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confirms the current expectation about its smallness relative to the Gamow–Teller decay.
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1 Outline of the talk

A well known procedure in many-body problems is to include part of the inter-
action as a mean field that does not exhibit the same symmetries as the original
problem. However, the naive application of the procedure often leads to unstable
results. This is the case for the calculation of double-beta decay matrix elements
in medium and heavy nuclei. In the first part of the lecture we shall illustrate with
a very simple example how to proceed in such cases. In the second part we shall
apply this procedure to the pairing field and to the calculation of schematic cases.
Finally we shall present the results of some realistic calculations.

2 The model Mobol

A ball is constrained to move along a ring with radius r0. Although the solution
of this problem is simple enough in the laboratory frame,

x(l) = r0 cosωt, y(l) = r0 sinωt, (1)

it is even simpler in a frame rotating with the ball, namely

x = r0, y = 0. (2)

∗) Presented by D.R. Bes at the Workshop on calculation of double-beta-decay matrix elements
(MEDEX’ 01), Prague, Czech Republic, June 11–15, 2001.
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The absence of angular motion in the intrinsic frame must be compensated by the
introduction of the angular coordinate θ relating the motion of the intrinsic frame
to the laboratory frame. From here on it is denoted as a collective coordinate, as
opposed to the original variable in the moving frame, which is called intrinsic. We
are faced with the same difficulties encountered, for instance, in nuclear physics,
namely:

i. the solution violates the original symmetry of the problem;
ii. it has more degrees of freedom than those of the initial problem;
iii. there is no restoring force in the y-direction (the origin of the instabilities

may be traced back to this fact);
iv. there is an “order parameter”, represented by r0, which should be larger than

the fluctuations in the y-direction.

As known from the treatment of descriptions from intrinsic frames (see, for
instance, Ref. [1]), we must introduce constraints, which in case of Mobol read

j − I = 0 (3)

H =
1
2m

p2
y =

1
2�j2, � = mr20. (4)

Here I generates collective rotations ([θ, I] = i) and j, intrinsic rotations (j = r0py).
Eq. (3) expresses the fact that the description obtained by moving the ball trough
a certain angle is completely equivalent to that one moving the rotating frame
through the opposite angle. The Hamiltonian (4) must be solved taking into account
the constraint (3). Physical states satisfy the constraint; unphysical states do not.
According to Dirac [2], the constraints are taken into account by demanding the
vanishing of the variable B conjugate to the Lagrange multiplier

B = 0, [λ,B] = i , (5)

HDirac =
1
2�J

2 − λ(J − I) . (6)

The Dirac Hamiltonian is equivalent to the initial one for physical states. Along
the process of quantifying gauge fields, Becchi, Rouet, Stora and Tyutin (BRST)
[3] have further developed these ideas, by introducing additional (ghost) variables.
The previous constraints are substituted by the requirement

Q = −η(J − I) + π̄B = 0, [η, π]+ = [η̄, π̄]+ = 1 , (7)
HBRST = Hcoll +Hsp, (8)

Hcoll =
1
2Im

I2
0 ,

Hsp =
1
2�(J − I0)2 − λJ + ω2

(
Bθ − 1

2�B
2

)
+ i

(
ππ̄ + ω2ηη̄

)
.

The BRST Hamiltonian displays a collective term representing a rotor with angular
momentum I0. Since the original Mobol problem has only one (rotational) degree of
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freedom, all the ones appearing in Hsp are spurious. It is important to mention that
it is possible to construct a vacuum for the spurious sector which is also the only
physical state in this sector. The application of the BRST invariance to many-body
problems was carried out in Ref. [4]. In summary:

i. the collective coordinate has become a real variable. As a trade off, the y-
degree of freedom in the intrinsic frame has been transferred to the spurious
sector;

ii. the final Hamiltonian involves one real and four spurious degrees of freedom.
However, the last ones become isolated even in more complicated cases. They
can be treated in perturbation theory, using r−1

0 as the expansion parameter;
iii. the lost symmetries have been restored at the collective level;
iv. the singularities inherent to the absence of restoring forces in the y-direction

are eliminated.
v. the introduction of collective coordinates is the first step of an exact many-
body treatment which must be carried out consistently.

We may also allow some fluctuations in the x-direction, which in this model
correspond to real, intrinsic excitations. In such a case the Mobol potential becomes
the Mexican hat potential. Such extension represents a non trivial caricature of a
realistic situation in which both intrinsic and collective real excitations are present
and in which there is an isolated spurious sector [4].

