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The microscopic treatment of the spurious motion of the center of mass in nuclear
many-body systems is reviewed. In this talk we present and compare the results of using
the counterterms which are needed to fulfill the translational and Galilean invariances, and
those obtained by using collective variables. The formalism is applied to the calculation
of matrix elements of electroweak operators, as those which are active in the (µ−, e−)
conversion process.
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1 Introduction

Among the nuclear structure elements which can influence the outcome of a
Standard Model analysis [1–4], the problem of symmetry violations and its conse-
quences upon the calculation of nuclear matrix elements of electroweak operators is
relevant. We have centered our attention on the restoration of the translational and
Galilean invariance of the nuclear hamiltonians used in the calculation of Iπ = 1−

states. These invariances are required because the nuclear response to multipole ex-
citations is sensitive to the spurious center of mass (c.m.) motion. This is the case,
for instance, of µ–electron lepton-flavor violation processes [4]. Previous attempts,
to remove states in which the c.m. is not at rest, include shell model treatments
of two-body interactions in harmonic oscillator basis [5], the diagonalization of
a modified Hamiltonian which includes a harmonic term in the variables corre-
sponding to the c.m. [6], and the use of effective interactions [7]. The strength of
effective, separable, two-body interactions, derived from geometrical arguments in-
volving the self-consistency of either surface and volume fields, has been discussed
in [8]. Symmetry restoring interactions, to be added to the symmetry violating to-
tal Hamiltonian, have been introduced in [9]. Another method has been proposed
in the work [10]. It is based on the identification and subsequent elimination of
the coupling between c.m. and intrinsic degrees of freedom. This formal decoupling
leads to random phase approximation (RPA) equations which include also a finite
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frequency mode for the c.m. motion. In all three cases [8–10], the treatments are
extended to restore also the Galilean invariance of the interaction. Their validity
is always restricted to the RPA or equivalent linearized approximations. Another
treatments are described in Refs. [11–14].

Our formalism deals with the construction of the Hamiltonian and with the
specific application of the collective treatment (see the previous contribution by the
same authors). In the first part we have followed the conceptual lines of Refs. [8–10],
i.e., we have introduced counter-terms in the Hamiltonian, which goes beyond the
RPA. Thus, the new interactions may influence not only the strength of transitions
to Iπ = 1− states but also other nuclear properties as well. Next, we have applied
the method of [15] to eliminate infrared divergent terms due to a zero energy mode.
Hereafter, we shall discuss the main structure of the method and avoid the details
of the formalism, which can be found in [16].

2 Formalism

2.1 The counter-terms

Translational and Galilean invariances request that the Hamiltonian H should com-
mute with the momentum component pµ and with the coordinate rµ. An ideal
Hamiltonian, derived self-consistently, should satisfy these two conditions. How-
ever, this is not the case, in general, since single-particle energies are empirically
obtained from single-particle nuclear states and the residual interaction is obtained
either from schematic or realistic forces. As a consequence,

πµ ≡ [H, pµ] , ρµ ≡ [H, rµ] − i
m

pµ , (1)

are non-vanishing operators.
Thus, we are forced to include counter-terms in the Hamiltonian, which we

assume to be of the form

Hp = 
P .
r , Hr = 
R . 
p , (2)

in order to uncouple the three degrees of freedom (
r, 
p) from the remaining ones in
the problem. Here the (spherical) components Pµ and Rµ are determined from the
conditions

0 = πµ + iAPµ + (−1)ν [P−ν , pµ]rν + (−1)ν [R−ν , pµ]pν , (3)
0 = ρµ − iARµ + (−1)ν[P−ν , rµ]rν + (−1)ν [R−ν , rµ]pν . (4)

The n-body contributions to P,R yield (n + 1)-body terms in the effective
interactions (2). The one- and two-body terms of the solutions Pµ, Rµ to these
equations are shown in Appendix A of [16], in terms of an expansion similar to the
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one implicit in the RPA. In particular, the one-body terms are given by

Pµ(1v) =
i
A
πµ(1v) +

√
3

2A2
[π, p]0(00)rµ(1v) ,

Rµ(1v) = − i
A
ρµ(1v) +

√
3

2A2
[ρ, r]0(00)pµ(1v) ,

(5)

where the notation (nm) in the subindices labels a n-body operator with m-bodies
crossing the Fermi sea. The solution for the particle–hole equations (v = 1) coincides
with the one found in [10] for the case in which the boson associated with the degree
of freedom corresponding to the center of mass has zero energy. The two-body terms
read (cf. Eqs. (A13) and (A16) of [16]):

