
Vol:.(1234567890)

Journal of Mathematical Chemistry (2021) 59:488–504
https://doi.org/10.1007/s10910-020-01208-0

1 3

ORIGINAL PAPER

Symmetry‑adapted formulation of the hybrid treatment 
resulting from the G‑particle‑hole Hypervirial equation 
and equations of motion methods: a procedure 
for modeling solids

Juan J. Torres‑Vega1   · Gustavo E. Massaccesi2   · Elías Ríos3   · 
Alberto Camjayi4,5 · Alicia Torre6   · Luis Lain6   · Ofelia B. Oña3   · 
William Tiznado7   · Diego R. Alcoba4,5 

Received: 19 September 2020 / Accepted: 18 December 2020 / Published online: 2 January 2021 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021

Abstract
Highly accurate electron affinities and ionization potentials of chemical systems 
were described by means of the procedure called GHV-EOM (Valdemoro et al, in 
Int J Quantum Chem 112:2965, 2012), which combines the G-particle-hole hyper-
virial (GHV) equation method (Alcoba et  al, in Int J Quantum Chem 109:3178, 
2009) and that of the equations-of-motion (EOM), by Simons and Smith (Simons 
and Smith, in J Chem Phys 58:4899, 1973). The present work improves that hybrid 
method by introducing the point group symmetry within its framework, providing 
a higher computational efficiency. We report results which show the achievements 
attained by using the symmetry-adapted methodology. The new formulation turns 
out to be particularly suitable for characterizing solid models, as cyclic one-dimen-
sional chains.

Keywords  Reduced density matrix · Hypervirial · Equations of motion · Point group 
symmetry · Solid model

1  Introduction

According to quantum mechanics principles, all the information required to describe 
N-electron systems is contained in their corresponding N-electron wave functions. 
However, as is well known, in most situations the management of these devices turn out 
to be too cumbersome. Consequently, alternative tools have been searched to describe 
that kind of systems. A successful procedure, proposed long time ago [1–5], is the use 
of reduced density matrices. The elements of these matrices can be determined by 
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means of variational and non-variational methods [6–12], allowing one to get rid of the 
N-electron wave functions. Moreover, each one of the terms involved in the formulation 
of an N-electron Hamiltonian can be classified into two categories (of one- and two-
body type) according to the nature of the physical interactions they represent. Hence, 
the determination of N-electron properties requires the implementation of methods 
trying to achieve suitable approximations to evaluate the elements of the second-order 
reduced density matrix (2-RDM).

Among the non-variational methods providing the calculation of the elements of 
the 2-RDMs, a considerable interest has been devoted to the iterative solution of the 
G-particle-hole hypervirial equation (GHV) [13], which is closely related to the anti-
Hermitian contracted Schrödinger equation [14] and arises from a contraction of a par-
ticular case of the quantum Liouville equation [15]. The results obtained from the GHV 
method have turned out to be very close to those provided by the full configuration 
interaction (FCI) procedure for ground states of molecular systems, as at equilibrium 
geometries as at distorted ones [13, 16–18]. In a subsequent step, these results induced 
some of us to combine the GHV method with the equations of motion (EOM) treat-
ment reported by Simons and Smith [19] for the calculation of electron affinities (EA) 
and ionization potentials (IP). These energies were directly evaluated from the corre-
sponding ground state 2-RDMs or, in an equivalent manner, from the G-particle-hole 
matrices obtained by solving the GHV equation. The results show that this combined 
GHV-EOM method yields very accurate EA and IP values [20]. The aim of this work 
is to further improve the efficiency of the combined GHV-EOM method by using point 
group symmetry. Following recent treatments carried out within the framework of the 
GHV method [21, 22], a symmetry-related analysis of the matrices and matrix opera-
tions involved in the EOM method is performed. This analysis allows one to formu-
late a symmetry-adapted version of the combined GHV-EOM algorithm for Abelian 
groups, which leads to significant computational savings in both floating-point opera-
tions and memory storage.

