
GEOACTA, Voi. 15, n. 2 (1988) pág. 45 a 60

ON THE EXISTENCE OF DETERMINISTIC CHAOS IN THE SOLAR TERRESTRIAL

ENVIRONMENT

L. Romanelli, S. Radicella, M. A. Figliola, and F. A. Hirsch 
Centro Argentino de Estudios de Radiocomunicaciones y Compatibilidad 

Electromagnética
Julián Alvarez 1218 - (1414) Buenos Aires - Argentina

ABSTRACT

Time series corresponding to F 10.7 solar flux, AE índex and the ionospheric criti- 

cal frequency f0F2 are an31yzed, for periods oí low solar activity, ín order to find 

whether they show either deterministic behavior or stochastic noise.

Both the correlation dimensión and a lower bound oí the Kolmogorov entropy are 

calculated.

For the time series analyzed, deterministic chaos is found and its implications are 

discussed.

RESUMEN

Se analizan series temporales correspondientes a: frecuencia 10 7 cm del flujo 

solar, índice AE y la frecuencia ionosférica crítica del sondeo vertical f0F2 para baja 

actividad solar, con el objeto de determinar si las variaciones en ellas presentan 

comportamiento determinístico o corresponden a ruido estocástico

Se calculan la dimensión de correlación y el límite inferior de la entropía de 

Kolmogorov.

Se encuentro que estos series temporales presentan caos determinístico y se 

discuten sus implicancias.
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1. INTRODUCTION

A first approach to modelling natural phenomena is to assume that the system in

volved obeys deterministic laws and try to íínd a corresponding set oí linear equa-

tions such as:

xi(t*  1) = F1(x|(t),X2(t),....,Xn(t)) (1)

X2(t+1) = F2((x|(t),X2(t),....,Xn(t)) 

xn(t*l)  = Fn ((xi(t),X2(t),....,Xn(t))

where the functions Ft...... Fn and thelr derivatives are taken as continuous. Ií an

experimental time series of a variable related to the system is analyzed, the íirst 

step would be to search íor periodicities or trends by using spectral analysis. 

Once they are found and reasonably descríbed by a set of equations like (I), there 

is usually a certain amount of variability left, that can not be explained by those 

periodicities or trends and that is treated as "additive noise“. This “noise" is 

usually considered the stochastic component of the time series analyzed.

A different approach to the problem is to look íor a possible deterministic 

behavior intrinsic to the system that can not be described by equations (I). To do 

that, it is necessary to reconstruct the phase space in order to find out ií the sys- 

tem evolves in a limited región of phase space. Ií such a región exists it is said 

that the solutions lie in an attractor, otherwise they are stochastic. The attractor 

may be a íixed point, a limit cycle or a chaotic attractor.

Then it is necessary to look if the chaotic attractors are of low dimensión. In this 

casé the dimensión will give information on the mínimum number of variables to 

be introduced in the description of the dynamical system.

As the next step, it is possible to íind, írom the experimental time series, the 

valué of or at least an upper bound íor the intrinsic turbulent or chaotic component 
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oí the time series. So what is generally considered as additive noíse, actually 

supplies iníormation about the dynamical system.

Previously Nicolis and Nicolis (1984) have analyzed the possible existence oí a 

climatic attractor, Kurths and Herzel (198?) íound chaotic behavior in solar radio 

pulsation data set and Fraedrich (198?) investigated the predictability in climatic 

variables.

The purpose oí the present paper is to search íor evidence oí chaotic behavior in 

the magnetosphenc-ionospheric médium under the iníluence oí solar radiation. To 

do so, series oí selected variables have been used.

In a previous work Romanelli et al (198?) have íound a low dimensional chaotic 

attractor in the time series oí solar flux at 10.? cm. The present paper extends 

the investigaron to time series oí geomagnetic and ionosphenc variables.

This paper is organized as íollows: In section 2 a brieí introduction oí the concept 

oí chaos is gíven, in section 3 the method oí analysis is described, and in sections 

4 and 5 a result oí the analyzed data and the conclusions are discussed.

2. THE CONCEPTS OF CHAOS

Attractors

As ít is well known, anything that moves or changes governed by determimstic 

rules can be described by a system oí N diííerential equations oí íirst order:

dxn/dt = Fn (x,..............xn) n- 1.......N. (2)

The íunctíons Fn may be non linear íunctions oí the xn's and there may be many 

diííerent solutions. The coordinates xj represent the observables. The numbers 

...........»*n)  may be considered as a point in an N dimensional space (phase spa- 

ce), specííying the state of the system, and the rules Fn determine its time evolu 

tion. N is the number of independent variables needed to specííy an ínitial condr- 

tion uniquely. If an initial condition is picked at random, and the system is
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allowed to evolve for a long time, it is necessary to analyze the natuie oí the 

motion when all the translents have died out. ln dissipative systems the motion 

will be límited to a subset oí phase space called The set oí points

(initial conditions) that are attracted íorm the oíattrjctíon. & dynamical 

system may have more than one attractor, each with its own basin. There is now 

strong evidence írom a variety oí experiments that chaos can be described in 

terms oí low dimensional chaotic attractors (see Haken, 1982, Haken, 1983, 

Schuster,1984 ). This implies that out oí the infinite number oí degrees oí íree- 

dom in a large dissipative system only a íew will be active. Chaotic solutions have 

most oí the properties oí random íunctíons. It is remarkable that no randomness is 

ever explicitlg added. The equations oí motion are purely deterministic, and the 

random behavior emerges spontaneously. Whereas randomness usually implies 

ignorance, deterministic chaos is diííerent, in that it arises írom the geometry oí 

the dynamical system and its attractor.

