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Abstract. Let u be a weak solution of (−Δ)mu = f with Dirichlet boundary conditions

in a smooth bounded domain Ω ⊂ Rn. Then, the main goal of this paper is to prove the

following a priori estimate:

kukW2m,p
ω (Ω) ≤Ck fkLp

ω (Ω),

where ω is a weight in the Muckenhoupt class Ap.
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1 Introduction

We will use the standard notation for Sobolev spaces and for derivatives, namely, if α is a

multi-index, α = (α1,α2, . . . ,αn) ∈ Zn
+ we denote |α | =

n

∑
j=1

α j, Dα = ∂ α1
x1

· · ·∂ αn
xn

and

W k,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω), ∀|α | ≤ k}.

For u ∈W k,p(Ω), its norm is given by

kukW k,p(Ω) = ∑
|α |≤k

kDαukLp(Ω) .
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We consider the homogeneous problem⎧⎪⎪⎨⎪⎪⎩
(−Δ)mu = f , in Ω,

�
∂

∂ν

� j
u = 0, in ∂Ω, 0 ≤ j ≤ m−1,

(1.1)

where
∂

∂ν
is the normal derivative.

In the classic paper [1], the authors obtained a priori estimates for solutions of (1.1) for a

smooth domain Ω given by

kukW 2m,p(Ω) ≤Ck fkLp(Ω) .

A key tool to prove those estimates was the Calderón-Zygmund theory for singular integral

operators.

On the other hand, after the pioneering work of Muckenhoupt [7], a lot of work on continuity

in weighted norms has been developed. In particular, weighted estimates for a wide class of

singular integral operators have been obtained for weights in the class of Muckenhoupt Ap.

Therefore, it is a natural question whether analogous weighted a priori estimates can be proved

for the derivatives of solutions of elliptic equations.

For the Laplace equation (m = 1), it was proved in[5] that for a weight ω belonging to the

Muckenhoupt class Ap

kukW 2,p
ω (Ω) ≤Ck fkLp

ω (Ω)

on a bounded domain Ω with ∂Ω ∈C2.

The goal of this paper is to extend the results of [5] for powers of the Laplacian operator

with homogeneous Dirichlet boundary conditions, i.e. it is to prove that

kukW 2m,p
ω (Ω) ≤Ck fkLp

ω (Ω), (1.2)

for ω ∈ Ap, where the constant C depends on Ω, m, n and the weight ω .

The main ideas for the proof of these estimates are similar to those given in [5]. However,

non trivial technical modifications are needed because, for m ≥ 2, the Green function is not

positive in general and therefore, we cannot apply the maximum principle.

2 Preliminaries

In what follows we consider the problem (1.1) in a bounded domain Ω with ∂Ω ∈C6m+4 for

n = 2 and ∂Ω ∈C5m+2 for n > 2 (the regularity on the boundary is necessary in order to use the

results of the Green function given in [6]).
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The solution of (1.1) is given by

u(x) =
Z

Ω
Gm(x,y) f (y)dy, (2.1)

where Gm(x,y) is the Green function of the operator (−Δ)m in Ω which can be written as

Gm(x,y) = Γ(x− y)+ h(x,y), (2.2)

where Γ(x− y) is a fundamental solution and h(x,y) satisfies⎧⎪⎪⎨⎪⎪⎩
(−Δx)mh(x,y) = 0, x ∈ Ω,

�
∂

∂ν

� j
h(x,y) = −

�
∂

∂ν

� j
Γ(x− y), x ∈ ∂Ω, 0 ≤ j ≤ m−1

for each fixed y ∈ Ω.

Then

h(x,y) = −
m−1

∑
j=0

Z
∂Ω

Kj(y,P)
�

∂
∂ν

� j

Γ(P− x)dS, (2.3)

where Kj(y,P) are the Poisson kernels and dS denotes the surface measure on ∂Ω.

We recall that any fundamental solution associated to (1.1) is smooth away from the origin

and it is homogeneous of degree 2m− n if n is odd or if 2m < n and the logarithmic function

appears if n is even and 2m ≥ n. However, in both cases, under our assumption on the boundary

domain, we have the known estimates of the Green function Gm(x,y) and the Poisson kernels

Kj(x,y). In what follows the letter C will denote a generic constant not necessarily the same at

each occurrence.

