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ABSTRACT

Time series corresponding to F10.7 solar flux, AE index and the fonospheric criti-
cal frequency f4F, are analyzed, for periods of loy solar activity, in order to find
whether they show either deterministic behavior or stochastic noise.

Both the correlation dimension and a lover bound of the Kolmogorov entropy are
calculated.

For the time series analyzed, deterministic chaos is found and its implications are

discussed.

RESUMEN
Se analizan series temporales correspondientes a: frecuencia 10.7 cm del flujo
solar, indice AE y la frecuencia ionosférica critica del sondec vertical 4F, para baja
actividad solar, con el objeto de determinar si las variaciones en ellas presentan
comportemiento deterministico o corresponden a ruido estocéstico.
Se calculan 1a dimensidn de correlacion y el limite inferior de 18 entropia de

Kolmogorov.

Se encuentra que estes series temporales presentan ceos deterministica y se

discuten sus implicancias.
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1. INTRODUCTION

A first approach to modelling natural phenomena is to assume that the system in-

volved obeys deterministic laws and try to find a corresponding set of linear equa-

tions such as:

xi(t+1) = Fy(xi(t),xxAt),....,xn(t)) (1)

xAt+1) = Fo({x1(t),x2(t),....,xn(1))

xn(t+1) = Fp ((x4(t),x2At),....,xn(1))

where the functions F,......Fn and their derivatives are taken as continuous. If an
experimental time series of a variable related to the system is analyzed, the first
step would be to search for periodicities or trends by using spectral analysis.
Once they are found and reasonably described by a set of equations like (1), there
is usually a certain amount of variability left, that can not be explained by those
periodicities or trends and that is treated as "additive noise”. Thic "noise’ is
usually considered the stochastic component of the time series analyzed.

A different approach to the problem is to look for a possible deterministic
behavior intrinsic to the system that can not be described by equations (1). To do
that, it is necessary to reconstruct the phase space in order to find out 1f the sys-
tem evolves in a limited region of phase space. If such a region exists i1t is said
that the solutions lie in an attractor, otherwise they are stochastic. The attractor
may be a fixed point, a limit cycle or a chaotic attractor.

Then it is necessary to look if the chaotic attractors are of low dimension. In this
case the dimension will give information on the minimum number of variables to
be introduced in the description of the dynamical system.

As the next step, it is possible to find, from the experimental time series, the

value of or at least an upper bound for the intrinsic turbulent or chaotic component
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of the time series. 50 what is generally considered as additive noise, actually
supplies information about the dynamical system.

Previously Nicolis and Nicolis (1984) have analyzed the possible existence of 2
climatic attractor, Kurths and Herzel (1987) found chaotic behavior in solar radio
pulsation data set and Fraedrich (1987) investigated the predictability n climatic
variables.

The purpose of the present paper is to search for evidence of chaotic behavior in
the magnetospheric-ionospheric medium under the influence of solar radiation. To
do so, series of selected variables have been used.

In a previous work Romanelli et al (1987) have found a low dimensional chactic
attractor in the time series of solar flux at 10.7 cm. The present paper evtends
the investigation to time series of geomagnetic and ionospheric variables.

This paper 1s organized as follows: In section 2 a trief introduction of the concept
of chaos is given, in section 3 the method of analysis 1s described, and in sections

4 and 5 a result of the analyzed data and the conclusions are discussed.

2. THE CONCEPTS OF CHAOS
Attractors

As it is well known, anything that moves or changes governed by determimstic

rules can be described by a system of N differential equations of first order:
dxn/dt = Fp (Xypeeceennnee ~n) n= 1. N. (2)

The functions Fn may be non linear functions of the xn’s and there may be many
different solutions. The coordinates xi represent the observables. The numbers

(X gpeeeecnenne »Xn) May be considered as 3 point in an N dimensional space (phase epa-
ce), specifying the state of the system, and the rules Fp determine its time evaluy -
tion. N is the number of independent variables needed to spectfy an imitial conds -

tion uniquely. If an initial condition is picked at random, and the cystem 1¢
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allowed to evolve for a long time, it is necessary to anaiyze the nature of the
motion when all the transients have died out. In dissipative systems the motion
will be limited to a subset of phase space called z¢fructor: The set of points
(initial conditions) that are attracted form the dasin of attraction. & dynamical
system may have more than one attractor, each with its own basin. There is now
strong evidence from a variety of experiments that chaos can be described in
terms of low dimensional chaotic attractors (see Haken, 1982, Haken, 1983,
Schuster,1984 ). This implies that out of the infinite number of degrees of free-
dom in a large dissipative system only a few will be active. Chaotic solutions have
most of the properties of random functions. It is remarkable that no randomness is
ever explicitly added. The equations of motion are purely deterministic, and the
random behavior emerges spontaneously. Whereas randomness usually implies
ignorance, deterministic chaos is different, in that it arises from the geometry of
the dynamical system and its attractor.

