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Abstract

In recent years, autonomous vehicles have attracted the 
attention of many research groups, both in academia 
and business, including researchers from leading com­
panies such as Google, Uber and Tesla. This type of 
vehicles are equipped with systems that are subject 
to very strict requirements, essentially aimed at per­
forming safe operations -both for potential passengers 
and pedestrians- as well as carrying out the process­
ing needed for decision making in real time. In many 
instances, general-purpose processors alone cannot 
ensure that these safety, reliability and real-time re­
quirements are met, so it is common to implement 
heterogeneous systems by including accelerators. This 
paper explores the acceleration of a line detection ap­
plication in the autonomous car environment using a 
heterogeneous system consisting of a general-purpose 
RISC-V core and a domain-specific accelerator. In par­
ticular, the application is analyzed to identify the most 
computationally intensive parts of the code and it is 
adapted accordingly for more efficient processing. Fur­
thermore, the code is executed on the aforementioned 
hardware platform to verify that the execution effec­
tively meets the existing requirements in autonomous 
vehicles, experiencing a 3.7x speedup with respect to 
running without accelerator.

Keywords: Autonomous vehicles, Firesim, Image 
processing, Matrix accelerator, RISC-V

Resumen

En los últimos años los vehículos autónomos están 
atrayendo la atención de muchos grupos de investi­
gación, tanto del ámbito académico como del em­
presarial, entre los que se incluyen investigadores 
pertenecientes a empresas punteras como Google, 
Uber o Tesla. Los sistemas de los que están dota­
dos este tipo de vehículos están sometidos a requisitos 
muy estrictos relacionados esencialmente con la real­
ización de operaciones seguras, tanto para los poten­
ciales pasajeros como para los peatones, así como con 

que el procesamiento necesario para la toma de deci­
siones se realice en tiempo real. En muchas ocasiones, 
los procesadores de propósito general no pueden por 
sí solos garantizar el cumplimiento de estos requisitos 
de seguridad, fiabilidad y tiempo real, por lo que es 
común implementar sistemas heterogéneos mediante 
la inclusión de aceleradores. En este artículo se ex­
plora la aceleración de una aplicación de detección de 
líneas en el entorno de vehículos autónomos utilizando 
para ello un sistema heterogéneo formado por un core 
RISC-V de propósito general y un acelerador de do­
minio específico. En particular, se analiza dicha apli­
cación para identificar las partes del código más cos­
tosas computacionalmente y se adapta el código para 
un procesamiento más eficiente. Además, se ejecuta 
dicho código en la mencionada plataforma hardware 
y se comprueba que su procesamiento efectivamente 
cumple con los requisitos presentes en los vehículos 
autónomos, experimentando una reducción de 3.7x en 
su tiempo de ejecución con respecto a su ejecución sin 
acelerador.

Palabras claves: Vehículos autónomos, Firesim, 
Procesamiento de imágenes, Acelerador de matrices, 
RISC-V

1 Introduction

In the technological era in which we live, we every 
day strive to make all the usual tasks as automatic as 
possible in order to gain free time. In addition, we try 
to achieve scenarios that are impossible right now, such 
as smarter power grids, fully autonomous vehicles or 
smart cities. This is why the Internet of Things (IoT) 
arises, as we need new technologies to design these 
systems. Most of them are on-board systems, so they 
need to get a trade-off between power consumption 
and delivered performance. In particular, in this work 
we focus on autonomous vehicles.

Autonomous driving systems aim to enable vehi­
cles to drive on the road without human interven­
tion [1, 2, 3]. Therefore, these systems must guarantee 
the safety and integrity of the vehicle, for which they 
must take a series of decisions in real time, including 
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moving the steering wheel to ensure that the correct 
trajectory is followed, detecting obstacles in the path 
(pedestrians, animals, objects...), activating the brak­
ing mechanism when necessary and others. For this 
purpose, it is essential that the vehicle has a camera 
that records images of the route and processes them in 
real time to ensure the correct and safe operation of the 
vehicle. This image processing requires considerable 
computing power, but at the same time, when talking 
about on-board systems, it is essential to keep energy 
consumption at low levels so the vehicle does not loose 
autonomy [4],

For these reasons, autonomous vehicles require on­
board automatic systems to process the recorded im­
ages that allow certain operations such as line and edge 
detection. Currently, the most widely used algorithms 
for this type of processing require high performance 
and their basic kernel is matrix and vector multiplica­
tion. It is therefore highly desirable that this type of 
algorithms could be executed in one of the many do­
main specific accelerators that have emerged in recent 
years.