Pµ(2v) =
i
A
τµ(2v) +

1
2A2

∑
α

√
2α + 1

3

×
(
[[τ(2v), p(11)]α(1(v−1))r(11)] − [[η(2v), p(11)]α(1(v−1))p(11)]

)1

µ(2v)
,

Rµ(2v) = − i
A
ηµ(2v) −

1
2A2

∑
α

√
2α + 1

3

×
(
[[τ(2v), r(11)]α(1(v−1))r(11)] − [[η(2v), r(11)]α(1(v−1))p(11)]

)1

µ(2v)
,

(6)

where the two-body operators τµ(2v), ηµ(2v) are derived from the known operators
πµ, ρµ according to [16].

2.2 Application to single-particle Hamiltonians

The systematic application of the previous procedure associates residual interac-
tions (2) to any single-particle Hamiltonian. In the present section we study some
applications to the most frequent single-particle contributions, namely the har-
monic oscillator (ho) potential, the spin–orbit and the l2 terms, and the empirical
single-particle Hamiltonian. Details of the calculation are given in Appendix B of
[16].

2.2.1 The harmonic oscillator case

We assume a single-particle Hamiltonian of the form

Hho
sp =

1
2m

p2 +
mω2

2
r2 . (7)

The previously described procedure yields the interaction

Hho
p = −χho 
r.
r ,

χho =
mω2

2A
,

(8)
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with the strength χho equal to the self-consistent value derived in [8]. The linear
solutions (5) are exact for this case. The addition of the single-particle (7) and
residual interaction (8) yields the well known two-body Hamiltonian

Hho =
1

2m
p2 +

χho

2

∑
ab

|
ra − 
rb|2 . (9)

2.2.2 The spin–orbit and the l2 terms

We start from a single-particle term

Hso
sp = −χso(
l.
s)(1v) , (10)

which yields the two-body interactions

Hso
p =

χso

A

∑
w

(
p× 
s)(1(v−w)).
r(1w) ,

Hso
r = −χso

A

∑
w

(
r × 
s)(1(v−w)).
p(1w) . (11)

Therefore, the three spin-orbit contributions may be written as

Hso = Hso
sp + Hso

p + Hso
r

= −χso

2A

∑
ab

(
ra − 
rb) × (
pa − 
pb) .(
sa + 
sb) +
χso

2A
(
l.
s)(2v) , (12)

i.e., as a two-body spin orbit interaction which is obviously translational and
Galilean invariant plus a term that, within the RPA, is only operative for spin-
spin correlations (Iπ = 1+ resonances). The imposition of the form (2) to the
counter-terms results in the existence of higher order terms which should compen-
sate the (
l.
s)(2v) interaction. Indeed, Eqs. (3) and (4) may be exactly solved also
for the spin–orbit case. They yield (cf. Eq. (6))

Pµ =
χso

A

(
(
p× 
s)µ(1v) −

1
2A

∑
w

(

p(1(v−w)) × 
s(1w)

)
µ(2v)

)
,

Rµ = −χso

A

(
(
r × 
s)µ(1v) −

1
2A

∑
w

(

r(1(v−w)) × 
s(1w)

)
µ(2v)

)
.

(13)

Let us consider now the term

H ll
sp = −χll(
l.
l) . (14)

The resultant interactions are

H ll
p =

χll

A
(
p×
l).
r − χll

A
(
l × 
p).
r − 2χll

3A2
〈p2〉
r.
r ,

H ll
r =

χll

A
(
l × 
r).
p− χll

A
(
r ×
l).
p− 2χll

3A2
〈r2〉
p.
p .

(15)
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The sum of the three contributions may be written as

H ll
sp + H ll

p + H ll
r = −χll

2A

∑
ab

|(
ra − 
rb) × (
pa − 
pb)|2

− 2χll

3A
〈p2〉

(
1
A

r.
r − (
r.
r)(11)+(10)

)
− 2χll

3A
〈r2〉

(
1
A

p.
p− (
p.
p)(11)+(10)

)

+
χll

A

l.
l +

χll

A

∑
ab


rb × 
pa.
ra × 
pb +
χll

A
(
r.
r)(11)+(10)(
p.
p)(11)+(10)

− χll

A

∑
µ,a,b

(−1)µra,µpb,µ (ra,µ+1pb,µ+1 + ra,µ−1pb,µ−1) . (16)

2.2.3 Empirical single-particle energies

We have performed three sets of RPA calculations using the empirical single-
particle energies as in 208Pb and introducing as interaction:

i. a 
r.
r term with the self-consistent strength (8);
ii. the same interaction as in i) with a strength such that there is an eigenvalue

as close to zero as allowed by the computational facilities;
iii. the counter-terms with the values of 
P(11), 
R(11).