The following are known facts:

|Dα
x Gm(x,y)| ≤C for |α | < 2m−n, (2.4)

|Dα
x Gm(x,y)| ≤C log

�
2diam(Ω)
|x− y|

�
for |α | = 2m−n, (2.5)

|Dα
x Gm(x,y)| ≤C |x− y|2m−n−|α | for |α | > 2m−n, (2.6)

|Dα
x Gm(x,y)| ≤C

1
|x− y|n min

�
1,

d(y)
|x− y|

�m

for |α | = 2m, (2.7)

|Kj(x,y)| ≤C
d(x)m

|x− y|n− j+m−1 for 0 ≤ j ≤ m−1, (2.8)

where d(x) := dist(x,∂Ω) (see [6] for (2.4), (2.5) and (2.6) and [4] for (2.7) and (2.8)).
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3 The Estimates for the Derivatives of u

In this section we state pointwise estimates for the first 2m− 1 derivatives of the function

u and a weak estimate for the 2m derivative. These estimates are needed for proving the main

result of this work.

Lemma 3.1. Let u(x) be the solution of (1.1). Then, for |α | ≤ 2m−1 we have

|Dα
x u(x)| ≤C M f (x),

where M f (x) is the usual Hardy- Littlewood maximal function of f .

Proof.

|Dα
x u(x)| ≤

Z
Ω
|DαGm(x,y)| | f (y)|dy

≤ C
Z

Ω

| f (y)|
|x− y|n−1 dy ≤C M f (x),

by (2.4), if 2m−n+ 1 ≤ |α | ≤ 2m−1 and by (2.5) and (2.6), if |α | ≤ 2m−n.

Proposition 3.1. Given two measurable functions f and g in Ω, for |α | = 2m we have thatZ
D
|Dα

x Gm(x,y) f (y)g(x)|dydx ≤C
�Z

Ω
M f (x) |g(x)|dx+

Z
Ω

Mg(y) | f (y)|dy
�

,

where D := {(x,y) ∈ Ω×Ω : |x− y| > d(x)}.

Proof. We write D = D1 ∪D2, where

D1 = {(x,y) ∈ D : d(y) ≤ 2d(x)} and D2 = {(x,y) ∈ D : d(y) > 2d(x)}.

Then, using (2.7) we haveZ
D
|Dα

x Gm(x,y) f (y)g(x)|dydx ≤
Z

D

d(y)m

|x− y|n+m | f (y)| |g(x)|dydx

≤ 2m
Z

D1

d(x)m

|x− y|n+m | f (y)| |g(x)|dydx

+
Z

D2

d(y)m

|x− y|n+m | f (y)| |g(x)|dydx = I + II. (3.1)

Calling Ωk(x) = {z ∈ Ω : 2kd(x) ≤ |x− z| < 2k+1d(x)},Z
D1

d(x)m

|x− y|n+m | f (y)| |g(x)|dydx ≤
Z

Ω

∞

∑
k=1

Z
Ωk(x)

d(x)
|x− y|n+1 | f (y)|dy |g(x)|dx

=
Z

Ω
A(x) |g(x)|dx
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with

A(x) ≤
∞

∑
k=1

Z
{|x−y|<2k+1d(x)}

d(x)
|x− y|n+1 | f (y)|dy ≤ 2n

∞

∑
k=1

1
2k M f (x) = 2n M f (x).

In order to estimate the term II in (3.1), we first observe that for (x,y) ∈ D2, we have that

|x− y| ≥ 1
2

d(y). Then

Z
D2

d(y)m

|x− y|n+m | f (y)| |g(x)|dydx ≤ C
Z

Ω

∞

∑
k=1

Z
Ωk−1(y)

d(y)
|x− y|n+1 |g(x)|dx | f (y)|dy

=
Z

Ω
B(y) | f (y)|dy

and therefore, by the same arguments used before we have that

B(y) ≤C Mg(y)

and the Proposition is proved.

In order to see how to estimate in Ω\D, we consider separately the function h and Γ involved

in Gm.

Proposition 3.2. If |α | ≥ 2m−n+ 1, there exists a constant C such that

|Dαh(x,y)| ≤C d(x)2m−n−|α | (3.2)

for |x− y| ≤ d(x).