3 The pairing-isospin case

Since the possible double-beta decay emitters are medium and heavy nuclei,
one has to resort to mean field treatments, such as the BCS+RPA. Within such
an approach, it was shown that the inclusion of pairing-type proton-neutron inter-
actions resulted in the suppression of the double-beta decay matrix elements [5,6].
Although this suppression was also obtained with several other approaches [7] and
it was confirmed by the few available shell model calculations [8], the reliability of
the theoretical predictions has been hampered by instabilities in the treatment. An
alternative approach based on group theoretical methods has confirmed the exis-
tence of zero-energy states [9,10] which were interpreted as the signature of a phase
transition [11]. In this presentation the problem is tackled along the lines described
in Section 2. Instead of the simple model we must deal with a many-body problem
including both intrinsic and collective degrees of freedom. Such unified models play
a fundamental role in nuclear physics [12]. Dr. Civitarese will talk about the model
encompassing the single-particle spherical field and the translational motion in the
following lecture. I am going to deal now with the problem of simultaneous pairing
and isospace deformations [13]. In this case there are four constraints

τk − Tk = 0, (9)

corresponding to the three components of the intrinsic isospin τq and to the number
of pairs of particles τa. The operators Tq and Ta are the corresponding collective
generators.
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3.1 The Hamiltonian

The following Hamiltonian has been frequently used in the literature.

H = εvjτvj − gvS
+
v Sv − 1

2g⊥S
+
⊥S⊥, (10)

where εvj and τvj are the single-particle energy and number operators of protons
(v = p) or neutrons (v = n) in the j-shell. We denote by S+

p , S
+
n and S+

⊥ the pairing
operators creating a proton pair, a neutron pair and a proton-neutron pair coupled
to angular momentum zero.

S+
v = c+vjmc+vjm̄, S+

⊥ = c+pjmc
+
njm̄ + c+njmc+pjm̄. (11)

The Hamiltonian allows for the differences between proton and neutron single-
particle energies and pairing strengths, and for an (arbitrary) strength of the
neutron-proton isovector pairing component. As a consequence of the presence of
isovector and isoquadrupole terms in (10), this Hamiltonian does not, in general,
conserve isospin. Therefore we are faced with a problem that, to our knowledge,
had not been tackled before: to disentangle unphysical violations of the symmetries
introduced by the formalism (through the use of the basic set of states determined
by the field approximation) from those violations produced by the lack of invariance
of the effective nuclear Hamiltonian. Since the calculations are performed in the in-
trinsic system, the Hamiltonian (as any other operator), should be transformed to
this frame. We obtain

H = H0 +H1 +H2, (12)
H0 = εajτaj − g0(S+

p Sp + S+
n Sn + 1

2S
+
⊥S⊥),

H1 = ε0j D
1
0στσj − g1

[
D1

00(S
+
p Sp − S+

n Sn)

− 1√
2
D1

01(S
+
p S⊥ + S+

⊥Sn) + 1√
2
D1

01̄(S
+
n S⊥ + S+

⊥Sp)
]
,

H2 = −g2

[
D2

00(S
+
p Sp + S+

n Sn − S+
⊥S⊥)

+
√

3
2D

2
01(S

+
⊥Sn − S+

p S⊥) +
√

3
2D

2
01̄(S

+
⊥Sp − S+

n S⊥)

+
√
6(D2

02S
+
p Sn +D2

02̄S
+
n Sp)

]
.

We may verify that the transformed Hamiltonian commutes with the four con-
straints of the problem, as befits physical operators. This is not the case for (10),
which is unphysical. In (12) we have used

g0 = 1
3 (gp + gn + g⊥), g1 = 1

2 (gp − gn), g2 = 1
6 (gp + gn − 2g⊥),

εaj = εpj + εnj , ε0j = εpj − εnj,

τaj = 1
2 (τpj + τnj), τ0j = 1

2 (τpj − τnj).