We have organized this work as follows. In the second section we report the defini-
tions, notations, and a general theoretical background of the GHV and EOM methods. 
In the third section we describe the symmetry-adapted formulation of the GHV-EOM 
treatment. In section four we analyze the results obtained for a set of small-to-medium-
sized cyclic one-dimensional hydrogen chains showing the performance and efficiency 
of this new formulation. This kind of systems has been widely used as prototype model 
to describe solids in quantum chemistry, condensed matter, and solid state physics 
[23–27]; they present some interesting features that are essential for testing the suitabil-
ity of theoretical methods to describe real systems, as the presence of strong correlation 
of diverse nature depending on the H-H distance. Finally, in the last section, we report 
the conclusions of this work.
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2 � Theoretical background

2.1 � Notation and definitions

Let us consider an N-electron system whose Hamiltonian, Ĥ , in the second quantiza-
tion formalism can be written as [28]

where a†
p
 and ar are the usual creation and annihilation operators, respectively, and 

the indices {p, q, r, s,…} stand for the 2K orthonormal spin-orbitals of a finite basis 
set. �pr  and Vpq

rs
= ⟨pq�rs⟩ (in the ⟨12�12⟩ convention) are the one- and two-electron 

integrals, respectively.
One can define a two-body matrix which collects the one- and two-electron 

integrals

in which the symbols � mean the Kronecker deltas. Equation (2) allows one to 
express the Ĥ operator in a more compact manner

According to this formalism, the elements of the first- and second-order reduced 
density matrices (1- and 2-RDM) [28] and those of the second-order G-particle-hole 
correlation matrix [6] corresponding to an N-electron wave function Φ may, respec-
tively, be expressed as

and

The elements of these three matrices, which are related by Mihailovic and Rosina 
equation [29]

are the basic tools of the GHV and EOM methodologies, described in the two next 
subsections.
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2.2 � The G‑particle‑hole hypervirial equation method

By applying a contracting mapping involving a G-particle-hole operator 2Ĝ to the 
matrix representation of the hypervirial relation of the N-electron density opera-
tor (a particular case of the quantum Liouville equation), one obtains the GHV 
equation [13, 15], whose compact form is

and its explicit development leads to [13]

where

are the elements of a third-order correlation matrix [30].
The GHV equation depends on the elements of the 1- and 2-RDMs as well 

as those of the third-order correlation matrix. However, the elements of this last 
matrix can be approximated in terms of the lower-order ones [10, 12, 17, 31–33]. 
In this work we have used a modified version of the Nakatsuji-Yasuda’s approxi-
mation algorithm [10, 17], which leads to a solution of the GHV equation by 
means of an iterative procedure. It consists in solving a set of differential equa-
tions minimizing the second-order error matrix resulting from the deviation from 
exact fulfilment of the equation. This procedure yields an approximated G-parti-
cle-hole matrix corresponding to the eigenstate being studied [16].

2.3 � The equations of motion method

The EOM method [34, 35] was applied by Simons and Smith [19] to describe 
properties of the electron-addition and electron-removal subspaces of an N-elec-
tron state. This method allows one to compute electron affinities and ionization 
potentials of an N-electron system from the sole knowledge of its ground-state 
2-RDM, or from the corresponding G-particle-hole matrix. The procedure is 
based on two relations connecting an N-electron neutral reference state Φ(N) of 
the Hamiltonian with the corresponding (N + 1)-electron anion and (N − 1)-elec-
tron cation states, Ψ(N + 1) and Ψ(N − 1) respectively, by means of an operator Ŝ : 
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Ĥ, 2Ĝim
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 which requires to solve the equations 

 where ΔE+ and ΔE− provide the electron affinity and ionization potential energies, 
respectively. By expanding the Ŝ operator in the basis set of Ŝ

′
 operators, both equa-

tions become linear and can be combined as follows [36, 37]:

where ΔE allows to compute either electron affinity or ionization potential energies. 
The latter equation permits to simultaneously evaluate the energy differences of Eqs. 
(12a) and (12b) and to reduce the computational cost, because the anticommutation 
implies a cancellation of the higher order matrices.

