
Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

- ORIGINAL ARTICLE -

Optimization of a Line Detection Algorithm for Autonomous
Vehicles on a RISC-V with Accelerator

Optimización de un Algoritmo de Detección de Líneas para Vehículos Autónomos en un
RISC-V con Acelerador

María José Belda1 , Katzalin Olcoz1 , Fernando Castro1 , and Francisco Tirado1
1 Complutense University of Madrid, Madrid 28040, España

{mbelda.katzalin.fcastror.ptirado } © ucm.es

Abstract

In recent years, autonomous vehicles have attracted the
attention of many research groups, both in academia
and business, including researchers from leading com
panies such as Google, Uber and Tesla. This type of
vehicles are equipped with systems that are subject
to very strict requirements, essentially aimed at per
forming safe operations -both for potential passengers
and pedestrians- as well as carrying out the process
ing needed for decision making in real time. In many
instances, general-purpose processors alone cannot
ensure that these safety, reliability and real-time re
quirements are met, so it is common to implement
heterogeneous systems by including accelerators. This
paper explores the acceleration of a line detection ap
plication in the autonomous car environment using a
heterogeneous system consisting of a general-purpose
RISC-V core and a domain-specific accelerator. In par
ticular, the application is analyzed to identify the most
computationally intensive parts of the code and it is
adapted accordingly for more efficient processing. Fur
thermore, the code is executed on the aforementioned
hardware platform to verify that the execution effec
tively meets the existing requirements in autonomous
vehicles, experiencing a 3.7x speedup with respect to
running without accelerator.

Keywords: Autonomous vehicles, Firesim, Image
processing, Matrix accelerator, RISC-V

Resumen

En los últimos años los vehículos autónomos están
atrayendo la atención de muchos grupos de investi
gación, tanto del ámbito académico como del em
presarial, entre los que se incluyen investigadores
pertenecientes a empresas punteras como Google,
Uber o Tesla. Los sistemas de los que están dota
dos este tipo de vehículos están sometidos a requisitos
muy estrictos relacionados esencialmente con la real
ización de operaciones seguras, tanto para los poten
ciales pasajeros como para los peatones, así como con

que el procesamiento necesario para la toma de deci
siones se realice en tiempo real. En muchas ocasiones,
los procesadores de propósito general no pueden por
sí solos garantizar el cumplimiento de estos requisitos
de seguridad, fiabilidad y tiempo real, por lo que es
común implementar sistemas heterogéneos mediante
la inclusión de aceleradores. En este artículo se ex
plora la aceleración de una aplicación de detección de
líneas en el entorno de vehículos autónomos utilizando
para ello un sistema heterogéneo formado por un core
RISC-V de propósito general y un acelerador de do
minio específico. En particular, se analiza dicha apli
cación para identificar las partes del código más cos
tosas computacionalmente y se adapta el código para
un procesamiento más eficiente. Además, se ejecuta
dicho código en la mencionada plataforma hardware
y se comprueba que su procesamiento efectivamente
cumple con los requisitos presentes en los vehículos
autónomos, experimentando una reducción de 3.7x en
su tiempo de ejecución con respecto a su ejecución sin
acelerador.

Palabras claves: Vehículos autónomos, Firesim,
Procesamiento de imágenes, Acelerador de matrices,
RISC-V

1 Introduction

In the technological era in which we live, we every
day strive to make all the usual tasks as automatic as
possible in order to gain free time. In addition, we try
to achieve scenarios that are impossible right now, such
as smarter power grids, fully autonomous vehicles or
smart cities. This is why the Internet of Things (IoT)
arises, as we need new technologies to design these
systems. Most of them are on-board systems, so they
need to get a trade-off between power consumption
and delivered performance. In particular, in this work
we focus on autonomous vehicles.

