
VI I I. HYPERVIRIAL THEOREMS FOR 10 FINITE SYSTEMS. GENERAL BO~NDARY 

CONDITIONS 

34. Reformulation of some theorems 

The finite BC confront us with a problem no previously found in those 

cases studied in Part A. Let us suppose that *.,*. are two functions 
I J 

that obey the BC of the problem, so that they belong to DH• If w is an 

arbitrary I inear operator, then in general, w*j does not belong to DH. 

This fact makes the equality 

<*.IHw1jJ.> = <H1jJ.lw*.> 
I J I J 

no longer valid and it must be replaced by 

<*.IHw*.> = <H*.lw*.> + S .• 
I J I J I J 

where S .. arises from the divergence theorem 
I J 

<1jJ.llIw*.> = <lI*·lw*.> + IS {1jJ~'Il(w1jJ.} - (w1jJ.}Il*~'}.;:;-ds 
I J I J I J J I 

( 1 ) 

(2) 

If the dimensionless Hamiltonian for an N-coordinate system is written 

as 

we deduce at once 

..,. 
r 

When 1jJi'*j are H-eigenfunctions with eigenvalues Ei ,E j respectively, 

the HT has the form: 

If w*j~DH' then Sij=O and the HT has the same expression as for infini

te systems. The result due to Epstein [1] and given in section 33, is a 

particular case of (4) (when *.=*.=* and E.=E.=E) 
I J I J 

( 5 ) 
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Owing to this difference, we have to modify two theorems previously 

presented. The first one, given in section 2, is due to Hirschfelder 

[ 21. 

Theorem I. The wave function is an H-eigenfunction iff fulfills (S) for 

any I inear operator w. 

Proof: It is immediate because it follows the same scheme as shown in 

section 2 (Theorem I). It is only necessary to rearrange (S) as: 

<H~lw~> - <~lwH~> = o. 

When necessary, we wil I impose in addition the condition that ~ holds 

the Be of the problem. 

The importance of this theorem rests upon the fact that it shows the 

advantage of using HO I ike f{~)V even though there exists finite Be 

(see the proof of Theorem I, section 2). 

The next theorem [3-61 was previously discussed in depth (section 3 and 

section 21) and besides it was appl ied to problems with infinite Be. 

Theorem II. I f H~o E~o and ~ satisfies the NDHR 

{E-E )<~I(,'.~ > + "IS {(u,.~ )V~'~ - ~1'V{w.~ >}.r;-ds; i=1,2, .•. o I 0 I 0 I 0 -

then 

< (H - E ) ~ I r,\ • rj; > ; i = 1 ,2, ••• 
I 0 

(6) 

(]) 

Proof: Once again it is immediate if one takes into account that (6) 

can be rearranged as 

The essential difference between this theorem and that given in section 

3 and section 21 is that DH does not include {w.~ } which, in general, 
I 0 

is not a subspace of the Hilbert space associated to the physical 

problem. 

Both theorems are totally general and they are val id for any system 
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whose potential depends only on the coordinates, because no reference 

was made respect the nature of the variables, to the frontier shape nor 

the class of Be. They are even val id for non bour.d states (section 6). 

When the frontier S is at infinity (so that $,\]* are zero on S), these 

theorems reduce to those presented in Part A, so that they can be con

sidered as a generalization of those given formerly. 

35. Hypervirial theorems for 10 systems under general Be 

Now we will develop the HT for those quantum 10 systems 

H = _!02 + Vex) (8) 

satisfying the general boundary conditions (GBe) 

1/I(a) Al/i' (a) 

1/I(b) = B1/I' (b) 

with A,B being real numbers and a<b. 

First of all, we must prove that H is Hermitian. If xl,x 2 obey (9), then 

<x IHx > = <HX Ix> + !{Ix"~x Ib - IX'~x'lb} 1 2 12 12a 12a 

(10) 

Hereinafter we will consider only real functions and real operators, 

so it will be not necessary to add the term c.c. 