Proof. In view of (2.3) we must find estimates for Dα
x (

∂
∂ν

) jΓ(P− x) and Kj(y,P).

From the general properties of the fundamental solution Γ(x− y) we have that����Dα
x (

∂
∂ν

) jΓ(P− x)
����≤C |P− x|2m−n−|α |− j (3.3)

for |α |+ j ≥ 2m−n+ 1, and for 0 ≤ j ≤ m−1, by (2.8) we have that

|Kj(y,P)| ≤C
d(y)m

|y−P|n− j+m−1 (3.4)

for y ∈ Ω and P ∈ ∂Ω.

Then by (3.3), (3.4) and the fact that if |x−y| ≤ d(x) then d(y) < 2d(x), we have for |α |+ j ≥
2m−n+ 1

|Dα
x h(x,y)| ≤ C

m−1

∑
j=0

Z
∂Ω

d(y)m

|y−P|n−1+m− j |P− x|2m−n−|α |− j dS

≤ C d(x)2m−n−|α |
m−1

∑
j=0

Z
∂Ω

d(y)m− j

|y−P|n−1+m− j dS.
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In order to see that each integral is finite we write ∂Ω = F1 ∪F2, with

F1 = {P ∈ ∂Ω : |P0 −P|> 2d(y)} and F2 = {P ∈ ∂Ω : |P0 −P| ≤ 2d(y)},

where P0 ∈ ∂Ω is that |y−P0| = d(y). And now, the convergence of these integrals follows in a

standard way.

It follows from the previous Proposition that for each x ∈ Ω and |α | ≥ 2m− n + 1 we have

that Dα
x h(x,y) is bounded uniformly in a neighborhood of x and so is

Dα
x

Z
Ω

h(x,y) f (y)dy =
Z

Ω
Dα

x h(x,y) f (y)dy. (3.5)

On the other hand, although Dα
x Γ is a singular kernel for |α | = 2m, taking β such that

|β | = 2m−1, we have

Dxi

Z
Ω

Dβ
x Γ(x− y) f (y)dy = K f (x)+ c(x) f (x), (3.6)

where c is a bounded function and K is a Calderón - Zygmund operator given by

K f (x) = lim
ε→0

Kε f (x), with Kε f (x) =
Z
|x−y|>ε

Dα
x Γ(x− y) f (y)dy. (3.7)

We will also make use of the maximal operator K̃ f (x) = sup
ε>0

|Kε f (x)|. Here and in what follows

we consider f defined in Rn extending the original f by zero.

Now we are in conditions to give the following estimate:

Theorem 3.3. Given g a measurable function and |α | = 2m. Then there exists a constant

C depending only on n, m and Ω such that for any x ∈ Ω,Z
Ω
|Dα

x u(x)g(x)|dx ≤ C
�Z

Ω
eK f (x) |g(x)|dx+

Z
Ω

M f (x) |g(x)|dx

+
Z

Ω
Mg(y) | f (y)|dy+

Z
Ω
| f (x)| |g(x)|dx

�
Proof. Using the representation formula for u, by (3.5), (3.6) and (3.7) we have

Dα
x u(x) = lim

ε→0

Z
ε<|x−y|≤d(x)

Dα
x Γ(x− y) f (y)dy+ c(x) f (x)

+
Z
|x−y|≤d(x)

Dα
x h(x,y) f (y)dy+

Z
|x−y|>d(x)

Dα
x G(x,y) f (y)dy

=: I + II + III + IV. (3.8)
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By the results given above, for I, II and III we have pointwise estimates, and obtain ( in the

same way as in [5]) that

|I + II + III| ≤C
�eK f (x)+ | f (x)|+ M f (x)

�
.

However, for IV we have just a weak estimate. Indeed, from Proposition ?? we haveZ
Ω
|IV | |g(x)|dx ≤ C

�Z
Ω

M f (x) |g(x)|dx+
Z

Ω
Mg(y) | f (y)|dy

�
and the Theorem is proved.

4 Main Result

We can now state and prove our main result. First we recall the definition of the Ap class for

1 < p < ∞. A non-negative locally integrable function ω belongs to Ap if there exists a constant

C such that �
1
|Q|

Z
Q

ω(x) dx
��

1
|Q|

Z
Q

ω(x)−1/(p−1) dx
�p−1

≤C

for all cubes Q ⊂ Rn.