Autonomous driving systems aim to enable vehi
cles to drive on the road without human interven
tion [1, 2, 3]. Therefore, these systems must guarantee
the safety and integrity of the vehicle, for which they
must take a series of decisions in real time, including

- 129-

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

moving the steering wheel to ensure that the correct
trajectory is followed, detecting obstacles in the path
(pedestrians, animals, objects...), activating the brak
ing mechanism when necessary and others. For this
purpose, it is essential that the vehicle has a camera
that records images of the route and processes them in
real time to ensure the correct and safe operation of the
vehicle. This image processing requires considerable
computing power, but at the same time, when talking
about on-board systems, it is essential to keep energy
consumption at low levels so the vehicle does not loose
autonomy [4],

For these reasons, autonomous vehicles require on
board automatic systems to process the recorded im
ages that allow certain operations such as line and edge
detection. Currently, the most widely used algorithms
for this type of processing require high performance
and their basic kernel is matrix and vector multiplica
tion. It is therefore highly desirable that this type of
algorithms could be executed in one of the many do
main specific accelerators that have emerged in recent
years.

In this paper we propose to accelerate a line de
tection application employed in autonomous cars by
using different heterogeneous systems made up of
a general-purpose RISC-V core working at low fre
quency and a domain-specific accelerator. For this
purpose, the application is deeply analyzed in order
to identify the computationally intensive parts of the
code and adapted consequently for a more efficient
processing. As it will be explained in Section 3, the
hardware platform used in this work includes, on the
one hand, a general-purpose BOOM processor, which
is an out-of-order RISC-V core [5], and on the other
hand, the Gemmini [6] accelerator, specifically de
signed for matrix multiplication. This platform was
chosen because the RISC-V architecture, in addition to
being open source, allows the integration of accelera
tors and their potential adaptation in a very simple way.
Furthermore, the RISC-V instruction set architecture
(ISA) is highly modular, allowing to choose exactly
the functionalities needed, which is especially useful
in IoT environments.

This paper leverages two image processing algo
rithms: 1) the Canny algorithm for edge detection of
an image, and 2) the Hough transform, oriented to find
imperfect instances of objects within a certain class
of shapes by means of a voting procedure. In Section
4 we perform a detailed analysis of both algorithms
codes, in order to identify the computational load of
the different functions included in these programs, as
well as the available parallelism. Moreover, we sched
ule some functions to run on the accelerator, while
the rest of the algorithm is executed on the processor,
aimed to optimize the total execution time and conse
quently to meet the strict requirements of performance,
consumption and safety imposed by autonomous ve
hicles. The experimental evaluation carried out in

Section 5 reports a speedup of 3.7x when executing
these algorithms with respect to the baseline where no
accelerator is employed. Finally, Section 6 concludes
the paper.

2 Basic notions and state of the art

In this section we explain some basic notions related
to autonomous vehicles. We also provide details on
the RISC-V-based development environment that we
employ, including the tools used that make it possible
the evaluation of the proposal presented in this paper.

2.1 Autonomous vehicles

Autonomous vehicles are equipped with several sen
sors, as shown in Fig. 1, including video cameras,
which are responsible for obtaining the data that serve
as input to the processing system. The purpose of this
data processing is to recognize the environment which
the vehicle is driving through, and as a result, to make
the appropriate decisions at any time, so as to ensure
that the vehicle can reach its destination efficiently
and safely. In this aspect, autonomous vehicles have
levels of driving automation from 0 (No automation)
to 5 (Full automation), as explained in [7]. In the first
levels, from 0 to 2, the vehicle has very little capacity
to act (in level 2 it can only perform steering and ac
celeration) and all the responsibility lies on the driver.
In contrast, the automatic system monitors the driving
environment in levels 3 to 5, being this last one the
ideal scenario in which the vehicle is completely au
tonomous, even not providing controls for the driver.
So, there is a gap between levels 2 and 3. Between
these levels there is also a technological gap, since gen
erating hardware and software capable of monitoring
the environment in real time becomes significantly dif
ficult. However, this gap is progressively disappearing
and this work aims to contribute to this.