When 1/1.,1/1. are H-eigenfunctions with eigenvalues E. and EJ., respective-
I J I 

Iy, Eqs. (3)-(5) assure us that 

<1/1. I [H,wll/J.> = w .. <1/I.lw1/l.> + S.. (11) 
I J I J I J I J 

Sij = HI (W1/lj)1/IiI! - 11/Ii(w1/lj)'I!} (12) 

<1/11 [H,wll/J> = S = HI(W1/l)1/I'l b - 11/I(W1/l)'l b } (13) a a 
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In order to determine the variation of the eigenvalues with the extre

me points of the interval (a,b), it is just necessary to differentiate 

(8) and then to apply the function <~I (we omit lower indices). 

For example, for b we get 

(14) 

The use of (2) enables us to transform the last equation in 

(15) 

Since, in general a~/ab does not satisfy the same BC as 1/1 does, the r.h.s. 

in (15) is not zero and dE/ab ". O. This result is entirely logic because 

the eigenvalues depend on a and b. 

For the other extreme point it follows a similar expression: 

(16) 

Since ~ holds (9), it depends on a and b, i.e. ~=1/I(a,b,x). When the 

GBC (9) are val id for any b value (in general, for any b value within 

a given interval) 

~(a,b,b) (1 ]) 

~(a,b,a) = M' (a,b,a) (18) 

it is possible to obtain a useful relationship just differentiating 

(17)-(18) with respect to b: 

.£l. ( b) + ~' (b) = B {~( b) + 1/1 II ( b) } 
db ab 

a~' A ab(a) 

In what follows, we will assume the existence and 

derivatives dE/ab; aE/da; d~/ab; a~/aa;a2~/abax 
that, substituting (19) in (15) we have 

(19) 

continuity of the 
2 a ~/axab; etc., so 

~~r = H~'(b)~~(b) - ~(b)~(b)} = H~(b) -Baa~~(b)}~'(b) = HB~II(b) - 1/I'(b)}~'(b) 

= H2B{V(b) - E}~(b) - ~'(b)W (b) = {B2 [V(b) - EJ - !-h' (b)2 (20) 
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Analogously, for the other extreme point 

( 21) 

The same resul t is obtained when one appl ies the Gonda and Gray's pro

cedure 0]. 

These two last formulas will be useful to deduce the analytical expres

sions for the HT. 

We have used in Part A basically two kinds of HO: w = f(x) and 1,1 = f(x)D. 

The second HO is really important, as stated in Theorem I, section 2 

and Theorem I, this section. The replacement w = f(x) in (13) gives 

Substituting (20) and (21) in (22) we get: 

1!. + B2f' (b) dE } 
, 2 ~ r 
oa 1 _ 2B [V(b)-E] 0 

110 r kin g a Ion g the sam eli n e 5 wit h the 0 the r 0 per a tor (ul 

obtain 

(22) 

f (x) D) we 

Hf(b)ljJ' (b)2 - f(a)ljJ' (a)2 - 2f(b)ljJ(b) [V(b)-E]ljJ(b) + 2f(a)1j;(a) [V(a) -

- E]ljJ(a) - f' (b)ljJ(b)ljJ' (b) + f' (a)ljJ(a)ljJ' (al) = 

- E] + Af' (a)}1jJ' (a)2 = -{f(b) + Bf' (b) } - {f(a) + 
2B 2 [V(b)-E]-1 

+ Af' (a) } if r (24) 
2A2[V(a)-E]-1 da 

Owing to their general character, Eqs. (23)-(24) represent the starting 
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point for all the following derivations. Ilultiplying (23) and (24) by 

r- 1 we normal ize the function: 

<[H,f]> 

<[H,fD]> 

2 { At (a) 
1-2A [V(a)-E] 

dE - + 
3a 

-{feb) + Bf' (b) } ~~ _ {f(a) + 2 Af' (a) } 
2B 2 [V(b)-E]-1 2A [V(a)-E]-1 

dE 
da 

(25) 

(26) 

It is interesting to point out that the HT involving operators dependent 

only on the coordinates are trivial when f~sDH because Eq. (25) shows 

a dependence with respect to the potential function as well as regard

ing the extremes of the interval. 