Geometrical objects such as points, lines or hypersurfaces (smooth topological
manifolds) are characterized by integer dimensions. There are objects {hke some
chaotic attractors) which have a non-integer dimension and they are knovin as
fractals (Mandelbrot, 1977). They are important because they model irreqular, time-
dependent phenomena characterized by two facts: an extreme sensitivity to initial
conditions, and the appearance of large variability similar to stochastic motion,

although the dynamical system is deterministic.

Characterization of the attractors

The theory of nonlinear dynamics and chaotic attractors has been helpful to under-
stand the irregular behavior of complex systems. Chaotic (or turbulent) behavior
can be assumed if a broad power spectrum is found in the time series, but this
information is not enough to establish whether the chaos is either deterministic or
stochastic. It is necessary to define a set of quantities which provides further

information.
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From the infinite set of dimensions found by Hentschel and Procaccia (1983), those
providing a relevant information and are invariant under a smooth change of
coordinates are:

The correlation dimension related as a lower bound of the fractal dimension,
which provides some measure of the number of degrees of freedom involved in the
dynamics of the system under consideration. Its knowledge is necessary for
modelling the system (Mandelbrot, 1977).

The Kolmogoros entrgpy, that 1s a complementary measure based on information
theory that describes the loss of information (bits by iteration) giving an insight
about its predictability (Benettin et al. 1976).

The positive Lyapunve exponents measure the divergence of two nearby trajec-
tories on the attractor, while the negatives refer to the convergence on the
attractor (Farmer et al. 1983).

The first two quantities are discussed in this paper. The 1ast one is not treated
here because its determination requires more computer power than we presently
have .

Grassberger and Procaccia (1983) have found that the correlation dimension is the
lower bound of the fractal dimension. They have developed an algorithm by which
it can be determined from experimental time series. They have also given, as will
be discussed later, the lower bound of the Kolmogorov entropy, that indicates how

chaotic the system is. This method is used in this paper.
3. HETHOD OF ANALYSIS

When analyzing experimental time series most of the N variables of the system
under study are usually unknown or unavailable. Therefore the question is whether
and how 1t is possible to substitute the missing information. The system described

by equation (2) can be reduced to a differential equation (generally nonlinear) of

order N in the vanable of interest.
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Ruelle (1981) has found that instead of X(t) and its derivatives it is easier to
work with X(t) and the set of variables obtained by shifting the original series by
fixed lags or delay times t. This is enough to reconstruct, from one dimensional
space, a multidimensional phase space of the dynamical system.

The nature of the attractors provides information on the time behavior of the va-
riables and on the nature of their coupling.

Consider a set of N points on an attractor embedded in a phase space of d dimenci-

ons (where d is the embedding dimension), obtained from a time series:

b {{ 7Y JSTSs— X(ty)
(TS 2 X(ty+t)
X(ty+(d-1)t),....., X (ty+(d-1)v)

Thus a time series for a single observable is used to reconstruct phase portraits
of the attractor, as suggested by Packard et al. (1983), v is the time delay, chosen
to coincide with the first zero of the correlaticn function so that the variables
will be linearly independent. No significant variation was observed, in our data
analysis, over a wide range of t.

The structure of the attractor is inferred from the correlation dimension and the
entropy K, (Grassberger and Procaccia, 1983) by the so called integral correlatinn

function C(r) given by:

C(r) = (1/N) 5 o r-|xi(t) - »j()]) (3)

izj
where 6 is the Heaviside function and N is the total number of data.
For convenience, we use a vector notation Xy for a point of phase space whose
coordinates are {X(tj),.....,X(tj +(d-1)v)}.
A point Xj is chosen from the data, as a reference point, and all the distances

|xi-xj | of the N-1 remaining points are computed, then the data points that lie
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within a distance r from Xj are counted. Repeating the process for all values of i
one arrives at the quantity given by equation (3).

Grassberger and Procaccia (1983) have shown that for small r, the integral C(r),
scales as C(r) ~ r?V.

From the slopes of the log-log plots of C(r) vs. r, values of v as a function of d
can be derived. The saturation value of the v vs. d plot is the correlation dimen-
sion D¢ ( for practical purposes d should be at least twice as large as D¢ ).

The situation is analogous to having an N-dimensional object is projected in m-
dimensional space. The dimension of the projection is equal to m unless m > n. In
that case it remains constant, that is, there is saturation.