Notably, certain safety decisions are related to the
correct recognition of the trajectory to be followed
by the vehicle, based on the images recorded by the
camera. In addition to allowing the car to follow the
correct route, this functionality also involves restrict
ing the likelihood of an accident. For this purpose,
computer vision algorithms are commonly used in
these processing systems [9, 10] and, in particular,
quite approaches use Canny algorithm to detect edges
combined with the Hough transform to detect road
lines [11, 12], Therefore, in this paper we focus on
improving the performance of these algorithms which
are the basis of lane detection. The problem with these
algorithms is their very high computational cost. In ad
dition to this, there is a need for data processing to be
performed in real time so that the vehicle could react
with immediacy to changing situations that may occur
during the journey. It is also highly desirable that the
energy consumption associated with such processing

- 130-

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

Figure 1: Integrated sensors on an autonomous vehicle [8].

was as low as possible, so that the vehicle’s autonomy
was not affected.

Autonomous driving systems are essentially com
posed of three classes of sub-systems [1, 2]: scene
recognition, route planning and vehicle control, con
sisting of a set of algorithms each. In particular,
as shown in Fig. 2, scene recognition, the class in
which this article falls, comprises three essential tasks,
namely 1) localization, which precisely establishes the
vehicle’s location, 2) object detection, which identifies
objects of interest in the vehicle’s environment (such
as other vehicles, pedestrians or road signs, with the
aforementioned objective of avoiding accidents and
also traffic violations), and 3) object tracking, which,
since the object detection algorithm is carried out on
each frame of the image, is responsible for relating its
results to other frames in order to predict the trajecto
ries of moving objects. These three tasks account for
a very high percentage of the total computation time
required [1] and therefore constitute bottlenecks that
significantly limit the ability of conventional proces
sors to satisfy the existing restrictions in the design of
this type of systems. For this reason, it is being pro
posed to incorporate some type of accelerator to the
on-board processing systems that helps the processor
to fulfill the strict time limits in which it must operate.

2.2 RISC-V-based development environment

In order to carry out the implementation and evalua
tion of our proposal, which will be explained in the
following section, a series of software tools have been
used, as detailed next:

Figure 2: Schematic of the subsystems of an au
tonomous vehicle.

2.2.1 Chipyard.

Chipyard [13] is an environment for the design and
evaluation of hardware systems that consists of a set
of tools and libraries designed to provide an integra
tion path between open-source tools and commercial
tools for the development of Systems on Chip (SoC).
The environment provides a range of components for
design construction as well as for compilation and sim
ulation. Among these components there are several
RISC-V cores and accelerators, including the BOOM
core and Gemmini accelerator that make up the hetero
geneous system chosen in this paper and that will be
detailed in Section 3. The simulation of the complete
system accelerated with FPGA is one of the types of
simulation supported by Chipyard, using the FireSim
tool described below.

-131-

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

2.2.2 FireSim.

FireSim [14] is a hardware simulation platform that
runs on Amazon cloud services and automatically de
ploys the FPGA services in the cloud when needed. In
particular, the user can generate the RTL of an own
design and run it on these FPGAs, obtaining the same
results as if the circuit was physically deployed.

2.2.3 Amazon Web Services.

Amazon Web Services [15] is a cloud services plat
form that offers from training courses in new technolo
gies -such as artificial intelligence or IoT- to infras
tructure services -such as storage or cloud comput
ing. We focus on cloud computing because it offers a
wide range of hardware platforms, including EC2 Fl
instances that correspond to FPGAs, giving us the ver
satility we need to synthesize designs and to simulate
the execution of applications on them.

3 Platform design

The platform employed in our experiments features a
general-purpose processor equipped with an accelera
tor -implemented as a systolic array architecture- for
matrix multiplication. Both components have been
developed by the Computer Architecture group at
Berkeley University [6]. The accelerator communi
cates with the processor through the RoCC (Rocket
Co-Processor) interface, which allows the accelerator
to receive the specific instructions that the processor
sends, as shown in Fig. 3. In the following two sec
tions we describe the processors and the accelerator
used.