In this paper we propose to accelerate a line de­
tection application employed in autonomous cars by 
using different heterogeneous systems made up of 
a general-purpose RISC-V core working at low fre­
quency and a domain-specific accelerator. For this 
purpose, the application is deeply analyzed in order 
to identify the computationally intensive parts of the 
code and adapted consequently for a more efficient 
processing. As it will be explained in Section 3, the 
hardware platform used in this work includes, on the 
one hand, a general-purpose BOOM processor, which 
is an out-of-order RISC-V core [5], and on the other 
hand, the Gemmini [6] accelerator, specifically de­
signed for matrix multiplication. This platform was 
chosen because the RISC-V architecture, in addition to 
being open source, allows the integration of accelera­
tors and their potential adaptation in a very simple way. 
Furthermore, the RISC-V instruction set architecture 
(ISA) is highly modular, allowing to choose exactly 
the functionalities needed, which is especially useful 
in IoT environments.

This paper leverages two image processing algo­
rithms: 1) the Canny algorithm for edge detection of 
an image, and 2) the Hough transform, oriented to find 
imperfect instances of objects within a certain class 
of shapes by means of a voting procedure. In Section 
4 we perform a detailed analysis of both algorithms 
codes, in order to identify the computational load of 
the different functions included in these programs, as 
well as the available parallelism. Moreover, we sched­
ule some functions to run on the accelerator, while 
the rest of the algorithm is executed on the processor, 
aimed to optimize the total execution time and conse­
quently to meet the strict requirements of performance, 
consumption and safety imposed by autonomous ve­
hicles. The experimental evaluation carried out in 

Section 5 reports a speedup of 3.7x when executing 
these algorithms with respect to the baseline where no 
accelerator is employed. Finally, Section 6 concludes 
the paper.

2 Basic notions and state of the art

In this section we explain some basic notions related 
to autonomous vehicles. We also provide details on 
the RISC-V-based development environment that we 
employ, including the tools used that make it possible 
the evaluation of the proposal presented in this paper.

2.1 Autonomous vehicles

Autonomous vehicles are equipped with several sen­
sors, as shown in Fig. 1, including video cameras, 
which are responsible for obtaining the data that serve 
as input to the processing system. The purpose of this 
data processing is to recognize the environment which 
the vehicle is driving through, and as a result, to make 
the appropriate decisions at any time, so as to ensure 
that the vehicle can reach its destination efficiently 
and safely. In this aspect, autonomous vehicles have 
levels of driving automation from 0 (No automation) 
to 5 (Full automation), as explained in [7]. In the first 
levels, from 0 to 2, the vehicle has very little capacity 
to act (in level 2 it can only perform steering and ac­
celeration) and all the responsibility lies on the driver. 
In contrast, the automatic system monitors the driving 
environment in levels 3 to 5, being this last one the 
ideal scenario in which the vehicle is completely au­
tonomous, even not providing controls for the driver. 
So, there is a gap between levels 2 and 3. Between 
these levels there is also a technological gap, since gen­
erating hardware and software capable of monitoring 
the environment in real time becomes significantly dif­
ficult. However, this gap is progressively disappearing 
and this work aims to contribute to this.

Notably, certain safety decisions are related to the 
correct recognition of the trajectory to be followed 
by the vehicle, based on the images recorded by the 
camera. In addition to allowing the car to follow the 
correct route, this functionality also involves restrict­
ing the likelihood of an accident. For this purpose, 
computer vision algorithms are commonly used in 
these processing systems [9, 10] and, in particular, 
quite approaches use Canny algorithm to detect edges 
combined with the Hough transform to detect road 
lines [11, 12], Therefore, in this paper we focus on 
improving the performance of these algorithms which 
are the basis of lane detection. The problem with these 
algorithms is their very high computational cost. In ad­
dition to this, there is a need for data processing to be 
performed in real time so that the vehicle could react 
with immediacy to changing situations that may occur 
during the journey. It is also highly desirable that the 
energy consumption associated with such processing
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Figure 1: Integrated sensors on an autonomous vehicle [8].

was as low as possible, so that the vehicle’s autonomy 
was not affected.

Autonomous driving systems are essentially com­
posed of three classes of sub-systems [1, 2]: scene 
recognition, route planning and vehicle control, con­
sisting of a set of algorithms each. In particular, 
as shown in Fig. 2, scene recognition, the class in 
which this article falls, comprises three essential tasks, 
namely 1) localization, which precisely establishes the 
vehicle’s location, 2) object detection, which identifies 
objects of interest in the vehicle’s environment (such 
as other vehicles, pedestrians or road signs, with the 
aforementioned objective of avoiding accidents and 
also traffic violations), and 3) object tracking, which, 
since the object detection algorithm is carried out on 
each frame of the image, is responsible for relating its 
results to other frames in order to predict the trajecto­
ries of moving objects. These three tasks account for 
a very high percentage of the total computation time 
required [1] and therefore constitute bottlenecks that 
significantly limit the ability of conventional proces­
sors to satisfy the existing restrictions in the design of 
this type of systems. For this reason, it is being pro­
posed to incorporate some type of accelerator to the 
on-board processing systems that helps the processor 
to fulfill the strict time limits in which it must operate.

