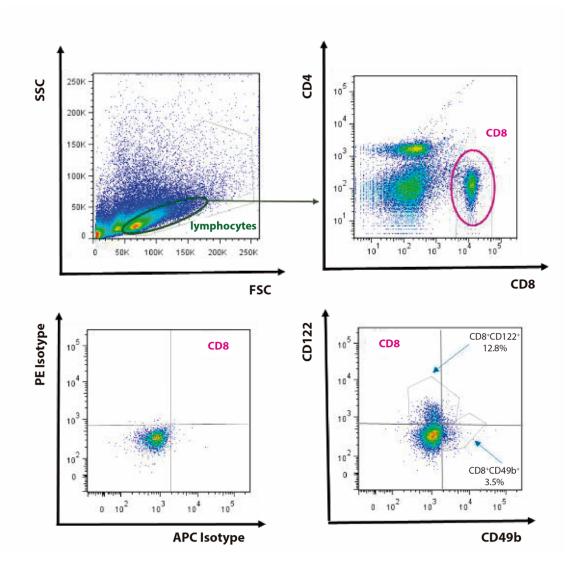


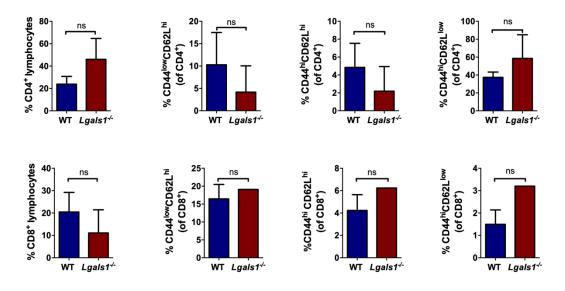
Supplementary Information for

Galectin-1 fosters an immunosuppressive microenvironment in colorectal cancer by reprogramming CD8⁺ regulatory T cells

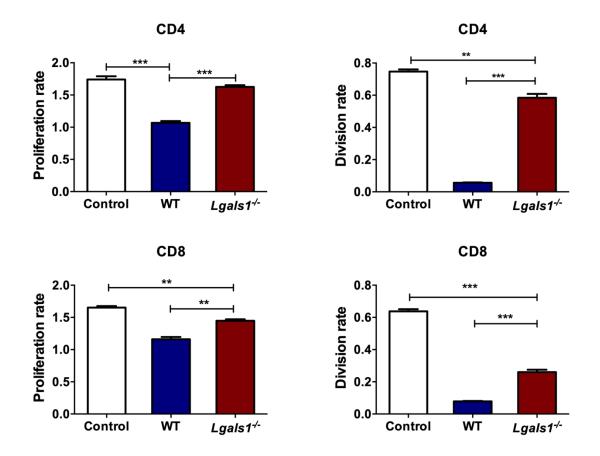
Alejandro J. Cagnoni^{a,b,1}, María Laura Giribaldi^{b,1}, Ada G. Blidner^{b,2}, Anabela M. Cutine^{a,b,2}, Sabrina G. Gatto^b, Rosa M. Morales^b, Mariana Salatino^b, Martín C. Abba^c, Diego O. Croci^d, Karina V. Mariño^{a,3} and Gabriel A. Rabinovich^{b,e,f,3}


¹ These authors contributed equally to this work.

² These authors contributed equally to this work.


³ To whom correspondence should be addressed: **E-mail**:<u>gabyrabi@gmail.com</u> or <u>kmarino@ibyme.conicet.gov.ar</u>

This PDF file includes:


Fig. S1 to S6

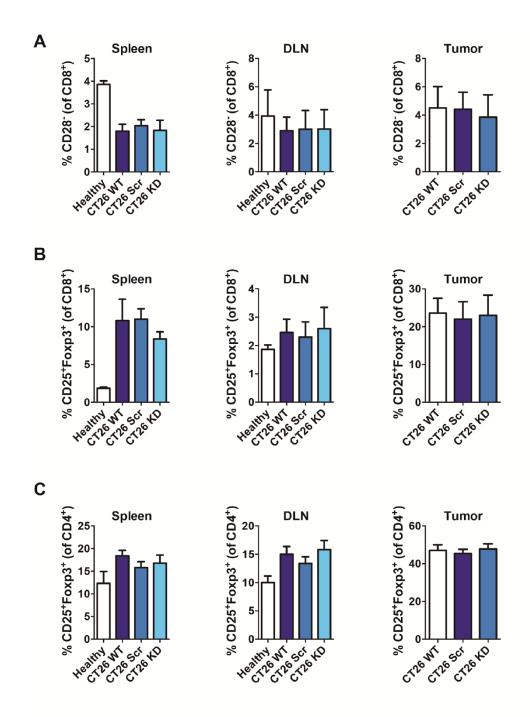

Fig. S1. Flow cytometry analysis of CD8⁺ Tregs in draining lymph nodes (DLN) of healthy WT and $Lgals1^{-/-}$ mice. CD8⁺ T cells were labeled for CD122 and the NKT cell marker CD49b.