Geométrica! objects such as points, línes or hypersuríaces (smooth topological 

maniíolds) are characterized by integer dimensions. There are objects (like some 

chaotic attractors) which have a non-integer dimensión and they are known as 

íractals (Mandelbrot, 1977). They are important because they model irregular, time- 

dependent phenomena characterized by two íacts: an extreme sensitivity to initial 

conditions, and the appearance oí large variability similar to stochastic motion. 

although the dynamical system is deterministic.

Characterization oí the attractors

The theory oí nonlinear dynamics and chaotic attractors has been helpíul to under- 

stand the irregular behavior oí complex systems. Chaotic (or turbulent) behavior 

can be assumed ií a broad power spectrum is íound in the time series, but this 

iníormation is not enough to establish whether the chaos is either deterministic or 

stochastic. It is necessary to define a set oí quantities which provides further 

iníormation.
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From the infinite set oí dimensions íound by Hentschel and Procaccia (1963), those 

providing a relevant informatíon and 3re invariant under a smooth change oí 

coordinates are:

The correiation dimensión related as a lower bound oí the íractal dimensión, 

which provides some measure oí the number oí degrees of freedom involved in the 

dynamics oí the system under consideraron. Its knowledge is necessary íor 

modelling the system (Mandelbrot, 1977).

The Kolmogorov entropy, that is a complementary measure based on iníormation 

theory that describes the loss of informatíon (bits by iteration) giving an insight 

about its predictability (Benettin et al. 1976).

The positive Lyapunor exponents measure the divergence of two nearby trajee- 

tories on the attractor, while the neg3tives refer to the convergpnce on the 

attractor (Farmer et al. 1983).

The first two quantities are discussed in this paper. The last one is not treated 

here because its determination requires more computer power than we presently 

have .

Grassberger and Procaccia (1983) have íound that the correlation dimensión is the 

lower bound of the íractal dimensión. They have developed an 3lgonthm by which 

it can be determined from experimental time series. They have also given, as wiii 

be discussed later, the lower bound oí the Kolmogorov entropy, that indicates how 

chaotic the system is. This method is used in this paper.

3. METHOD OF ANALYSIS

When analyzing experimental time series most of the N variables oí the system 

under study are usually unknown or unavailable. Thereíore the question is whether 

and how it is possible to substitute the missing iníormation. The system desenbed 

by equation (2) can be reduced to a diííerential equation (generally nonlinear) of 

order N in the variable oí interest.
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Ruelle (1981) has íound that instead oí X(t) and its derivatives it is easier to 

work with X(t) and the set oí variables obtained by shiíting the original series by 

íixed lags or delay times r. This is enough to reconstruct, írom one dimensional 

space, a multidimensional phase space oí the dynamical system.

The nature oí the attractors provídes iníormation on the time behavior oí the va

riables and on the nature oí their coupling.

Consider a set oí N points on an attractor embedded in a phase space oí d dimensi- 

ons (where d Is the embedding dimensión), obtained írom a time series:

X(tt),.................. X(tN)

X(ti+r),............... X(tN*r)

X(tp(d-1)r).......X(tH*(d-1)r)

Thus a time series íor a single observable is used to reconstruct phase portraits 

oí the attractor, as suggested by Packard et al. (1983), t is the time delay, chosen 

to coincide with the íirst zero oí the correlaticn íunction so that the variables 

will be linearly independent. No signiíicant variation was observed, in our data 

analysis, over a wide range oí r.

The structure oí the attractor is iníerred írom the correlation dimensión and the 

entropy K2 (Grassberger and Procaccia, 1983) by the so called integral correlation 

íunction C(r) given by:

C(r) = (1/N2) r- |xt(t) - xj(t)|) (3)
'*j

where 0 is the Heaviside íunction and N is the total number oí data.

For convenience, we use a vector notatíon Xj íor a point oí phase space whose 

coordinates are (X(tj),..... ,X(t| ♦(d-l)r)}.

A point Xj is chosen írom the data, as a reíerence point, and all the distances

| Xj-Xj | oí the N-1 remaining points are computed, then the data pornts that lie 
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within a distance r (rom Xj are counted. Repeating the process for all valúes oí i 

one arnves at the quantity given by equation (3).

Grassberger and Procaccia (1983) have shown that for small r, the integral C(r), 

scales as C(r) ~ rü.

From the slopes oí the log-log plots oí C(r) vs. r, valúes oí u as a function oí d 

can be derived. The saturation valué oí the u vs. d plot is the correlation dimen

sión De ( for practical purposes d should be at least twice as large as De ).