2.2 RISC-V-based development environment

In order to carry out the implementation and evalua­
tion of our proposal, which will be explained in the 
following section, a series of software tools have been 
used, as detailed next:

Figure 2: Schematic of the subsystems of an au­
tonomous vehicle.

2.2.1 Chipyard.

Chipyard [13] is an environment for the design and 
evaluation of hardware systems that consists of a set 
of tools and libraries designed to provide an integra­
tion path between open-source tools and commercial 
tools for the development of Systems on Chip (SoC). 
The environment provides a range of components for 
design construction as well as for compilation and sim­
ulation. Among these components there are several 
RISC-V cores and accelerators, including the BOOM 
core and Gemmini accelerator that make up the hetero­
geneous system chosen in this paper and that will be 
detailed in Section 3. The simulation of the complete 
system accelerated with FPGA is one of the types of 
simulation supported by Chipyard, using the FireSim 
tool described below.
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2.2.2 FireSim.

FireSim [14] is a hardware simulation platform that 
runs on Amazon cloud services and automatically de­
ploys the FPGA services in the cloud when needed. In 
particular, the user can generate the RTL of an own 
design and run it on these FPGAs, obtaining the same 
results as if the circuit was physically deployed.

2.2.3 Amazon Web Services.

Amazon Web Services [15] is a cloud services plat­
form that offers from training courses in new technolo­
gies -such as artificial intelligence or IoT- to infras­
tructure services -such as storage or cloud comput­
ing. We focus on cloud computing because it offers a 
wide range of hardware platforms, including EC2 Fl 
instances that correspond to FPGAs, giving us the ver­
satility we need to synthesize designs and to simulate 
the execution of applications on them.

3 Platform design

The platform employed in our experiments features a 
general-purpose processor equipped with an accelera­
tor -implemented as a systolic array architecture- for 
matrix multiplication. Both components have been 
developed by the Computer Architecture group at 
Berkeley University [6]. The accelerator communi­
cates with the processor through the RoCC (Rocket 
Co-Processor) interface, which allows the accelerator 
to receive the specific instructions that the processor 
sends, as shown in Fig. 3. In the following two sec­
tions we describe the processors and the accelerator 
used.

Figure 3: Architecture of our heterogeneous plat­
form [6].

3.1 Processors

As Fig. 3 illustrates, our system features a core plus an 
accelerator. In our experiments we opted to employ ei­
ther the Rocket or the BOOM (Berkeley Out-of-Order 
Machine) processor. Both of them are written in Chisel 
and implement the RV64GC instruction set. Also, they 

are easily parameterizable and can be synthesized. No­
tably, the cores are configured by using the Rocket 
Chip SoC generator [16].

The main differences between both cores lie in the 
pipeline characteristics: while the Rocket core fea­
tures an in-order 5-stage pipeline, the BOOM core is 
equipped with a deeper out-of-order pipeline, which 
is inspired by those of MIPS R10000 and Alpha 
212645 [5], Consequently, the BOOM core is ex­
pected to deliver higher performance when executing 
our line detection algorithm. However, this comes at 
the expense of higher energy consumption than that of 
the Rocket core. Therefore, we experiment with both 
processors in order to check if the speedup reported by 
the BOOM core is significant enough to cancel out the 
energy constraints.

3.2 The Gemmini Accelerator

The Gemmini matrix multiplication accelerator relies 
on a 2D systolic array architecture, as shown in Fig. 3, 
to perform matrix multiplications in an efficient fash­
ion. In addition to this systolic array, it also features a 
scratchpad memory with multiple banks and an accu­
mulator, which has more bits than that of the systolic 
array. Besides, the implementation allows to choose, at 
compile time, between two specific calculation mecha­
nisms: output-stationary or weight-stationary.

Customized instructions -out of RISC-V standard- 
are available for the Gemmini accelerator, so that it is 
equipped with its own instruction queues that make 
it possible to execute concurrently with the proces­
sor. The Gemmini programming model can be bro­
ken down into three different levels. In the high-level 
we can run Open Neural Network Exchange (ONNX) 
models, being the accelerator itself in charge of map­
ping the ONNX kernel to the accelerator by means of 
dynamic dispatch. In the mid-level we use a hand- 
tuned library including C macros to perform data 
transfers between the main memory and the accel­
erator’s scratchpad memory, which should be explic­
itly defined, as well as to automate the calculation of 
the block size used to split a matrix and to perform 
the full multiplication in a transparent way for users. 
Among available functions we highlight the following: 
tiled_matmul, to run a tiled matrix multiplication with 
hardcoded tiling factors; tilecLconv, to apply a convolu­
tion with hardcoded tiling factors; tiled_matmuLauto, 
to run a tiled matrix multiplication with automatically 
calculated tiling factors; gemminijnvin, to move data 
from the main memory to the scratchpad and gem- 
minimivout, to move data from the scratchpad to the 
main memory. Finally, at the low-level, we can write 
our own mid-level kernels with low-level assembly 
instructions.
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4 Adapting image processing algorithms