(13)

Up to now the Hamiltonian (12), together with the constraints (9), constitutes an
exact complication of the original problem. As in the case of Mobol, we look for
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simplification through the definition of the intrinsic system (cf. Eq. (2)). Since there
are four angular variables in the collective subspace, we may choose four conditions
defining the intrinsic frame [14]. The selection

Im〈Sp〉 = Im〈Sn〉 = 〈S⊥〉 = 0 (14)

leads to the usual Bogolyubov–Valatin transformation between identical particles.
Albeit this selection of a gauge constitutes a violation of isospin and gauge symme-
tries, it is performed in the intrinsic frame. The np-pairing is incorporated through
the collective rotations in isospace and gauge space. The two remaining expectation
values 〈Sp〉 and 〈Sn〉 are real and considered to be the “order parameters”, i.e. the
large quantities of the system. If the isospin T is also large, the D functions may
be treated within a boson description through a generalization of the Holstein–
Primakoff algebra [15]. If we assume that the constraints (9) hold (and we know
how to enforce them through the Dirac–BRST procedure, as in the case of Mobol),
the leading orders of the the Hamiltonian simplify to

〈H〉 = εvj〈τvj〉 − gv〈Sv〉2,

H(20) − 〈λv〉τ (20)
v = evjτ

(20)
vj − gv〈Sv〉

(
S

+(20)
v + S

(20)
v

)
,

H(11) − 〈λv〉τ (11)
v = evjτ

(11)
vj − gv〈Sv〉

(
S

+(11)
v + S

(11)
v

)
,

(15)

H‖ = −gvS
+(20)
v S(20)

v , (16)

H⊥ = +ω⊥ιΓ
+
⊥ιΓ⊥ι + ωξξ

+ξ, (17)

Hmix = −g2
3
T
〈Sp〉〈Sn〉 (β4ξ+2 + β−4ξ2) (18)

−
(
β2ξ+Γ⊥ι + hc

)
φaι +

(
β2ξ+Γ+

⊥ι + hc
)
φbι,

Hsp = − 1
2�⊥

[
τ

(20)
1 , τ

(20)

1̄

]
+
. (19)

Equations (15) and (16) yield the Hamiltonians acting separately between neutrons
and protons, including the respective random-phase-approximation (RPA) interac-
tions. The Lagrange multipliers 〈λv〉 are introduced in order to fix the average
number of neutrons and protons. The RPA proton-neutron residual pairing inter-
action in (10), − 1

2g⊥S
+
⊥S⊥, is responsible for the instabilities that have appeared

in previous calculations. In the present treatment such interaction is substituted
by an isospin-independent nuclear interaction which gives rise to the well behaved
bosons Γ+

⊥ι, creating the so called antianalogue states. The operator ξ
+ acts in the

collective space by increasing the value of m = T − M (i.e., it excites the band
of analogue states having M = T for the ground state). Therefore the “badly be-
haved” operator τ1 has been substituted by the “well behaved” operator ξ+. The
excitation frequency wξ includes the single-particle Coulomb displacements

ωξ = − 1
T
ε0j〈τ0j〉 +

3g2 + g1

T
〈Sp〉2 +

3g2 − g1

T
〈Sn〉2. (20)

Czech. J. Phys. 52 (2002) 485



D.R. Bes and O. Civitarese

H
(T

,T
-2

)
H

(T
-1

,T
-2

)

H
(T

,T
-1

)

(2,0,0)

(1,1,0)

(1,0,1)

(1,0,0)

(0,1,0)

(0,0,1)

T

T-1

T-1

T-2

T

T-1

T-1

T

A, M=T-2A, M=T-1A, M=T

Fig. 1. Lowest energy states of a system with A nucleons. The set of quantum numbers
(A,T, M, (nξ, n⊥ι, ndι)) needed to specify a state is indicated for each state. Solid lines
represent allowed Fermi transitions and dash lines correspond to allowed Gamow–Teller
transitions. Dash-dotted lines indicate the mixing between states induced by the action

of the Hamiltonian of Eqs. (15)–(19) (see the text).

The (quadratic) Hamiltonians (15)–(17) provide a basis having the convenient fea-
ture that both the isospin T and its projection M over the laboratory z-axis are
good quantum numbers. In addition there are states with a different symmetry,
whose properties are not affected by the present formalism, as the states Iπ = 1+

created by the operators Γ+
dιq with frequencies ωdι and magnetic quantum num-

ber q. The spectrum of states associated with the neutron-proton sector is labeled
by the quantum numbers (A, T,M, (nξ, n⊥ι, ndι)) and is represented in Fig. 1. It
displays a signature

(−1)
∑

ι
(n⊥ι+ndι)+T−A/2 = 1. (21)

The isospin mixing terms are included in Hmix. The operator β2 increases the value
of the isospin by one unit (β2|T 〉 = |T +1〉). Therefore, the product β2ξ+ conserves
the projectionM in the laboratory frame. This is true for all isospin mixing terms
in (18). The operator β4ξ+2 mixes the ground state of a nucleus having isospin T−2
and projection T − 2 with the double IAS with spin T . It is proportional to the
isoquadrupole strength g2. The operator β2ξ+Γ+