Different approximations of the Ŝ operator have been proposed to solve these equa-
tions [20, 37–39]. In this work, for simplicity, we will formulate the Ŝ operator as

where the c symbols are real coefficients. By replacing this definition into Eqs. 
(12b), one obtains the following system of equations for the electron affinities and 
ionization potentials ΔE(±) and the expansion vectors c(±)

where M(±) and H(±) are functionals of the first-order and first- and second-order 
reduced density matrices corresponding to the reference eigenstate, respectively, 
which have the following form
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� †
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∑

t

ctat

(15)H
(±) c(±) = ΔE(±) M

(±) c(±)

(16)M
p(+)
q

= �p
q
− 1Dp

q
M

p(−)
q

= 1Dp
q

(17)H
p(+)
q

= 𝜖p
q
−

∑

i

𝜖i
q
1D

p

i
+

∑

i,j

Ṽ
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Ṽ
ij

ql
2D

lp

ij



493

1 3

Journal of Mathematical Chemistry (2021) 59:488–504	

When combined, these two systems of equations are reduced to

where the matrix H has the following form

Equations (15) and (20) constitute generalized eigenvalue systems depending on 
the 2-RDM (or on the G-particle-hole matrix) and on the 1-RDM, respectively, 
which may be obtained solving the GHV equation. That is the main reason why the 
RDM-oriented methods and the EOM one have been combined [20, 38–40]. In the 
next section we describe the algorithm, based on the point group symmetry, which 
greatly improves the computational efficiency of the combined GHV-EOM method.

3 � Symmetry‑adaptation of the GHV‑EOM method

3.1 � The covariant equations

The operations of the symmetry point group F  , corresponding to an N-electron system, 
maintain unchanged the one- and two-electron integral matrices � and V and therefore, 
these matrices are invariant (1,1)- and (2,2)-tensors, respectively, for that group [41]. 
Similarly, if the N-electron wave function Φ belongs to a one-dimensional representa-
tion of the F  group, its corresponding 1- and 2-RDM and G-particle-hole matrix are 
invariant and, consequently, the 1-RDM is (1,1)-tensor and the 2-RDM and the G-par-
ticle-hole matrix are (2,2)-tensors for that symmetry point group [41]. Moreover, when 
the spin-orbitals are symmetry adapted and ordered according to their irreducible rep-
resentations, these one- and two-electron matrices are sparse and, if F  is Abelian, they 
turn out to be block diagonal. In all these matrices the symmetry forbidden coefficients 
present a structure which is easier to analyze if the F  group possesses an Abelian D 2h 
subgroup. Consequently, hereafter only this type of groups will be considered. When 
the N-electron system has not an Abelian symmetry group, an Abelian subgroup will 
be considered.

The sparsity of the 1- and 2-RDMs has been studied within the framework of the 
GHV methodology, performing an analysis of the matrix operations involved in Eq. 
(9). This analysis provides a symmetry-adapted formulation of the GHV algorithm, 
generating significant computational savings in floating-point operations as well as in 
memory storage [21]. In the case of the EOM equations, the analysis of Eqs. (15) and 
(20) requires to calculate three different types of terms,
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ir

ps
≡ Vir

ps
− Vir

sp

(20)H c = ΔE c

(21)H
p
q
= 𝜖p

q
+

∑

i,j

Ṽ
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and

A survey of the mathematical operations required for the calculation of these terms 
shows that the corresponding auxiliary and final matrices are formulated by covari-
ant equations. Those matrices can be expressed by means of tensorial operations as 
follows:

where

The covariance of these equations entails that all matrices involved in EOM method 
are invariant tensors for the F  group, which maintains the symmetry properties of 
the input density and electron integral matrices. These tensors possess a block struc-
ture, which provides an efficient evaluation of the EOM operations for each one of 
the operations resulting from Eqs. (15) and (20). For instance, the matrix 1X defined 
in Eq. (22) is a (1,1)-tensor for the F  group whose non-vanishing blocks are associ-
ated with each irreducible representation � of F  . Consequently, one can avoid the 
evaluation of the symmetry forbidden elements and calculate the remaining ones 
according to