Fig. S2. Frequency of CD4⁺, CD4⁺CD44^{low}CD62L^{hi}, CD4⁺CD44^{hi}CD62L^{hi}, CD4⁺CD44^{hi}CD62L^{low}, CD8⁺, CD8⁺CD44^{low}CD62L^{hi}, CD8⁺CD44^{hi}CD62L^{hi} and CD8⁺CD44^{hi}CD62L^{low} T cells in mesenteric lymph nodes from WT and Gal-1 deficient (*Lgals1^{-/-}*) mice subjected to the azoxymethane (AOM)-dextran sodium sulfate (DSS) colitis-associated colorectal cancer (CRC) model. T_{EM} (effector memory cells) are CD44^{hi}CD62L^{low}, T_{CM} (central memory cells) are CD44^{hi}CD62L^{hi}, and naïve cells are CD44^{low}CD62L^{low}. Data presented are mean ± SEM from a representative of three independent experiments. N = 5-6 mice per group. Unpaired Student's *t*-test, ns = not significant.

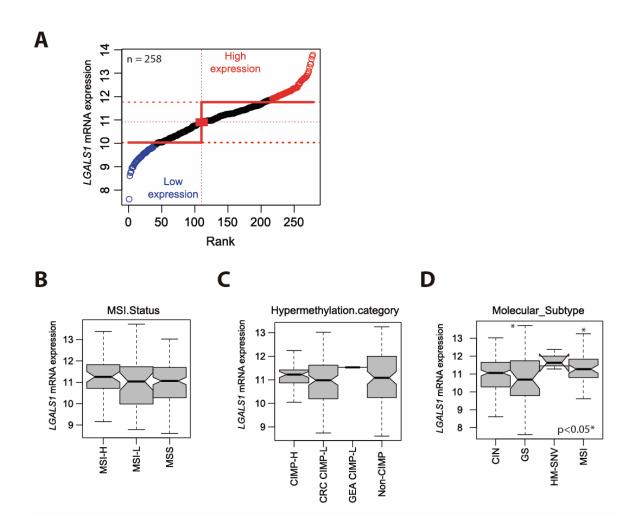

Fig. S3. Suppression of CD4⁺ and CD8⁺ T cell proliferation by CD8⁺CD122⁺PD-1⁺ Tregs isolated from WT and *Lgals1^{-/-}* BALB/c mice. Proliferation and division rate of CD4⁺ and CD8⁺ responder T cells incubated with control WT splenocytes, CD8⁺CD122⁺PD-1⁺ WT Tregs or *Lgals1^{-/-}* CD8⁺CD122⁺PD-1⁺ Tregs co-cultured in a 1:4 ratio. Data presented are mean ± SEM from a representative of three independent experiments. ANOVA, Bonferroni multiple comparison test, *p<0.05, **p<0.01 and ***p<0.001.

Fig. S4. Analysis of CD8⁺CD28⁻, CD8⁺CD25⁺Foxp3⁺ and CD4⁺CD25⁺Foxp3⁺ Tregs in the (*A*) spleen, (*B*) draining lymph nodes (DLN) and (*C*) tumors from mice inoculated with CT26 WT, scrambled (Scr) or Gal-1 knockdown (KD) cells. Data presented are mean \pm SEM from a representative of three independent experiments. N = 5-6 mice per group. ANOVA, Bonferroni multiple comparison test, *p<0.05, **p<0.01 and ***p<0.001.

Fig. S5. Lack of differences in proliferation and survival of WT and Gal-1 KD CT26 cell lines. (A) Flow cytometry dot plot analysis showing gates for the selected CT26 apoptotic cells, identified by staining with APC–conjugated annexin V (AnV) and propidium iodide (PI). Analysis of AnV⁺PI⁺ cells on CT26 WT and Gal-1 KD cell lines. (B) Kinetics of cell proliferation in WT and Gal-1 KD CT26 cells. Data presented are mean \pm SEM from a representative of three independent experiments. Unpaired Student's *t*-test.

Fig. S6. (*A*) *LGALS1* expression dichotomization in tumors analyzed according to the Stepminer one-step algorithm. (*B-D*) *LGALS1* expression in colon adenocarcinoma samples categorized according to: (*B*) MSI status, (*C*) hypermethylation category and (*D*) molecular subtype. CIMP-H: CpG island methylation phenotype (CIMP) high; CRC CIMP-L: colorectal CIMP low; GEA CIMP-L: gastroesophageal CIMP-low; MSI: microsatellite instability; MSS: microsatellite stable; CIN: chromosomal instability; GS: genomically stable; HM-SNV: hypermethylated single-nucleotide variants. ANOVA, Bonferroni multiple comparison test; **P* < 0.05.