As stated previously, the aim of this work is to accel­
erate image processing algorithms employed to guide 
autonomous vehicles. Notably, we focus on those 
algorithms targeted to detect road lines from road im­
ages. In this section we first introduce the basic al­
gorithms used (the Canny algorithm and the Hough 
transform). Then, we show the full algorithm that we 
have employed in this work as starting point for line 
detection and, finally, we propose some changes to 
this algorithm oriented to improve its efficiency and 
performance without impacting on accuracy.

4.1 Canny Algorithm

Among the edge detection methods developed to date, 
the Canny algorithm is one of the methods more 
strictly defined that provides a satisfactory and reli­
able detection. Thus, it has become one of the most 
popular algorithms targeting edge detection.

This algorithm relies on calculus of variations, 
which allows to find an analytical function to approxi­
mate the real curve (i.e., the road lines) as accurately 
as possible. The procedure followed by the Canny 
algorithm [17] can be broken down into 5 stages as 
shown next:

1. Noise reduction: applying the Gauss filter for 
image smoothing.

2. To find the intensity gradient of the image.

3. Magnitude threshold to the gradient: applying a 
threshold to the gradient for discarding edge false 
positives.

4. Double threshold: applying again a threshold to 
the gradient for highlighting the potential edges.

5. Hysteresis: removing weak or disconnected 
edges.

Algorithm 1 shows the pseudo-code we employed 
to apply the Canny algorithm, broken down into the
5 stages aforementioned. Essentially, it includes mul­
tiplications of consecutive matrices and conditions 
checking in order to detect edge points.

4.2 Hough Transform

The Hough transform is a technique of features extrac­
tion which is employed in multiple fields involving 
image processing, as computer vision or image dig­
ital processing. The goal of the algorithm is to find 
imperfect objects among certain classes of objects by 
means of a voting procedure. This procedure lies in 
creating a space with the values assigned to each pixel, 
so that the resulting local maximums in the so called 
accumulator space are the possible detected objects.

Algorithm 1 Canny algorithm summarized pseudo­
code.

1: float NR mask * image > Stage 1: Noise

2:
reduction
float Gx <— mask * NR > Stage 2: Gradient

3:
intensity
float Gy <— mask * NR

4: float G <— yjGl + G^

5: float 0 <— arctan(|G?|/|Gx|)
6: if © [*] > threshold^ then > Stage 3: Gradient

7:
threshold

float 0 E {0,45,90,135}
8: end if
9: if 0[*] > threshold^ && G[* > thresholds then

10:
> Stage 4: Double threshold 

int edge[*] <— 1
11: end if
12: if G[*] > thresholds && edge[*] == 1 then >

13:
Stage 5: Hysteresis

int image_out[*] <— 255
14: end if

Generally, the classical Hough transform was only 
applied to the detection of straight lines, but in recent 
years it has been modified and currently it is employed 
for the detection of arbitrary curves, as ellipses or 
circles.

Algorithm 2 illustrates the code we employed to 
apply the Hough transform [18]. In this code, for each 
edge point previously detected with the Canny algo­
rithm, the Hough transform draws a set of straight lines 
going through that point, recording the amount of lines 
going through each image pixel. Hence, those points 
with more lines going through them will correspond 
to a line in the original image.

Algorithm 2 Hough transform summarized pseudo­
code^________________________________________

1: For each edge point (z, j)
2: if image[z * width + j] > 250 then
3: 0 <-0
4: while 0 < 180 do
5: float p <— j * cos 0 + i * sin 0
6: accumulators[(p + cp) * 180 + 0]++
7: 0++
8: end while
9: end if

4.3 Line Detection

Once we have described the two previous algorithms, 
we now employ a combination of both as well as an­
other specific code targeted to detect with higher ac­
curacy the lines that demarcate lanes in conventional 
ways. For this purpose, given a certain input image, 
we first apply the Canny algorithm and then the Hough 
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transform, so that we can apply a function (Get lines 
coordinates') to detect lines in the resulting image. In 
Algorithm 3 we show the code of the mentioned func­
tion, which involves a search of local maximums in the 
preprocessed image and the generation of a straight 
line going through closest maximums.

Algorithm 3 Get lines coordinates algorithm summa­
rized pseudo-code.