For any weight ω , Lp
ω(Ω) is the space of measurable functions f defined in Ω such that

k fkLp
ω (Ω) =

�Z
Ω
| f (x)|p ω(x)dx

�1/p

< ∞

and W k,p
ω (Ω) is the space of functions such that

k fkW k,p
ω (Ω) =

 
∑

|α |≤k
kDα fkp

Lp
ω (Ω)

!1/p

< ∞.

Theorem 4.1. Let Ω ⊂ Rn be a bounded domain such that ∂Ω is of class C6m+4 for n = 2

and ∂Ω is of class C5m+2 for n ≥ 2. If ω ∈ Ap, f ∈ Lp
ω(Ω) and u a weak solution of (1.1), then

there exists a constant C depending only on n, m, ω and Ω such that

kukW 2m,p
ω (Ω) ≤Ck fkLp

ω (Ω).

Proof. Since M is a bounded operator in Lp
ω(Ω), by Lemma 3.1 it follows that

∑
|α |≤2m−1

kDα
x ukLp

ω (Ω) ≤Ck fkLp
ω (Ω).

Therefore, it only remains to estimate kDα
x ukLp

ω (Ω) for |α | = 2m.
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Let ω ∈ Ap and g(x) := (Dα
x u(x))p−1 ω(x). By Theorem ?? we see thatZ

Ω
|Dα

x u(x)|p ω(x)dx =
Z

Ω
|Dα

x u(x)|g(x)dx

≤ C
�Z

Ω
eK f (x) |g(x)|dx+

Z
Ω

M f (x) |g(x)|dx

+
Z

Ω
Mg(y) | f (y)|dy+

Z
Ω
| f (x)| |g(x)|dx

�
. (4.1)

Since K̃ and M are bounded operators in Lp
ω(Ω), applying the Hölder inequality, it follows

that Z
Ω
eK f (x) |g(x)|dx =

Z
Ω
eK f (x) |g(x)| 1

ω(x)1/p ω(x)1/p dx

≤
�Z

Ω
eK f (x)p ω(x)dx

�1/p �Z
Ω
|g(x)|q 1

ω(x)q/p
dx
�1/q

≤ k fkLp
ω (Ω)

�Z
Ω
|g(x)|q 1

ω(x)q/p dx
�1/q

, (4.2)

where
1
p

+
1
q

= 1.

In the same way, we obtain that

Z
Ω

M f (x) |g(x)|dx ≤ k fkLp
ω (Ω)

�Z
Ω
|g(x)|q 1

ω(x)q/p dx
�1/q

(4.3)

and Z
Ω
| f (x)| |g(x)|dx ≤ k fkLp

ω (Ω)

�Z
Ω
|g(x)|q 1

ω(x)q/p
dx
�1/q

. (4.4)

For the last term in (4.1), taking into account that ω−q/p ∈ Aq, we have

Z
Ω

Mg(y) | f (y)|dy ≤ k fkLp
ω (Ω)

�Z
Ω

Mg(y)q 1
ω(y)q/p

dy
�1/q

(4.5)

≤ k fkLp
ω (Ω)

�Z
Ω
|g(x)|q 1

ω(x)q/p dx
�1/q

.

Then, by (4.2), (4.3), (4.4) and (4.5)we have

kDα
x ukp

Lp
ω (Ω) ≤ Ck fkLp

ω (Ω)

�Z
Ω
|g(x)|q 1

ω(x)q/p
dx
�1/q

.
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By the definition of g(x),�Z
Ω
|g(x)|q 1

ω(x)q/p dx
�1/q

=
�Z

Ω
|Dα

x u|(p−1)q ω(x)q 1
ω(x)q/p dx

�1/q

=
�Z

Ω
|Dα

x u|p ω(x)dx
�1/q

= kDα
x ukp/q

Lp
ω (Ω).

Then we obtain

kDα
x ukp

Lp
ω (Ω) ≤Ck fkLp

ω (Ω)kDα
x ukp/q

Lp
ω (Ω) (4.6)

and the Theorem is proved for u ∈W 2m,p
ω (Ω).