In a similar way, the auxiliary matrices 1Y and 1Z defined in Eqs. (23) and (24) can 
be evaluated as

(23)
∑

i,j

Ṽ
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and

The remaining matrix operations required for the solution of the generalized eigen-
value equations in the EOM method can be treated in an identical manner. Con-
sequently, the block structure of the ordinary density and electron integral matri-
ces presented in the EOM equations yields a more efficient procedure for the EOM 
numerical determinations, reducing the computational costs. In the next subsec-
tion, we discuss and analyze the advantages of a symmetry-adapted formulation of 
the GHV-EOM (sa-GHV-EOM) method resulting from combining the symmetry-
adapted formulations of the GHV (sa-GHV) and EOM (sa-EOM) algorithms.

3.2 � Efficiency of the sa‑GHV‑EOM method

If the F  group possesses f irreducible representations, and assuming that the dis-
tribution of molecular spin-orbitals according to the irreducible representations is 
strictly regular, a straightforward calculation shows that the (1, 1)-tensors have f 
blocks of size (K/f)×(K/f), having K2∕f 2 non-vanishing coefficients, and the (2, 2)
-tensors have f blocks of size ( K2∕f )×(K2∕f  ) with K4∕f 2 non-vanishing coeffi-
cients. The tensor multiplication operations in Eqs. (31), (32), and (33) have a time 
proportional to f × (K∕f )2 × (K∕f ) = K3∕f 2 , f × (K∕f )2 × f × (K∕f )2 = K4∕f 2 , 
and f × (K∕f )2 × f 2 × (K∕f )2 × (K∕f ) = K5∕f 2 , respectively, and the operations 
involved in calculation and solution of the generalized eigenvalue Eqs. (15) and 
(20) require a time proportional to f × (K∕f )3 = K3∕f 2 . Similarly as it occurs in the 
GHV method [21], these estimations indicate that the computational costs of the 
EOM method are reduced by a factor of f in storage and f 2 in floating-point opera-
tions. Obviously, these reductions are only achieved when the symmetry blocking of 
the orbitals is optimum.

3.3 � Application of the sa‑GHV‑EOM method to describe small‑to‑medium‑sized 
cyclic one‑dimensional atomic chains

Let us consider a simple ring molecule composed of n identical atoms. This system 
possesses several symmetry elements, but we will focus our attention on a rotation 
axis, Cn , passing through the center of the ring and perpendicular to the plane of the 
molecule. Any Cm

n
= m(2�∕n) rotation, being m an integer, maps the molecule onto 

itself. An usual basis set for treating the problem is the set of atomic orbitals {
�w
l
(�)

}
l=0,…,(n−1); w=a,b,c,…

 , where the index l identifies the atom and w identifies the 
atomic orbital 1s, 2s, 2px, 2py, 2pz,… centered on that atom (with the implicit 
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convention that �w
n
(�) = �w

l+n(�) ). In general, these orbitals are not symmetry 
adapted. Consequently, we need to construct a new basis set {
�w
j
(�)

}

j=0,…,(n−1); w=a,b,c,…
 , so that its functions turn out to be eigenfunctions of the 

Ĉm
n

 rotation operators. These symmetry-adapted functions can be expressed by 
means of a linear combination of atomic orbitals, and their expansion coefficients cjl 
can be explicitly calculated or determined using group theory arguments [42]. They 
are given by cjl = eikjl , where i stands for the imaginary unit and kj is

It is also possible to consider other values for kj , although they only differ from those 
given above by a multiple of 2� and, consequently, they are equivalent.