1: For each image point (p, 0)
2: if accumulators [*] > threshold then > It is a local 

maximum
3: max <— accumulators [*]
4: if accumulators[neighbourhood(*)] > max

then > We check its neighborhood
5: accumulators [neighbourhood(*)]
6: end if
7: end if
8: lines.add(xi,yi,X2,y2) > We save the two points 

that demarcate the straight line

4.4 Delivering higher performance

In the previous sections we have described the original 
code of the algorithms, which indeed deploys many 
floating point variables. Therefore, it is advisable to 
replace them by integer variables without any loss in 
accuracy. We effectively made these changes in the 
code and we verified that no accuracy loss occurs when 
detecting lines in an image. Fig. 4 shows the original 
image with detected lines highlighted in red. The 
analytical results corresponding to the lines detected 
with the original algorithm and with the simplified one 
do match, and also the second algorithm has performed 
slightly faster. Details on these modifications can be 
found in [19].

Apart from this change, we also performed a pro­
filing of the full code divided into three stages: 1) 
original image loading, 2) lines detection and 3) gen­
eration of an output image with the detected lines. 
Accordingly to the results obtained, we opted for not 
generating an output image (that is not needed by our 
system) due to the high cost associated, as shown in 
Table 1. In doing so, we are able to reduce the execu­
tion time by 4.2x as we can derive from data reported 
in Table 2. It is worth noting that the time values illus­
trated in the mentioned tables are approximate since 
the profiling was not performed on the target platform, 
but on an Intel i7 processor running Linux. However, 
in order to report time values as accurate as possible, 
the algorithms were run several times so that the ta­
bles show the average values obtained. According to 
numbers from Table 2, our attention is drawn to the 
line detection phase since it accounts for almost 70% 
of the execution time.

In addition, we have performed another specific pro­
filing of the stages of the line detection algorithm in

Table 1: Phased profiling of the full code.
Timeips) % over total

Image load 43803 7,32%
Line detection 98171 16,42%
Image generation 456030 76,26%
Total 598004

Table 2: Phased profiling of the full code excluding 
the generation of the output image.

Timeips) % over total
Image load 43485 30,58%
Line detection 98714 69,42%
Total 142199

order to know in which parts of the processing the ac­
celeration efforts should be focused. Table 3 illustrates 
that the most time-consuming part is the application 
of the Canny algorithm, which accounts for more than 
87% of the total execution time. Therefore, we will 
focus on accelerating this stage of image processing.

Table 3: Phased profiling of the line detection algo­
rithm.

Timers) % over total
Canny algorithm 90265 87,64%
Hough transform 12275 11,92%
Get coordinates 459 0,45%
Total 102999

5 Experimental results

In this section, we first describe the hardware platforms 
as well as the workloads employed in our experiments, 
and then we detail the results obtained.

5.1 Platforms generated

All the components used in the designs generated are 
written in Scala, so it is easy to modify their main 
features such as number of registers or number of Re- 
Order Buffer (ROB) entries. Notably, we generate 
several designs: while all of them include one (or 
more) Rocket or BOOM cores, they may include or 
not the Gemmini accelerator.

Apart from the cores, for the sake of fairness the 
remaining components in the different designs gener­
ated (such as memory, clock frequency or buses) are 
the same in all of them. Hence, all designs have an L2 
-shared in multicore platforms- 4MB size. In order 
to optimize the design to fit into smaller FPGAs, the 
option MCRams is enabled in the FireSim platform 
configuration for all designs. This option allows the 
FPGA simulation tool (Golden Gate [20]) to simu­
late the RAM via serialized accesses with a decoupled 
model [14],
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Figure 4: Original image with detected lines highlighted in red.

Platforms including the Gemmini accelerator can 
only be designed to work at 50MHz while the remain­
ing ones can reach 80MHz. Thus, the later have been 
designed both at 50 and 80 MHz for a fair comparison 
against designs equipped with Gemmini. Notably, the 
platforms generated are:

1. Platform 1: Rocket single core.
This architecture includes a single Big Rocket 
core. There are four different sizes for the core, 
namely Big, Medium, Small and Tiny, with differ­
ent features such as the size of LI-cache. The Big 
Rocket is the only one providing Floating Point 
Unit. Il also has by default the parameters shown 
in Table 4. More information on the details of the 
configuration can be found in [19],

2. Platform 2: Rocket dual core.
This is the same configuration as Platform 1 but 
it includes two Big Rocket cores. This dual con­
figuration also has the option MTModcls enabled 
in the FireSim platform configuration, so that 
each core is simulated with a separate thread of 
execution on a shared underlying physical imple­
mentation [14],

3. Platform 3: Heterogeneous Rocket single core + 
Gemmini Accelerator.

This architecture is made up by a Big Rocket core 
and a Gemmini matrix multiplication accelerator, 
which has been designed with default options: 
16x16 8-bit systolic array, both dataflows sup­
ported (output-stationary and weight-stationary), 
float data type supported, a set of accumulator 
registers with 64B of total capacity, a 256KB 
scratchpad with 4 banks, a small TLB with 4 
entries and a bus width of 128 bits.