When random noise is present the correlation integral scales as

C(r) ~ rd and there is no saturation.

A lower bound of the Kolmogorov entropy (K;) 1s found from:
Kz = (1/%) 1og(Cd (r) /Cd+1(r))

K, > 0 for deterministic chaos. If the system evolves periodically K, = 0 and for

stochastic systems K, - o
4. DATA ANALYSIS AND DISCUSSION

Romanelli et al (1987), have found that at least 1700 data points are necessary, in
noisy time series, to calculate the correlation dimension of a chaotic attractor. It
was alco shown that there is evidence of a chaotic attractor of low correlation
dimension.

In order to analyze daily values of solar flux at 10.7 cm corresponding to a perind
of low solar activity, January 1973 to December 1977 {mean values smaller than
80) were selected.

Figure 1 shows the variation of the correlation as a function of the embedding d1 -

mension and 8 characteristic saturation. The values found were Dc= 4.5 and
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K, = 0.04, indicating the presence of a chaotic attractor.

In order to search for a similar behavior in a parameter reflecting the solar influ-
ence in the aeronomical environment, the auroral index AE, introduced by Davis and
Sugiura (1966) was chosen.

This index, although obtained from geomagnetic data of selected sites of the Nor-
thern Hemisphere, may be considered to give reliable auroral activity information
on a global scale, including the Southern Hemisphere (Mayaud, 1980). To look 10or
the existence of a chaotic behavior in this index, 2928 hourly values of AE from
four months (September to December, 1983) were used, also during low solar
activity. Phase space was reconstructed using a delay time v = 8 hours, as discus-
sed in the previous section.The results are not significantly affected for v in the
the range from 3 to16 hours.

Figure 2 shows the variation of the correlation dimension as a function of the
embedding dimension. In this case the presence of a saturation value of D¢ = 3.3 1%
indicative of an attractor of low dimension and the value of K, = 0.08 shows that
it is chaotic.

A wider search for chaotic behavior in an aeronomical parameter was made using
hourly values of the ionospheric critical frequency foF, for a station in the
Southern Hemisphere at middie to high geomagnetic latitude. The station chosen
was Argentine Island (-65.252 , -64.27¢) and the period covered was from June 20
to September 10 of 1977. In this year there was also low solar activity.

A set of random data was tested, showing that with 2000 points saturation 15 not
reached. 50, we are sure that the saturation of fyF, data points i1s not an artifical
effect due to the number of points used.

Figure 3 shows a plot similar to those of Figure | and Figure 2. Here the saturati-
on value of D¢ = 7.4 ic much higher than those found for 10.?7 cm solar flux ani
auroral index and the value of K, = 0.04 found for the fyF, data points.

The values of the correlation dimension obtained, higher than those corresponding

to AE and solar flux can be attributed to the complevity introduced by local fac-
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tors, or by the fact that fyF, involves variable ionospheric heights as a function of
time.

The results given above are summarized in Table 1.

9. CONCLUSIONS

From the results obtained it can be concluded that the solar-terrestrial environ-
ment appears to behave as a system exhibiting deterministic chaos with low di-
mensional attractors.

Larger dimensions should appear when local variables are censidered. Only the
presence of nonlinear terms in models can explain chaotic behavior and therefare
they should be kept in 3ll important stages of calculations.

The results of such theories will be “irregular” curves instead of the "smaonth” ane<
obtained from linear analysis ( for which the irregularities are considered as
noise). Still undetermined is the percentage of stochastic noise present, which

will be the object of future work.
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TABLE 1
Parameter R Sampling time data size D¢ K,
F10.?7 25.6 daily 1826 4.5 0.04
AE 43.2 hourly 2928 3.3 0.08
fof 2 30.9 hourly 1968 7.4 0.04

Characteristics of the time series analyzed, the average sunspot numbers (R) and

the values of the dimensions found.
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Fig.1 Variation of the correlation integral (v) as a function of the embedding di-
mension (d) for the daily values of solar flux at 10.? cm for the low activity peri-

od 1973-1977. The delay time used was t = 3 days.
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Fig. 2 Variation of the correlation integral (v) as a function of the embedding di-
mension (d) for hourly values of auroral index AE for the low activity period Sep-

tember to December 1983. The delay time used was v = 8 hours.
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Fig. 3 Variation of the correlation integral (v) as a function of the embedding dim-
ension (d) for hourly values of fof, (Argentine Island) for the low activity period
from June 20 to September 10 197?. The delay time used was ¢ = 8 hours. Also

shown the values found for a random function that exhibits not saturation with the

same amount of data.
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