Let us consider only a s-orbital on each atom. The symmetry-adapted orbitals are 
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Ĉ1
n
𝜒 s
j
(�) =

1√
n

n−1�

l=0

e
i
2𝜋j

n
l
𝜙s
l+1(�)

=
e
−i 2𝜋j

n

√
n

n�

l=1

e
i
2𝜋j

n
l
𝜙s
l
(�) = e

−i 2𝜋j
n 𝜒 s

j
(�).

(38)
(
�
pr
l

�
pt
l

)
=

(
cos (2�l∕N) sin (2�l∕n)
− sin (2�l∕N) cos (2�l∕n)

)(
�
px
l

�
py

l

)
,



497

1 3

Journal of Mathematical Chemistry (2021) 59:488–504	

3.4 � Infinite linear chain

For the molecular ring composed of n atoms, we select a set of orbitals belonging 
to a well defined irreducible representation. The relation Ĉ1

n
𝜒j(r) = e

−i 2𝜋j
n 𝜒j(r) can be 

rewritten as Ĉ1
n
𝜒j(r) = e−ikj𝜒j(r) , if we define kj =

2�j

n
 . This is equivalent to the main 

property of the Bloch states in a crystal and kj is associated with the crystal momen-
tum; in particular, 

[
Ĉ1
n

]n is the identity operator. This is analogous to the effect of a 
translation in n lattice constants, hereafter called a, when we consider a fragment of 
n atoms in a linear chain using the “Born-von Karman” [43] method. Therefore, the 
molecular ring may be considered a finite approximation to an infinite linear chain. 
The energies levels �j of a ring molecule can be labeled by the kj values of their irre-
ducible representation, interpreted now as the crystalline moment.

For n → ∞ , the discrete set of energies as a function of kj =
2�j

n
 becomes infinite 

and the values �j are grouped in a set of smooth functions �(k) defined for any real k. 
These functions are 2� periodic and are usually restricted to the first Brillouin zone 
[42], where −𝜋 < ka ≤ 𝜋 by convention. Note that k is now rescaled by the lattice 
constant a. The functions �(k) are the difference between the singly ionized and neu-
tral systems, that are the so-called energy bands of the crystal.

3.5 � Finite size effects

In order to properly describe an infinite chain model by means of a ring molecule, 
we need to know the finite-size effects. According to this purpose, in this subsection 
we present the description of a series of systems possessing a broad range of sizes, 
which are studied at restricted Hartree-Fock (HF) level. The 2-RDMs resulting from 
that method are introduced into the EOMs in order to obtain the IPs and EAs, allow-
ing to characterize these model bands, although the conclusions are independent 
of the method used. We show results of H n rings using the 6-31G** basis set (a 
set of two s-type and three p-type atomic orbitals assigned to each hydrogen atom), 
at R = 1, 1.5 , and 2.5Å interatomic distance between two neighbor atoms; the H 50 
has been calculated with the 6-31G basis set. On the left side of Fig. 1 we plot, for 
several system sizes n, the 1S band obtained. Two effects must be highlighted: the 
number of energies �(k) defining the band increases with n and the shape (disper-
sion) of the band seems to converge for bigger system sizes. This fact can simply be 
explained in terms of the number of degrees of freedom of the system; the larger the 
molecular ring, the higher the number of eigenvalues in the spectrum. Another effect 
can be pointed out; in small molecules, atoms facing each other across the center 
of the molecule may have overlapping atomic orbitals and the interaction between 
them may be important. In an infinite linear chain it would be equivalent to a long 
range interaction among distant atoms. As the number of atoms in the ring mol-
ecule increases so does its radius and, consequently, only interactions between near 
neighbor atoms become important. Once this limit is reached, one would expect 
the dispersion of the bands to remain unchanged for n → ∞ . As an illustration of 
this situation, we plot on the right side of Fig.  1 a simple, nearest neighbor only, 
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tight-binding fit to the 1S, 2S, and 2P bands of the H 34 system resulting from the 
HF-EOM approach. It shows the relative importance of short range interactions, 
even when the fit is not perfect since the HF approximation involves interactions 
and maybe electronic hopping between atomic orbitals on atoms further than nearest 
neighbors.