⊥ı creates the antianalogue states
Γ+
⊥ι|0〉 in the neighbor odd-odd nucleus with isospin T − 1, laboratory projection

M = T − 1, simultaneously with the IAS carrying isospin T,M = T − 1. There
are also transitions in which an antianalogue state is destroyed, while the analogue
is created. The matrix elements of Hmix are represented with dash-dotted lines.
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The coefficients φaι, φbι arise both from the single-particle and the isovector and
isoquadrupole pairing contributions. Therefore, we have been able to disentangle
the proper isospin mixing terms from the spurious ones through the application of
the collective formalism. On the contrary, the naive RPA defines phonons which
carry a mixture of isospin values, leading to unpredictable consequences. There
remains the last line in (17). It goes straightforwardly to the spurious sector as the
p2

y term in Mobol. Due to limitations in time, that is all of what I can tell about
the spurious sector in this presentation.

3.2 The �� transition operators

The β− transition operators, being isovectors, should be also transformed to the
intrinsic frame. For the Fermi and Gamow–Teller GT operators, we obtain

β(F−) = −
√
2τ1 → −

√
2Tξ+, (22)

β(GT−)
q = σq1 ≡ 1√

3
〈j1||σ||j2〉[c+pj1

cnj2 ]
1
q

→ β−2
(
qfιΓ

+
dιq + (−1)qbιΓdι(−q)

)
. (23)

We note that for Fermi transitions, the operator τ1 has been again substituted
by ξ+. Therefore there are only Fermi beta decay processes within the isobaric
analogue band. However, the isospin mixing admixtures Hmix make possible the
transition between the initial state (ATT ) to the final state (A(T − 2)(T − 2)). It
may proceed through either the intermediate IAS (AT (T − 1)(1, 0, 0)) or through
the states (A(T − 1)(T − 1)(0, 1, 0)). The reduced matrix elements of the spin op-
erator are included in the GT operator (23). In that expression there has appeared
the isospin decreasing operator β−2, which allows the occurrence of double-beta
decay process without recourse to the isospin non-conserving terms of the Hamilto-
nian. The coefficients qfι, qbι are obtainable within an RPA calculation of Iπ = 1+

excitations.

4 Applications to Fermi double-beta-decay transitions

4.1 Schematic models

To illustrate the above introduced formalism, we have performed calculations in a
model space consisting of a single j-shell. In this case antianalogue states are not
present. We use the values j = 9/2 and j = 19/2. The other parameters entering in
the calculations are taken from [13], i.e., ε0j=0.8 MeV, gn = gp=0.4 MeV, A =10,
T = 3. Figure 2 displays the IAS energies ωξ (Eq. (20)) as a function of g2/g (upper
boxes). The point where ωξ vanishes and the point where the symmetry is restored
are different. This (exact) result cannot be reproduced by other approximations
as shown in [10]. The amplitude M1 of the Fermi transition to the intermediate
IAS and the amplitude M2 from the IAS to the final state (A(T − 2)(T − 2)) are
displayed in the lower boxes of Fig. 2. M2 is proportional to the admixture of the
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Fig. 2. IAS energy and matrix elements for Fermi transitions from the initial ground state
to the IAS (M1) and from the IAS to the final ground state (M2). Exact values (solid
lines) and perturbative values (dotted lines) are given as functions of the ratio g2/g and

for the two model spaces j = 9/2, 19/2 considered in the text.

double IAS (A, T, (T − 2)(2, 0, 0)) in the final state (Eq. (17)). Figure 3 shows the
exact and collective, Fermi double-beta-decay matrix elements. As expected if T
is conserved, the exact results show the suppression of the matrix element around
the point g2 = 0. The result is reproduced in the naive RPA (QRPA) and in the
collective approach, but not by the so called renormalized RPA (RQRPA). On the
other side, the naive RPA cannot go through the unstable region corresponding to
small g2 values. Ikeda’s sum rule is also reproduced by the collective approach but
not by the RQRPA.