Finally, we will show that the weak solutio u of (1.1) belongs to W 2m,p
ω (Ω).

We have (−Δ)mu = f , with f ∈ Lp
ω(Ω), then there exists a sequence fk ∈C∞(Rn) such that

lim
k→∞

fk = f in Lp
ω(Ω) [3].

For each k, there exists uk ∈C∞(Ω) satisfying⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−Δ)muk = fk, in Ω,

�
∂

∂ν

� j
uk = 0, in ∂Ω 0 ≤ j ≤ m−1.

It is easy to see, from Lemma 3.1 that uk ∈ W 2m−1,p
ω (Ω), and obviously uk ∈ W 2m,p

ω , loc(Ω).

Moreover, for all compact sets K ⊂ Ω, we have

kukkW 2m,p
ω (K) ≤C(K),

where C(K) is a constant depending on the measure of K. Indeed, taking vk = ukϕ with ϕ ∈
C∞

0 (K), it follows that vk ∈W 2m,p
ω (Ω), satisfies (1.1) with f = gk ∈ Lp

ω(Ω), and we can use (4.6).

Then, it follows from the dominated convergence theorem that uk ∈W 2m,p
ω (Ω) and applying

(4.6), we have

kukkW 2m,p
ω (Ω) ≤Ck fkkLp

ω (Ω).

Therefore, {uk} is a Cauchy sequence in W 2m,p
ω (Ω) and there exists v ∈W 2m,p

ω (Ω) such that

lim
k→∞

uk = v in W 2m,p
ω (Ω). Let us see now that v solves (1.1).

Obviously, f = lim
k→∞

fk = lim
k→∞

(−Δ)muk = (−Δ)mv in Lp
ω(Ω) and by the classical trace theo-

rems in Sobolev spaces and the definition of ω ∈ Ap, it follows that v satisfies the homogeneous

boundary conditions and by uniqueness of the solution, the Theorem is proved.



348 R. G. Durán et al: : Weighted a priori estimates for solution of (−Δ)mu = f

Remark 4.2. The result of Theorem 4.1 is also valid for u a weak solution of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Lu = f , in Ω,

B ju = 0, in ∂Ω 0 ≤ j ≤ m−1

when L := ∑|α |≤2m aα Dα is uniformly elliptic and B j := ∑ |α |≤mj bα Dα , 0 ≤ j ≤ m− 1 are

the boundary operators defined in [1].

Indeed, we define l1 > max j(2m−m j) and l0 = max j(2m−m j). If the coefficients aα ∈
Cl1+1(Ω), bj,α ∈ Cl1+1(∂Ω) and ∂Ω ∈ Cl1+2m+1 we have that the Green function Gm and the

Poisson kernels Kj for 0 ≤ j ≤ m− 1 exist whenever l1 > 2(l0 + 1) for n = 2 and l1 >
3
2

l0 for

n ≥ 3.

Moreover, wherever they are defined, the Green function and the Poisson kernels of the

operator L with these boundary conditions satisfy the estimates (2.4), (2.5), (2.6), (2.7) and

(2.8) (see [4] and [6]).

Remark 4.3. Using the fact that d(x)β ∈ Ap for −1 < β < p − 1 and generalizing the

classical imbedding Theorems for Sobolev spaces to weighted Sobolev spaces (as we have done

in [5], Theorem 3.4) we have as a consequence of the main result: Under the hypotheses of

Theorem ?? with ω = dγ , where γ = kβ , k ∈ N and 0 ≤ β ≤ 1. If 0 ≤ γ < p−1 and 1/p−1/q ≤
2m/(n+ k) (with q < ∞ when 2mp = n+ k), then there exists a constant C depending only on γ
, p, q, n and Ω such that

kukLq
dγ (Ω) ≤Ck fkLp

dγ (Ω). (4.7)

Finally, as a particular case of (4.7) taking γ = m we have

kukLq
dm (Ω) ≤Ck fkLp

dm (Ω)

for p > m + 1 and 1/p−1/q ≤ 2m/(n+ 1) ( with q < ∞ when 2mp = n+ m).

This result is proved in [4] using different arguments for the case 1/p−1/q < 2m/(n+ 1).

Our results show that, at least in the case p > m + 1, the estimate remains valid when

1
p
− 1

q
=

2m
n+ m

.
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