We have considered changes in the size of the molecular ring by modifying the 
number of atoms constituting that ring. However, it is also possible to fix the num-
ber of atoms and adjust the interatomic distance between them (lattice constant). 
This possibility introduces a different kind of phenomenology from the above dis-
cussed one. If we force atoms to be closer to each other, the overlap between orbitals 
will become important and the delocalization of the electrons would be favored. On 
the opposite limit, the electrons will be forced to localize and the atomic limit would 
be reached. The change of site separation works as a parameter that adjusts the rela-
tive importance of potential to kinetic energy of electrons. Looking for a suitable 
physical description, it would be desirable to find the equilibrium separation dis-
tance by minimizing the total molecular energy. For large systems, the equilibrium 
separation distance Rn

eq
 is almost independent on the number n of atoms on the ring. 

Moreover, as n increases Rn
eq

 quickly converges to a length that equals the bulk lat-
tice constant. Furthermore, a simple test to any implementation is the proper 
description of the atomic limit. As the atomic separation is increased, the bands 
should collapse to a set of dispersion-less constants equal to the atomic energies; 
this effect is observed in Fig. 2.

4 � Results and discussion

The sa-GHV-EOM method allows one to obtain IPs and EAs at correlated level with 
an unexpensive computational cost. Its application to describe crystal models pro-
vides the assessment of the incorporation of the electronic correlation in the bands. 
As previously mentioned for the HF case, here we introduce in our algorithm the 

Fig. 1   Finite size effects on H n ring molecule bands. Left: 1S band of H n ring molecule for several ring 
sizes n = 6, 10, 14, 22, and 34. Right: Simple, nearest neighbor only, tight-binding model fitting for the 
1S, 2S, and 2P bands of the H 34 system. Results correspond to the HF approximation at 1 Å between two 
neighbor atoms, using the 6-31G** basis set
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2-RDM elements arising from this method as well as from the single and double 
excitation configuration interaction (CISD), single, double, and triple configura-
tion interaction (CISDT), and FCI procedures, in order to compare their results with 
those of the GHV-EOM method; the comparison with experimental results would 
requiere the use of extended basis sets [39]. In systems possessing moderate correla-
tions, like the H n rings near the equilibrium geometry, it would be expected that after 
the incorporation of correlation effects the energies will not change significantly, i.e. 
the correlated bands should be very close to the HF ones. However, as we show, 
the inclusion of correlation effects is visible in the GHV-EOM bands. As dynamical 
Coulomb correlation is included, the effective mass of the electrons increases. In 
band theory, for simple parabolic bands, the effective mass tensor is defined as pro-
portional to the inverse of the second derivative (Hessian matrix). Hence, the more 
mobile (lighter) electrons, the more dispersive bands (bigger bandwidths) and the 
more localized (heavier) electrons, the less dispersive bands (smaller bandwidths). 
To move a non-interacting electron turns out to be easier than to move an interacting 
one.