Figure 3: Architecture of our heterogeneous plat
form [6].

3.1 Processors

As Fig. 3 illustrates, our system features a core plus an
accelerator. In our experiments we opted to employ ei
ther the Rocket or the BOOM (Berkeley Out-of-Order
Machine) processor. Both of them are written in Chisel
and implement the RV64GC instruction set. Also, they

are easily parameterizable and can be synthesized. No
tably, the cores are configured by using the Rocket
Chip SoC generator [16].

The main differences between both cores lie in the
pipeline characteristics: while the Rocket core fea
tures an in-order 5-stage pipeline, the BOOM core is
equipped with a deeper out-of-order pipeline, which
is inspired by those of MIPS R10000 and Alpha
212645 [5], Consequently, the BOOM core is ex
pected to deliver higher performance when executing
our line detection algorithm. However, this comes at
the expense of higher energy consumption than that of
the Rocket core. Therefore, we experiment with both
processors in order to check if the speedup reported by
the BOOM core is significant enough to cancel out the
energy constraints.

3.2 The Gemmini Accelerator

The Gemmini matrix multiplication accelerator relies
on a 2D systolic array architecture, as shown in Fig. 3,
to perform matrix multiplications in an efficient fash
ion. In addition to this systolic array, it also features a
scratchpad memory with multiple banks and an accu
mulator, which has more bits than that of the systolic
array. Besides, the implementation allows to choose, at
compile time, between two specific calculation mecha
nisms: output-stationary or weight-stationary.

Customized instructions -out of RISC-V standard-
are available for the Gemmini accelerator, so that it is
equipped with its own instruction queues that make
it possible to execute concurrently with the proces
sor. The Gemmini programming model can be bro
ken down into three different levels. In the high-level
we can run Open Neural Network Exchange (ONNX)
models, being the accelerator itself in charge of map
ping the ONNX kernel to the accelerator by means of
dynamic dispatch. In the mid-level we use a hand-
tuned library including C macros to perform data
transfers between the main memory and the accel
erator’s scratchpad memory, which should be explic
itly defined, as well as to automate the calculation of
the block size used to split a matrix and to perform
the full multiplication in a transparent way for users.
Among available functions we highlight the following:
tiled_matmul, to run a tiled matrix multiplication with
hardcoded tiling factors; tilecLconv, to apply a convolu
tion with hardcoded tiling factors; tiled_matmuLauto,
to run a tiled matrix multiplication with automatically
calculated tiling factors; gemminijnvin, to move data
from the main memory to the scratchpad and gem-
minimivout, to move data from the scratchpad to the
main memory. Finally, at the low-level, we can write
our own mid-level kernels with low-level assembly
instructions.

- 132-

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

4 Adapting image processing algorithms

As stated previously, the aim of this work is to accel
erate image processing algorithms employed to guide
autonomous vehicles. Notably, we focus on those
algorithms targeted to detect road lines from road im
ages. In this section we first introduce the basic al
gorithms used (the Canny algorithm and the Hough
transform). Then, we show the full algorithm that we
have employed in this work as starting point for line
detection and, finally, we propose some changes to
this algorithm oriented to improve its efficiency and
performance without impacting on accuracy.

4.1 Canny Algorithm

Among the edge detection methods developed to date,
the Canny algorithm is one of the methods more
strictly defined that provides a satisfactory and reli
able detection. Thus, it has become one of the most
popular algorithms targeting edge detection.

This algorithm relies on calculus of variations,
which allows to find an analytical function to approxi
mate the real curve (i.e., the road lines) as accurately
as possible. The procedure followed by the Canny
algorithm [17] can be broken down into 5 stages as
shown next:

1. Noise reduction: applying the Gauss filter for
image smoothing.

2. To find the intensity gradient of the image.

3. Magnitude threshold to the gradient: applying a
threshold to the gradient for discarding edge false
positives.

4. Double threshold: applying again a threshold to
the gradient for highlighting the potential edges.

5. Hysteresis: removing weak or disconnected
edges.

Algorithm 1 shows the pseudo-code we employed
to apply the Canny algorithm, broken down into the
5 stages aforementioned. Essentially, it includes mul
tiplications of consecutive matrices and conditions
checking in order to detect edge points.