Now we present some important results that follow when f(x) adopts 

particular expressions: 

1) Substituting f(x) = x in (26) we deduce the VT in a very general 

formulat ion 

2<T> - «vV» -{b + B } 
2B2 [V(b)-E]-1 

2) Eq. (26) with f(x) gives 

<V' > aE/aa + aE I db 

dE { 2 A } ab - a + 
2A [V (a) -E]-1 

dE 
da 

Eq. (28) admits a simple and interesting enough interpretation: 

(2]) 

(28) 

L 
Let us suppose that we write the ends of the interval as a = - 2 + x·; 

L 
b = "2 + x·. The change of variable y = x-x· allows us to express the 

energy formula as: 

E 

L/2+x· f ~)(x)H(x)~(x)dx 
-L/2+x· 

Li2 

~ ~(y+x·)H(y+x·)~(y+x·)dy 
-L/2 

(29) 

Since ~(y+x·) satisfies the GBC when y = :L/2 for any x· value, obvious 

ly d~/ax· wil I satisfy the same BC, so that the HFT holds 

dE 
aa + (30) 
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One realizes at once that Eq. (28) is the HFT. The change of variable 

used here to demonstrate (30) is a particular case of the more general 

transformati~n proposed by Brillouin [8]. 

3) Substituting f(x) = x in (25) we obtain an expression for the momen

tum average value 

<0> 
A2 dE 

-{2 + 
1-2A [V(a)-E] aa 

ll} 
aa 

4) When the problem has a maximum symmetry, i.e. when Vex) is even b= 

-a and A=B, then Eqs. (25)-(26) are simplified up to a large extent 

(it is important to take into account that in this case, (aE/ab)r = 

{2B 2 [V(b)-E]-1 h' (b)2). 

<[H,f]> = B2f'(b) II 
1-2B2[V(b)-E] ab 

fe-x) f(x) 

<[H,fD]> = -f(b)aE/ab ; fe-x) = -f(x) 

Eqs. (32)-(33) are identically null when the parity of f(x) is the op

posed to that indicated there. As a particular case, we can verify the 

validity of the VT in its usual form 

2<T> - «vV» = -baE/ab (34 ) 

5) When the Hamiltonian operator depends on a parameter A, its eigen

functions must satisfy (9) for any A-value and a~/dA has to satisfy (9) 

too, so that it assures us the fulfillment of the HFT 

aE/aA <aH/aA> (35) 

6) When a="', the solutions (8) must meet the condition ~(",)=~, (00)=0 

(it is understood that we are considering only bound states) and the 

solutions (25)-(26) change to (aE/aa=O) 

(36) 

<[H,fD]> = -{feb) + Bf' (b) } dE 
2B2[V(b)-E]-1 at 



195 

REFERENCES 

[1] Epstein ST (1974). J.Chem.Phys. 60:3351. 
[2] Hirschfelder JO (1960). J.Chem.Phys. 33:1462. 
[3] Coulson CA (1965). Quart.J.Math. (Oxford) 16:279. 
[4] Bradley CJ, Hughes DE (1967). Int.J.Quantum Chern. 1s:687. 
[5] Bradley CJ, Hughes DE (1969). Int.J.Quantum Chern. 3:699. 
[6] Fern~ndez FM, Castro EA (1980). Int.J.Quantum Chern. 17:609. 
[7] Gonda I, Gray BF (1975). J.Chem.Soc.Faraday Trans. (( 71:2016. 
[8] Brillouin ML (1938). Compt.Rend. 204:1863. 