The results are given in Fig. 1, where the matrix elements of the operator 
r, cor-
responding to transitions between the ground (g.s.) and excited states, are rep-
resented as a function of the excitation energy. Although the calculation i. with
the self-consistent strength displays a prominent peak at low energies, the peak
is finite and located at an energy significantly larger than zero. On the contrary,
the results ii. and iii. show the peak at zero energy (within the numerical accuracy
of the calculation). This similarity apparently supports the use of the procedure
ii., appearing in the literature. Let us consider now the matrix elements to finite
frequency modes, which are those that interest us from the physical point of view.
In this case the calculations i. and ii. are those that yield very similar results, while
the scale is smaller by two orders of magnitude for iii., although the excitation
pattern is quite similar. We conclude that the admixture of the spurious to the
finite frequency modes is not changed significantly by varying the strength of the

r.
r interaction and thus the use of this interaction does not insure that we obtain
correct matrix elements to excited states. On the contrary, the uncoupling of the
spurious mode is accomplished through the counter-terms (2).

3 The collective formalism

The solution (5) guarantees that there is a zero-frequency RPA boson for each
direction in space. This consequence of the homogeneity of space gives rise to in-
frared divergencies, which should be taken care of. One way to solve the problem
is through the introduction of collective coordinates [15], which in the present case
represent the coordinates Rµ determining the position of a moving frame of refer-
ence relative to the laboratory frame. Within this description there is no way to
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Fig. 1. The matrix elements of the co-
ordinate operator, 〈1−n || r || g.s〉, to
the n-th one-phonon state, in units of
fm. The results are scaled by a factor
10−2 in cases (c) and (e) and by a fac-
tor 102 in case (f). Cases (a) and (b)
show the results of the RPA calculation
performed with the r.r interaction and
using the harmonic oscillator coupling
χho, cases (c) and (d) correspond to
the same interaction with a renormal-
ized coupling which yields a solution
at zero energy, cases (e) and (f) show
the results obtained with the use of
counter-terms. The single-particle basis
used in the calculations is an empirical
one which includes the Nosc=5, 6 and 7
active shells, and A = 126 particles.

distinguish between the motion of the body in one direction and the displacement of
the frame of reference in the opposite one. This gauge-type invariance is expressed
by the constraint

pµ −Pµ = 0 , (17)

where Pµ is the generator of displacements of the moving frame, hereon the col-
lective momentum ([R−µ,Pν ] = i(−1)µδµν). Physical states |phys〉 are annihilated
by the left hand side of Eq. (17) and physical operators Ophys commute with it.
As it is well known, the constraints may be taken into account by adding to the
Hamiltonian terms proportional to Lagrange multipliers 
Ω

H → H − 
Ω . (
p− 
P) , (18)

and requiring the vanishing of 
B, the momentum conjugate to 
Ω ([Ω−µ, Bν ] =
i(−1)µδµν).

3.1 The BRST invariance

Following [15] 1) the Becchi–Ronet–Stora–Tyutin (BRST) Hamiltonian reads

HBRST = H − 
Ω .
(

p− 
P

)
+ i
π . 
̄π + ω2

(

r . 
B

A
−


B . 
B

2mA
− i
̄η . 
η

)
. (19)

1) See also [20].
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3.2 The transformation to a moving system

In HBRST (19), the term 
Ω . 
P represents the coupling between the collective and
the intrinsic motion. This coupling may be eliminated via a transformation setting
in motion the intrinsic system, namely

T = exp

[
i
A


P .

(

B

m
− 
r

)]
, (20)

T HBRST T+ = H ′
BRST +

1
2mA

P2 , (21)

which explicitly displays the collective kinetic energy. Here H ′
BRST is the BRST

Hamiltonian without the coupling term 
Ω . 
P. Therefore, the translational collective
sector has become totally uncoupled from the remaining degrees of freedom of the
system.