4.2 Hough Transform

The Hough transform is a technique of features extrac
tion which is employed in multiple fields involving
image processing, as computer vision or image dig
ital processing. The goal of the algorithm is to find
imperfect objects among certain classes of objects by
means of a voting procedure. This procedure lies in
creating a space with the values assigned to each pixel,
so that the resulting local maximums in the so called
accumulator space are the possible detected objects.

Algorithm 1 Canny algorithm summarized pseudo
code.

1: float NR mask * image > Stage 1: Noise

2:
reduction
float Gx <— mask * NR > Stage 2: Gradient

3:
intensity
float Gy <— mask * NR

4: float G <— yjGl + G^

5: float 0 <— arctan(|G?|/|Gx|)
6: if © [*] > threshold^ then > Stage 3: Gradient

7:
threshold

float 0 E {0,45,90,135}
8: end if
9: if 0[*] > threshold^ && G[* > thresholds then

10:
> Stage 4: Double threshold

int edge[*] <— 1
11: end if
12: if G[*] > thresholds && edge[*] == 1 then >

13:
Stage 5: Hysteresis

int image_out[*] <— 255
14: end if

Generally, the classical Hough transform was only
applied to the detection of straight lines, but in recent
years it has been modified and currently it is employed
for the detection of arbitrary curves, as ellipses or
circles.

Algorithm 2 illustrates the code we employed to
apply the Hough transform [18]. In this code, for each
edge point previously detected with the Canny algo
rithm, the Hough transform draws a set of straight lines
going through that point, recording the amount of lines
going through each image pixel. Hence, those points
with more lines going through them will correspond
to a line in the original image.

Algorithm 2 Hough transform summarized pseudo
code^__

1: For each edge point (z, j)
2: if image[z * width + j] > 250 then
3: 0 <-0
4: while 0 < 180 do
5: float p <— j * cos 0 + i * sin 0
6: accumulators[(p + cp) * 180 + 0]++
7: 0++
8: end while
9: end if

4.3 Line Detection

Once we have described the two previous algorithms,
we now employ a combination of both as well as an
other specific code targeted to detect with higher ac
curacy the lines that demarcate lanes in conventional
ways. For this purpose, given a certain input image,
we first apply the Canny algorithm and then the Hough

-133 -

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

transform, so that we can apply a function (Get lines
coordinates') to detect lines in the resulting image. In
Algorithm 3 we show the code of the mentioned func
tion, which involves a search of local maximums in the
preprocessed image and the generation of a straight
line going through closest maximums.

Algorithm 3 Get lines coordinates algorithm summa
rized pseudo-code.

1: For each image point (p, 0)
2: if accumulators [*] > threshold then > It is a local

maximum
3: max <— accumulators [*]
4: if accumulators[neighbourhood(*)] > max

then > We check its neighborhood
5: accumulators [neighbourhood(*)]
6: end if
7: end if
8: lines.add(xi,yi,X2,y2) > We save the two points

that demarcate the straight line

4.4 Delivering higher performance

In the previous sections we have described the original
code of the algorithms, which indeed deploys many
floating point variables. Therefore, it is advisable to
replace them by integer variables without any loss in
accuracy. We effectively made these changes in the
code and we verified that no accuracy loss occurs when
detecting lines in an image. Fig. 4 shows the original
image with detected lines highlighted in red. The
analytical results corresponding to the lines detected
with the original algorithm and with the simplified one
do match, and also the second algorithm has performed
slightly faster. Details on these modifications can be
found in [19].