4.2 Realistic calculations

We have performed a realistic calculation for the double-beta decay in 76Ge. Single-
particle energies are obtained from the parametrization of the Woods–Saxon poten-
tial recommended in [12], including the proton electrostatic field. The calculation
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Fig. 3. Theoretical matrix elements for allowed Fermi double-beta-decay transitions. Exact
(solid lines) and perturbative (dotted lines) values are shown, together with the results of

the conventional QRPA method and the results of the RQRPA method.

has been performed for the two pairs of strength values gn = gp = 0.289MeV
(g1=0) and gn = 0.289MeV, gp = 0.342MeV (so that the proton gap becomes
slightly larger than the neutron one). The Fermi amplitudes are represented as a
function of the isoquadrupole strength g2 in Figs. 4a and b. Two curves are dis-
played in each figure, corresponding to the contribution in which the intermediate
state is the IAS and to the sum of all other contributions from the physical roots
(⊥ ι). We note:

i. In the region −0.040 ≤ g2, the contribution due to the admixture of the dou-
ble IAS in the final state dominates, as evidenced from the linearity of the
corresponding matrix element with g2. Thus the results in Fig. 4 resemble
those of Fig. 3.
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Fig. 4. Matrix elements corresponding to allowed double Fermi transitions, as a function
of the coupling constant g2 and for the values of gn and gp indicated in the figure. The
contributions from transitions which proceed by the IAS (curves IAS) and other states

(Σι) are shown by solid and dashed lines, respectively. a) gp = gn, b) gn �= gp.

ii. The sum over the finite frequency roots (⊥ ι) is incoherent but for the most
negative g2 values, for which the validity of first order perturbation theory
becomes doubtful.

We have obtained the Iπ = 1+ states in the odd-odd system through an RPA
diagonalization of an isoscalar pairing interaction and a spin-isospin interaction.
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Fig. 5. Matrix elements for allowed double Gamow–Teller transitions, as a function of gd

(see the text) and for two different values of g1.

Their relative intensities are fixed through the condition that the GT resonance
lies at the empirical energy. Figure 5a displays the GT double-beta-decay matrix
elements [6] as a function of the isoscalar paring strength gd. We verify:

i. The GT amplitudes are an order of magnitude larger than those of the F
contributions. Therefore this comparison confirms the existing belief about
the dominance of the GT amplitudes in double-beta-decay processes.

ii. The calculation of both the F and the GT amplitudes is hampered by their
sensitivity to a unique parameter, g2 and gd, respectively. Unfortunately, the
value of these parameters is uncertain.

5 Conclusions

We have developed a collective treatment for motion in isospace and gauge
space. The system is described from a moving frame of reference using both col-
lective variables (determining the orientation of the moving frame) and intrinsic
variables (describing the motion of the particles with respect to the moving frame).
Since there are four collective variables, there are also four constraints (9) to be
satisfied and four conditions (14) that fix the body relatively to the moving frame.
They may be chosen such that there is only pairing between identical particles in the
moving frame (16). The solution to this last problem constitutes a mature subject
in nuclear physics. However, the main purpose of this work is to study the neutron-
proton subspace. Two difficulties have to be overcome: i) in the above mentioned
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basis, a zero-frequency RPA mode and subsequent infrared problems should be ex-
pected (at least if the Hamiltonian is an isoscalar); ii) the Hamiltonian generally
used in the literature for our region of interest is usually not an isoscalar, and thus
we must disentangle the real isospin mixing effects produced by the Hamiltonian
from those produced by our isospin-violating treatment. In the present paper we
show how to overcome both difficulties, under the assumption that the contraints
(9) hold. In particular, we obtain the quadratic Hamiltonian and the beta-decay
operators acting in the neutron-proton subspace. We do so without constructing
explicitly the mechanisms through which the constraints become validated. The so-
lution is checked against exact results for the case of particles moving in a single-j
shell and coupled by the isovector pairing interaction. The agreement is very sat-
isfactory, which is not the case for other procedures used previously to treat the
same problem. This is true for the calculation of the energy differences between
odd–odd and even–even nuclei, and for single-beta-decay and double-beta-decay
matrix elements. We have made also realistic calculations for the Fermi contribu-
tions to double-beta-decay processes in 76Ge. The expectation that such processes
are negligible relative to the Gamow–Teller contributions was never tested correctly
because of the above mentioned difficulties in the calculation. Our results support
conclusively this expectation.

Concerning realistic applications of the formalism, we would like to emphasize
its potential, particularly, in dealing with the calculations of electroweak scalar
currents.

This work was supported in part by the CONICET through the Carrera del Inves-

tigador Cient́ıfico; by the Fundacion Antorchas and by the University Favaloro (project
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