We transform now the operator F (
ri + 
R) according to (20), namely

T F (
ri + 
R)T−1 = F

(

ri +

1
A

(

B

m
− 
r

)
+ 
R

)
→ F

(

ri −


r

A
+ 
R

)
, (22)

since 
B is a nil operator. Therefore the transformation (20) replaces the collective
coordinate 
R by 
R− 
r/A.

We may apply the formalism to the calculation of the coordinate operator 
r.
This operator appears in the excitation of Iπ = 1− states. We recall that, within
the RPA, this operator creates a phonon with frequency ωg = 0, with an amplitude
proportional to 1/√ωg (a clear example of infrared problems). From the practical
point of view, this behaviour leads to unphysical predictions whenever even small
amplitudes of the spurious state are present in a finite frequency RPA mode.

The corresponding physical operator is 
r+A
R, and it reduces to A
R after being
boosted: the vector 
r has disappeared from the calculation (and the associated
infrared divergencies as well). The problem is reduced to the calculation of the
well-behaved operator 
R within the collective sector of the Hilbert space.

3.3 The Hilbert space

In the moving frame of reference the collective variables 
R are considered to be real
variables and thus, as a tradeoff, some original degrees of freedom must join the
spurious sector. At the level of elementary modes of excitation these are given by
the RPA zero-frequency modes. In addition to the spurious sector |n0µ, n1µ〉, the
intrinsic sector displays elementary modes of excitation, which are represented by
the finite-frequency RPA modes |nν〉, (ων > 0).

4 Transition operators to be used in realistic calculations

The conversion of muons into electrons may proceed according to the lepton-
flavor violating processes discussed in [4, 17, 18]. The main interest of such process
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lies on the necessary mixing of muon and electron neutrinos. So far there are ex-
perimental upper limits for this process [4]. An example of the current calculations
is given in Refs. [17] and [18]. Considering the dominance of the contributions due
to the excitation of 1− states, see Refs. [17, 18], in the context of the RPA diag-
onalization, it is obvious that, from the nuclear structure point of view, one has
to produce an estimation as accurate as possible of the nuclear matrix elements
involved in the transitions.

The vector operator exciting Iπ = 1− states may be written

j1(qr)Y1µ|(11) =
∑
nν

〈nν |j1Y1|〉
(
γ+

nν ,µ − (−1)µγnν ,(−µ)

)

− i
A

(−1)µ〈[j1Y1µ, p−µ]〉rµ(11) , (23)

where nν denotes a finite-frequency RPA mode and a similar expression should be
used for the dipole axial-vector term of the weak current. Its contribution is not
affected by the treatment of the spurious sector. The amplitude in the second line
may be regularized as in Subsection 3.2. The results corresponding to the transition
matrix elements of the shifted operator (23), obtained in the RPA diagonalization,
are shown in Fig. 2. The similarity between the results obtained with the three
different Hamiltonians supports the claim about the validity of the procedure. The
same effects are expected to materialize in the case of realistic calculations and
work is in progress to include the counter-terms obtained in the previous sections,
starting from realistic two-body forces.
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Fig. 2. The matrix elements of the vector opera-
tor j1(kr)Y1,µ. Cases (a),(b) and (c) correspond
to cases (b),(d) and (f) of Figure 1. All values are

scaled up by a factor 10.
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5 Conclusions

We have attacked the problem of the center of mass motion in nuclear spec-
troscopy calculations in two succesive steps, namely i) the reconstruction of the
translational invariance of the Hamiltonian and ii) the inclusion of collective vari-
ables in order to eliminate infrared singularities. The solutions in both steps are
exact, albeit perturbative. They share in common the same perturbation parameter,
A− 1

2 , which is a convenient feature if a given order of perturbation is envisioned.
Quite generally, the first step requires the introduction of counter-terms, which

has been performed following specially Ref. [10]. We have tried the procedure for
pure independent-particle Hamiltonians: in the case of harmonic oscillator poten-
tial, the counter-terms reproduce the dipole force with the self-consistent strength
(see Ref. [8]); for spin–orbit and l2 terms in the central potential the procedure leads
to the introduction of two-body terms of similar character; finally, the application
of the procedure to an empirical single-particle spectrum ensures the elimination of
all the matrix elements of the coordinate operator to excited Iπ = 1− RPA states,
which is not the case for the dipole interaction, no matter how close to zero the
lowest RPA energy is made by adjusting the strength of the interaction.

To conclude, we thus suggest the use of the counter-terms (2) and of the op-
erators (23) in cases where, like in the (µ−, e−) conversion, the dominance of the
Iπ = 1− channels is apparent.
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