4. Platform 4: BOOM Single core.
This architecture includes a single Large BOOM 
core. There are different macros for defining 
BOOM cores of Giga, Mega, Large, Medium and 
Small sizes. The main differences between the 
one that we are using and the rest is the num­
ber of entries in the ROB and some LI-cache 
parameters. Thus, in the configuration WithN- 
LargeBooms the value of notable parameters are 
shown in Table 4. More information on the de­
tails of the configuration can be found in [19]. 
The Large size was chosen because it is just big 
enough to provide the required performance with 
minimum power consumption.

5. Platform 5: BOOM dual core.
This is the same configuration as Platform 4 but 
it includes two Large BOOM cores, with the MT- 
Models option enabled.

6. Platform 6: Heterogeneous BOOM single core + 
Gemmini Accelerator.

This architecture is made up by a Large BOOM 
core and a Gemmini matrix multiplication accel­
erator, which has been designed with the default 
options explained earlier.

5.2 Workloads generated

Different workloads were designed for running on the 
platforms described in the previous section. They are 
the following:

1. Workload 1: Multithreaded application on top of 
Linux buildroot distribution.

In this workload, a multithreaded application 
(with each thread computing the addition of 2
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Table 4: Platform configuration options.
Big Rocket Large Boom

I&D Cache Size 16KB 32KB
Sets 64 64
Ways 4 8
Prefetching no disabled

TLB Sets 1 1
Ways 32 512

BTB Entries 28 28
ROB Entries no 96
FPU yes yes
Branch predictor
entries no 128

long arrays, as explained in [19]) is executed on 
top of Linux. It has been specifically designed to 
fully exploit the parallel features of the platforms, 
so that it can be used to evaluate the maximum 
performance obtainable in the different multicore 
designs. This value will serve as an upper bound 
when we evaluate the performance achieved by 
our target application.

2. Workload 2: Line detection algorithm on top of 
Linux buildroot distribution.

In this workload, the modified version of the line 
detection application explained in Section 4 is 
executed on top of Linux.

3. Workload 3: Line detection algorithm for bare- 
metal platforms with Gemmini.

In this workload, in addition to the modifications 
in Section 4, we have modified the line detection 
algorithm to add matrix multiplications. In the 
original version, this algorithm multiplies some 
mask values to a pixel neighborhood manually 
by writing the corresponding scalar multiplica­
tions. We have rewritten these multiplications 
in a matrix form, obtaining a 5x5 matrix for the 
mask and a 5x5 neighborhood matrix for each 
pixel. As for the platform, the differences with 
respect to the previous workload are that this plat­
form includes a Gemmini accelerator for matrix 
multiplication and the fact that no operating sys­
tem is available for this platform. Thus, matrix 
multiplications in the code have to be replaced 
by calls to a Gemmini multiplication. As pre­
viously explained, some C macros are provided 
with the designs that make it possible to easily 
programming the accelerator. First, data need to 
be moved from the main memory to the scratch­
pad memory in Gemmini, then the multiplication 
is performed in tiles and finally the results are 
transferred back to the main memory. We will 
use the tiled-matmuLauto function that receives 
the dimensions of both matrices as input parame­
ters and automatically splits the multiplication in 

blocks of suitable size for the systolic array and 
memory, thus performing the whole multiplica­
tion. Finally, system calls not available outside 
Linux were removed from the code and their func­
tionality was implemented in an equivalent way.

5.3 Experiments

In this section we show the results obtained from the 
execution of the workloads on the different platforms 
designed. The metrics measured are clock cycles and 
instructions retired provided by the performance coun­
ters of the target platforms.

5.3.1 Experiment 1: Execution of a multithreaded 
application on single core and dual core plat­
forms both with Rocket and BOOM cores.

The goal of this experiment is to verify the maximum 
performance attainable in the different platforms by 
using a massively parallel application. Therefore we 
employ Workload 1, configured with as many indepen­
dent threads as the number of cores in the system, i.e., 
1 or 2 depending on the specific platform.

The target platforms in this case include both single 
and dual core processors (either Rocket or BOOM, 
running at 80MHz) that correspond to the Platforms 1, 
2, 4 and 5 previously described.

The results of the experiment are shown in Table 
5, both for a simulation in which the main loop is 
executed once (column labelled N-times = 1) and 8 
times (column N-times = 8). The number of clock 
cycles for the experiment with 8 iterations is 8 times 
the one of the single iteration experiment. Besides, 
speedup of the dual core version with respect to the 
single core is very close to 2x for both Rocket and 
BOOM. Finally, comparing the performance of the 
different cores, BOOM achieves almost 2.2x higher 
performance than Rocket, so that a single BOOM core 
outperforms a dual core Rocket running at the same 
frequency for this highly parallel application.

Thus, it has been verified that multithreaded appli­
cations are being correctly simulated in the multicore

- 136-



Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

Table 5: Cycles when executing Workload 1 on Plat­
forms 1, 2, 4 and 5.