The situation is analogous to having an N-dimensional object is projected in m- 

dimensional space. The dimensión of the projection is equal to m unless m > n. In 

that case it remains const3nt, that is, there is saturation.

When random noise is present the correlation integral scales as 

C(r) ~ rd and there is no saturation.

A lower bound of the Kolmogorov entropy (K2) is íound from:

K2 - (l/t) log(Cd (r) /Cd> 1 (r))

K2 > O for deterministic chaos. If the system evolves periodically K2 = O and for 

stochastic systems K2 = ®

4. DATA ANALYSIS AND DISCU5SION

Romanelli et al (1987), have found that at least 1700 data points are necessary, in 

noisy time series, to calcúlate the correlation dimensión of a chaotic attractor. It 

was also shown that there is evidence of a chaotic attractor of low correlation 

dimensión.

In order to analyze daily valúes of solar flux 3t 10.7 cm corresponding to a perinrj 

of low solar activity, January 1973 to December 1977 (mean valúes smaller than 

80) were selected.

Figure 1 shows the variation of the correlation as a function of the embedding di 

mension and a characteristic saturation. The valúes found were Dc= 4.5 and
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K2 - 0.04, indicating the presence oí a chaotic attractor.

In order to search íor a similar behavior in a parameter reílecting the solar ínflu- 

ence in the aeronomical environment, the auroral índex AE, introduced by Davis and 

Sugiura (1966) was chosen.

This índex, although obtained írom geomagnetic data oí selected sites oí the Nor- 

thern Hemisphere, mag be considered to give reliable auroral activity iníormation 

on a global scale, including the Southern Hemisphere (Mayaud,1980). To look lor 

the existence oí a chaotic behavior in this índex, 2928 hourly valúes oí AE írom 

íour months (September to December, 1983) were used, also during low solar 

activity. Phase space was reconstructed using a delay tíme t = 8 hours, as discus- 

sed in the prevíous section.The results are not signiíicantly aííected íor t in the 

the range írom 3 to 16 hours.

Figure 2 shows the variation oí the correlation dimensión as a íunction of the 

embedding dimensión. In this case the presence oí a saturation valué of Dq - 3.3 i? 

indicative of an attractor oí low dimensión and the valué oí K2 = 0.08 shows that 

it is chaotic.

A wider search íor chaotic behavior in an aeronomical parameter was made using 

hourly valúes oí the ionospheric critical frequency f0F2 íor a station in the 

Southern Hemisphere at middle to high geomagnetic latitude. The station chosen 

was Argentine Island (-65.25*  , -64.27*)  and the period covered was írom June 20 

to September 10 oí 1977. In this year there was also low solar activity.

A set oí random data was tested, showing that with 2000 points saturation is not 

reached. So, we are sure that the saturation oí í0F2 data points is not an artificial 

eííect due to the number oí points used.

Figure 3 shows a plot similar to those oí Figure 1 and Figure 2. Here the saturati

on valué oí De = 7.4 is much higher than those Iound íor 10.7 cm solar flux and 

auroral índex and the valué of K2 = 0.04 íound íor the f0F2 data points.

The valúes of the correlation dimensión obtained, higher than those corresponding 

to AE and solar flux can be attributed to the complexity introduced by local íac 
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tors, or by the fact that í0F2 involves variable ionosphenc heights as a íunctron of 

time.

The results given above are summarized in Table 1.

5. CONCLUS1ON5

From the results obtained it can.be concluded that the solar-terrestrial environ- 

ment appears to behave as a system exhibiting deterministic chaos with low di

mensional attractors.

Larger dimensions should appear when local variables are considered. Only the 

presence of nonlinear terms in models can explain chaotic behavior and therefnre 

they should be kept in all important stages of calculations.

The results of such theories will be 'irregular" curves instead of the "smooth' enes 

obtained from linear analysis ( for which the irregular!ties are considered as 

noise). Stíll undetermined is the percentage of stochastic noise present, which 

will be the object of future work.
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TABLE 1

Parameter R Sampling time data size De «2

FI0.7 25.6 daily 1826 4.5 0.04

AE 43.2 houriy 2928 3.3 0.08

foF2 30.9 hourly 1968 7.4 0.04

Characteristics of the time series analgzed, the average sunspot numbers (R) and 

the valúes of the dimensions found.
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Fig. 1 Variation of the correlation integral (d) as a function of the embedding di

mensión (d) for the dailg valúes of solar flux at 10.7 cm for the low activity per i - 

od 1973-1977. The delay time used was tr = 3 days.
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Fig. 2 Varíation of the correlation integral (ü) as a íunction of the embedding di

mensión (d) íor hourly valúes of auroral Index AE for the low activity period Sep

tember to December 1983. The delay time used was t = 8 hours.
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Fig. 3 Variation oí the correlation integral (d) as a íunction oí the embeddlng dim

ensión (d) for hourly valúes of f0F2 (Argentino Island) íor the low ac ti vi ty perlod 

from June 20 to September 10 1977. The delay time used was t = 8 hours. Also 

shown the valúes found for a random function that exhibits not saturation with the 

same amount of data.
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