Electron-electron interaction, properly treated in GHV-EOM method, changes 
the band dispersion and corrects some shortcomings of the HF method. A well-
known unphysical feature of the HF method is that, for extended systems in par-
tially filled bands, HF density of states vanishes at the Fermi energy [44, 45], 
i.e. metallic systems in the HF method are gaped. In Fig. 3 (left), the 1S band 
of the H 14 chain is plotted for different total number of electrons. For the neutral 
system, with the same number of electrons and atoms and net charge C = 0 , it 
is easy to see a kink in the band dispersion around ka = ±�∕2 . As the num-
ber of electrons increases the kink position moves towards the band edges, until 
the band is fully occupied. The kink occurs at a special k value, the so called 
“Fermi wave vector” kF , which satisfies �(kF) ≡ �F , with �F the “Fermi energy”. 

Fig. 2   1S, 2S, and 2P bands of the H 34 molecular ring with two neighbor atom separation (lattice con-
stant), from left to right, of: 1, 1.5, and 2.5Å , respectively. All results correspond to the HF approxima-
tion using the 6-31G** basis set



500	 Journal of Mathematical Chemistry (2021) 59:488–504

1 3

On the right side of Fig. 3, we have plotted the band dispersion of the neutral 
system H 50 (calculated with the 6-31G basis set) along with the group velocity 
vk = ∇k�(k) . At kF the velocity shows an instability, a logarithmic divergence, 
which in turns means the opening of a gap in the density of states at the Fermi 
energy. This unphysical feature is properly corrected including the correlation 
effects beyond HF.

Figure  4 shows results for the 1S band of H 14 ring obtained from different 
methods, using the STO-3G basis set (a single s-type atomic orbital assigned to 
each hydrogen atom). As correlations are included, even at the level of CISD and 
CISDT procedures, the unphysical kink in the band dispersion is smoothed out. 
For GHV-EOM results, this unphysical feature is completely removed and the 
band obtained is comparable to the FCI result. All this is more noticeable as the 
interatomic distance is increased, making correlations relatively more important. 
The incorporation of correlations in the band calculation introduces some gen-
eral modifications on the band dispersion. As is already possible to see in Fig. 4 
and more evidently in the 1S, 2S, and 2P bands of H 14 (see Fig. 5), correlated 
bands are less dispersive than uncorrelated ones. As discussed above, electrons 
are “heavier” when interactions are important. Moving an electron inside a solid 
involves not only its intrinsic inertia, its mass, but also the interactions with the 
surrounding particles. Even if electron-electron interactions are not considered, 
the simple interaction with the lattice makes the effective mass different from 
the intrinsic mass and the bands disperse. As electron correlations are incorpo-
rated, that effective mass may be enhanced, as can be seen in Fig. 5.

Fig. 3   Left: 1S band for the H 14 molecular ring with net charge C. Right: 1S band for the H 50 neutral 
system and its group velocity (in red), v

k
= ∇

k
�(k) . Results correspond to the HF approximation at 1 

Å between two neighbor atoms, using the 6-31G** and 6-31G basis sets for the H 14 and H 50 systems, 
respectively (Color figure online)
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5 � Concluding remarks

This work incorporates the symmetry-adapted formulation for Abelian groups to 
the GHV-EOM treatment. The covariance of the resulting equations provides that 
all matrices involved in EOM method turn out to be invariant tensors possessing a 
block structure. This block factorization of the matrices associated with the reduced 
density matrices and electronic integrals used in this methodology leads to manage a 
considerably lower computational cost. The procedure has been successfully applied 

Fig. 4   1S band around the Fermi energy of the H 14 ring molecule with net charge C = 0 . Results corre-
spond to the HF, CISD, CISDT, GHV, and FCI levels at 1 Å (left) and 2.5 Å (right) between two neigh-
bor atoms, using the STO-3G basis set

Fig. 5   1S, 2S, and 2P bands of the H 14 ring molecule calculated with several methods. Results cor-
respond to the HF, CISD, and GHV approximations at 2.5 Å between two neighbor atoms, using the 
6-31G** basis set
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to describe bands in cyclic chains of hydrogen atoms, which have been widely used 
as prototype models in condensed matter and other areas of interest. We perform 
an assessment of our proposal comparing our results with those arising from more 
conventional methods.
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