N times = 1 N times=8
Cycles

Rocket singlecore 2.01 x 10y 1.59 x 10lu
BOOM singlecore 9.17 x 10s 7.31 x 10y
Rocket dualcore 9.97 x 10s 7.99 x 10y
BOOM dualcore 4.53 x 10s 3.66 x 10y
Speedup BOOM 
vs Rocket 2.19x 2.18x
Speedup Rocket 
dual vs single 2.02x 1.99x
Speedup BOOM 
dual vs single 2.02x 1.99x

platforms, achieving the expected speedup. Further­
more, the comparison between both types of cores has 
been established.

5.3.2 Experiment 2: Execution of the line detec­
tion application on Rocket and BOOM sin­
gle cores.

This second experiment involves simulating the execu­
tion of the line detection application (workload 2) on 
the Rocket and BOOM single core platforms employed 
in the previous experiment (Platforms 1 and 4), also 
running at 80MHz. In Table 6 we report the number 
of clock cycles and instructions retired corresponding 
to each of the different parts of the line detection al­
gorithm, as well as the average cycles per instructions 
(CPI) value. In addition, we calculate the actual time 
from the cycles and clock frequency, resulting in times 
of around half second. In particular, for the Rocket 
core we obtain a total execution time of 0.648s and 
for the Boom core 0.327s. As shown, the CPI for 
the Hough transform is higher than 3 in both Rocket 
and BOOM platforms. Moreover, its execution on the 
BOOM processor almost matches the time reported on 
the Rocket platform, as the multiple data dependencies 
in the code make out-of-order capabilities useless.

On the other hand, the Canny and the GetCoordi- 
nates algorithms exhibit lower CPI numbers in both 
platforms, achieving a speedup of 2x when executing 
on the Boom processor with respect to Rocket, due 
to the greater instruction level parallelism that can be 
extracted from both algorithms. Recall that the Canny 
algorithm is the most relevant part of the line detection 
application, consuming close to 90% of the total exe­
cution time (as shown in Table 3). In conclusion, using 
the BOOM core for the execution of the workload is 
interesting in terms of the global speedup achieved.

5.3.3 Experiment 3: Execution of the line detec­
tion application on heterogeneous platforms 
with a Rocket or BOOM single core and a 
Gemmini matrix multiplication accelerator.

This experiment consists on simulating the execution 
of the modified line detection application (workload 
3) on the heterogeneous single core platforms made 
up by a Rocket or BOOM processor plus a Gemmini 
matrix multiplication accelerator running at 50MHz.

Table 7 shows first the results obtained in the simula­
tion of Workload 3 (line detection application for bare 
metal) on a Rocket single core (used as baseline for 
computing speedups) and a BOOM single core, both 
running at 50MHz. As the first row shows, BOOM is 
41% faster than Rocket. The execution results from 
the previous section, that is, those corresponding to 
Workload 2 (line detection application for Linux) on 
Rocket and BOOM single core at 80MHz are also com­
pared to the baseline execution, achieving speedups 
of 2.09x and 3.76x respectively. It is worth noting 
that although the code of Workloads 2 and 3 does not 
exactly match, it performs the same functionality. Fi­
nally, the results from the simulation of Workload 3 on 
heterogeneous platforms in which matrix multiplica­
tions are performed using the Gemmini accelerator are 
also recap in Table 7. According to them, speedups 
of 2.36x and 3.7x are reported for Rocket and BOOM 
based platforms respectively, with respect to the base­
line. Although these speedups can be considered as 
significant, they are far from the maximum values at­
tainable by the accelerator. The reason is that the size 
of the matrices employed is smaller than that of the 
systolic array, which indeed is not fully utilized.

Furthermore, in the graph shown in Fig. 5 we can 
see the time corresponding to all the single core and 
heterogeneous experiments. The first thing we notice 
is that the out-of-order execution of the Boom core is 
beneficial for the Canny algorithm, leaving the Rocket 
core as the slowest by far at both 50 and 80MHz. Fur­
thermore, we see how the combination of the cores 
with the Gemmini accelerator at 50MHz gives us a 
similar time to the same cores without accelerator at 
80MHz, which gives us a great benefit in terms of con­
sumption by running at a lower clock frequency which 
should be taken into account in the field of autonomous 
vehicles, as it would provide greater autonomy. In ad­
dition, we note that the shortest time is under half a 
second, in particular 300ms, and we achieve it with 
the combination of the Boom core and the Gemmini 
accelerator at a clock frequency of 50MHz. Thus, a 
vehicle travelling at 50km/h could run the algorithm 
every 4 metres approximately and if necessary, options 
such as mounting several systems in parallel or slightly 
increasing the clock frequency for faster processing 
could be explored.

