finite-size-dependent "critical probabilities" 
P~L(P~M) in the L(M)-direction versus L-~/'(M ~/~) for systems with 
different aspects ratio (m) L/M= 1/2, (e) L/M= 1/8; (( x ) L/M = 1/2, 
(A) L/M = 1/8), respectively. The corresponding width and length 
of the lattice is shown by arrows in the lower and upper part 
of the figure, respectively 

Table 1. Values of the critical probability obtained extrapolating 
PcL and P~M to L~  oO and M ~ 0% respectively, for lattices of differ- 
ent aspect ratio L/M. The last two lines shown the values of p~ 
obtained from the plots of PcL(L, M) vs X(L, M) and p~M(L, M), 
respectively (see Fig. 6 a-b) 

L/M pc(L ~ oo) p~(M ~ ~) 

1/2 0.593 0.594 
1/4 0.594 0.594 
1/8 0.594 0.597 
1/16 0.591 0.599 
X(L, M)=0 0.5927 - 
Y(L, M) = 0 - 0.5922 

(10a, b). Furthermore,  the extrapolations pcL(L~ oo) and 
PcM(M-~ oo) give values of Pc which are in good agree- 
ment with the best available value of the critical proba- 
bility, i.e. pc=0.59275_+0.00003 [3] as it follows from 
Table 1. In order to test our conjecture (Eq. (11) with 

= 1/v), the slopes of the straight lines obtained from 
Fig. 4 and similar plots for different values of the aspects 
ratio (not shown here) are plotted against (L/M) 1/~ in 
Fig. 5. This figure suggests that the conjecture holds for 
both CI(L/M) and C2(L/M ) and from the obtained 
straight lines one gets C~o~--0.77, C~-~1.53, C,,o-~ 
-0 .81  and C,,~-1.30. Note that Cto~-Cmo and Ct~--Cm 
within error bars of 5% and 15%, respectively, which 
is reasonable taking not only the errors of the Monte 
Carlo simulations but also the method used to calculate 
the C-values into account. Now, knowing these con- 
stants one can also test the validity of (12) and (13). 
In fact, defining 

X (L, M) =- Cto L- 1iv + Cz M -  1/~ (14a) 

Y(L, M)-= C,,o M -  ~/~ + C,, L-  1/~ (14b) 
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Fig. 5. P]ot of Cz(L/M) versus (M/L) 1/'. Data obtained from the 
slopes of straight lines like those shown in Fig. 4. The aspect ratio 
of the lattices are, from the left to the right hand: L/M= 1/2, 1/4, 
1/8 and 1/16. The inset shows a plots of CI(L/M) versus (L/M) 1/" 
for the following aspect ratio of the lattices, from left to right: 
L/M = 1/8, 1/4 and 1/2 

one has that plots of PcL(L, M) and pcu(L, M) versus 
X(L, M) and Y(L, M), respectively, should give straight 
lines independently of the aspect ratio (L/M). Figure 6 a 
and b show these plots and the excellent data collapsing 
obtained again confirms the validity of our conjecture. 
The values of pc obtained at the intersections X(L, M)= 0 
and Y(L, M ) =  0 in Fig. 6 a and b, respectively, are listed 
in Table 1. 

IV.b. The largest cluster at criticality 

As it has been pointed out in the previous section, the 
probability of a site belonging to the largest cluster 
PL,M(P) depends on two scaling variables, namely L/M 
and e - ( p - p c ) L  1/~ (see Eq. (4)). Therefore, in order to 
test the scaling argument it is convenient to study the 
dependence on both variables separately. Figure 7 shows 
a log-log plot of PL, M(P) L~/" versus L/M right at criticality, 
i.e. e = 0. One observes a reasonable data collapsing into 
a straight line behavior with slope 6_-__ 1 as it has been 
conjectured in the previous section on the basis of finite- 
size scaling arguments. Nevertheless, a careful inspection 
of Fig. 7 suggests the existence of systematic deviations 
of the data corresponding to each constant values of 
L/M. This fact is stressed in Fig. 7 where two lines with 
slopes 6 = 1 have been drawn for comparison; the full 
line passes through the points corresponding to L = 6  
while the dashed one is defined by points with L = 24. 
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Fig. 6. a Plots of p~M(L, M) versus Y(L, M) for lattices of different 
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Fig. 7. Log-log plot of PL,M(P) Lp/~ versus L/M for lattices of different 
aspect ratio. The straight lines with slope 6 = 1 have been drawn 
for comparison. Note that the full (dashed) line is passes close 
to the points with L = 6 (L = 24), respectively 

The observed deviations could be due to corrections 
to scaling which may play a role in small lattices. In 
fact the conjecture & = 1 (see Eq. (8)) has been obtained 
assuming MocL DF (Eq. (7a)), but taking into account 
finite-size scaling corrections, Eq. (7 a) becomes 

M(p=pc)~-A1 LDF + A2 L~ ... (15) 

with D 2 = D v - 1  in two dimensions [-6]. So, assuming 
also corrections in (6) one can write 

(~1 (L/M) ~- (L/M) ~ + ~c (16) 

where the first term of the right hand side is the leading 
term with f =  1 and the second one is the correction 
that has to be determined. Now, making similar replace- 
ments like those used in order to obtain (8) one gets, 
after some algebra 

cl)coc M -  1 ocL- 1, P =Pc, L / M  = cte, (17) 

in qualitative agreement with the observed deviations. 

On the other hand, the dependence of PLM(P) keeping 
the aspect ratio L / M  constant have also been studied. 
Log-log plots of PLM(P) L p/" vs e (not shown here) exhibit 
data collapsing only for each set of lattices with the same 
aspect ratio, as expected from the discussion of Sect. III. 

V. Conclusions 

The standard percolation model in the square lattice 
is studied at criticality using a L x M geometry. Close 
to Pc, the constraint L < M favors the growth of percolat- 
ing clusters in the L-direction with respect to the M- 
direction. This finding is compared and discussed with 
a similar behavior observed in the ferromagnetic Ising 
model. Therefore, it is expected that in adsorption experi- 
ments on stepped surfaces one should observe the 
growth of adsorbed island crossing through the terraces, 
independently of the details of the adparticle-adparticle 
interaction energy. Scaling functions have an additional 
parameter, namely M, and consequently these functions 
also depend on the aspect ratio L/M. Using finite-size 
scaling arguments we conjectured the dependence on L/ 
M of the scaling functions for both the percolation prob- 
ability and the probability of a site belonging to the 
largest cluster (PLM(P)). These conjectures are tested by 
Monte Carlo simulations. Systematic deviations from 
scaling of the Monte Carlo data for PLM(P) at constant 
aspect ratio are interpreted as due to a second order 
correction to the leading term. This kind of deviations 
are absent in the scaled plots of the percolation probabil- 
ity. 

E.V.A would like to acknowledge stimulating discussions with 
Profs. K. Binder and D. Heermann 
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