In conclusion, for this application with small matri­
ces, both platforms based on the BOOM core deliver 
similar performance (speedup of around 3.7x with re-
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Table 6: Cycles, instructions retired and CPI when executing Workload 2 on Platforms 1 and 4 at 80MHz.
Cycles Instructions CPI Time(ms)

Rocket singlecore Canny 2.18 x 10y 9.06 x 10s 2.40 648,38
Hough 3.32 x 10s 9.35 x 107 3.55 98,86
Coordinates 6.49 x 10b 3.47 x 10b 1.87 1,93

Boom singlecore Canny 1.08 x 10y 9.06 x 10s 1.19 327,10
Hough 3.16 x 10s 9.35 x 107 3.38 96,07
Coordinates 3.2 x 106 3.47 x 106 0.92 0,97

Speedup Boom vs Rocket Canny 2.02x l.OOx 2.02x 1.98x
Hough 1.05x l.OOx 1.05x 1.03x
Coordinates 2.03x l.OOx 2.03x 1.99x

Speedup vs Rocket singlecore 50MHz

Table 7: Speedup results when executing Workload 2 on Platforms 1 and 4 at 80MHz, and Workload 3 on Platforms 
3, 4, 6 at 50MHz, with respect to execution of Workload 3 on Platform 1 at 50 MHz.

Canny Hough Coordinates Total
Boom singlecore 50MHz 1.44x 1.04x 1.85x 1.41x
Rocket singlecore 80MHz 2.26x 0.98x 1.07x 2.09x
Boom singlecore 80MHz 4.57x 1.03x 2.18x 3.76x
Rocket + Gemmini 50MHz 2.54x 1.16x 1.03x 2.36x
Boom + Gemmini 50MHz 4.43x 1.07x 1.98x 3.70x

spect to the Rocket baseline), being the BOOM single 
core at 80MHz slightly faster than the BOOM + Gem­
mini at 50MHz. Even in this non favourable scenario, 
the accelerator allows to report high performance work­
ing at a lower frequency, being more power efficient 
than the single core platform running at higher fre­
quency.

6 Conclusions and future work

In this paper we have explored the acceleration of a 
line detection algorithm in the autonomous car envi­
ronment using a heterogeneous system consisting of a 
general-purpose RISC-V core and a domain-specific 
accelerator. In particular, we analyzed the application 
to identify the most computationally intensive parts of 
the code and adapted it accordingly for more efficient 
processing.

The first conclusion we extract from this work is that 
RISC-V architecture provides a hw-sw ecosystem that 
is well suited for IoT in general and autonomous vehi­
cle systems in particular, due to its versatility and mod­
ularity, which allows to generate platforms adapted 
to different scenarios. In fact, in this work, we de­
signed six different platforms covering a wide spec­
trum of alternatives: on one side single and dual core 
homogeneous systems, and on the other side hetero­
geneous platforms with a single core plus a matrix 
multiplication accelerator -all of them including high 
performance BOOM cores or more efficient Rocket 
cores.

Also, a multithreaded application with high data par­
allelism has been designed to analyze the performance 
of the homogeneous platforms built. Thus, it has been 

verified that multithreaded applications are being cor­
rectly simulated in the multicore platforms, achieving 
the expected speedup. Furthermore, the comparison 
between both types of cores determined that a single 
BOOM core is up to 2.19 times faster than a Rocket 
one.

Finally, the original application of line detection 
has been modified in order to decrease its execution 
time without losing accuracy, and it has also been 
adapted for bare metal and Gemmini execution. We 
simulated the application on all designed platforms. 
BOOM-based platforms reported the best performance 
numbers, achieving speedups of 3.7x with respect to 
the baseline (a single Rocket core running at 50MHz), 
and being the single BOOM core running at 80MHz 
slightly faster than the BOOM + Gemmini platform at 
50MHz. As previously stated, even working at a lower 
frequency the accelerator allows to report high per­
formance, being more power efficient than the single 
core counterpart working at a higher frequency. It is 
worth noting that our goal in this work was to explore 
how an domain-specific accelerator was able to accel­
erate the baseline execution (just using a conventional 
single core) in applications belonging to autonomous 
vehicles environment.

As future work, other applications which involve 
multiplication of big matrices can be adapted to het­
erogeneous platforms in order to implement more 
of the functionalities required for autonomous vehi­
cles. Moreover, Gemmini is expected to achieve much 
higher speedups for inference using neural networks, 
as shown in [6], so exploring this issue constitutes an 
interesting avenue for future work.
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Rocket singlecore 50MHz
■ Boom singlecore 50MHz
■ Rocket singlecore 80MHz
■ Boom singlecore 80M Hz
■ Rocket + Gemmini 50MHz
■ Boom + Gemmini 50MHz

Figure 5: Time results when executing Workload 2 on Platforms 1 and 4 at 50MHz and 80MHz, and Workload 3 on 
Platforms 3 and 6 at 50MHz.
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