Apart from this change, we also performed a pro
filing of the full code divided into three stages: 1)
original image loading, 2) lines detection and 3) gen
eration of an output image with the detected lines.
Accordingly to the results obtained, we opted for not
generating an output image (that is not needed by our
system) due to the high cost associated, as shown in
Table 1. In doing so, we are able to reduce the execu
tion time by 4.2x as we can derive from data reported
in Table 2. It is worth noting that the time values illus
trated in the mentioned tables are approximate since
the profiling was not performed on the target platform,
but on an Intel i7 processor running Linux. However,
in order to report time values as accurate as possible,
the algorithms were run several times so that the ta
bles show the average values obtained. According to
numbers from Table 2, our attention is drawn to the
line detection phase since it accounts for almost 70%
of the execution time.

In addition, we have performed another specific pro
filing of the stages of the line detection algorithm in

Table 1: Phased profiling of the full code.
Timeips) % over total

Image load 43803 7,32%
Line detection 98171 16,42%
Image generation 456030 76,26%
Total 598004

Table 2: Phased profiling of the full code excluding
the generation of the output image.

Timeips) % over total
Image load 43485 30,58%
Line detection 98714 69,42%
Total 142199

order to know in which parts of the processing the ac
celeration efforts should be focused. Table 3 illustrates
that the most time-consuming part is the application
of the Canny algorithm, which accounts for more than
87% of the total execution time. Therefore, we will
focus on accelerating this stage of image processing.

Table 3: Phased profiling of the line detection algo
rithm.

Timers) % over total
Canny algorithm 90265 87,64%
Hough transform 12275 11,92%
Get coordinates 459 0,45%
Total 102999

5 Experimental results

In this section, we first describe the hardware platforms
as well as the workloads employed in our experiments,
and then we detail the results obtained.

5.1 Platforms generated

All the components used in the designs generated are
written in Scala, so it is easy to modify their main
features such as number of registers or number of Re-
Order Buffer (ROB) entries. Notably, we generate
several designs: while all of them include one (or
more) Rocket or BOOM cores, they may include or
not the Gemmini accelerator.

Apart from the cores, for the sake of fairness the
remaining components in the different designs gener
ated (such as memory, clock frequency or buses) are
the same in all of them. Hence, all designs have an L2
-shared in multicore platforms- 4MB size. In order
to optimize the design to fit into smaller FPGAs, the
option MCRams is enabled in the FireSim platform
configuration for all designs. This option allows the
FPGA simulation tool (Golden Gate [20]) to simu
late the RAM via serialized accesses with a decoupled
model [14],

- 134-

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

Figure 4: Original image with detected lines highlighted in red.

Platforms including the Gemmini accelerator can
only be designed to work at 50MHz while the remain
ing ones can reach 80MHz. Thus, the later have been
designed both at 50 and 80 MHz for a fair comparison
against designs equipped with Gemmini. Notably, the
platforms generated are:

1. Platform 1: Rocket single core.
This architecture includes a single Big Rocket
core. There are four different sizes for the core,
namely Big, Medium, Small and Tiny, with differ
ent features such as the size of LI-cache. The Big
Rocket is the only one providing Floating Point
Unit. Il also has by default the parameters shown
in Table 4. More information on the details of the
configuration can be found in [19],

2. Platform 2: Rocket dual core.
This is the same configuration as Platform 1 but
it includes two Big Rocket cores. This dual con
figuration also has the option MTModcls enabled
in the FireSim platform configuration, so that
each core is simulated with a separate thread of
execution on a shared underlying physical imple
mentation [14],

3. Platform 3: Heterogeneous Rocket single core +
Gemmini Accelerator.

This architecture is made up by a Big Rocket core
and a Gemmini matrix multiplication accelerator,
which has been designed with default options:
16x16 8-bit systolic array, both dataflows sup
ported (output-stationary and weight-stationary),
float data type supported, a set of accumulator
registers with 64B of total capacity, a 256KB
scratchpad with 4 banks, a small TLB with 4
entries and a bus width of 128 bits.

4. Platform 4: BOOM Single core.
This architecture includes a single Large BOOM
core. There are different macros for defining
BOOM cores of Giga, Mega, Large, Medium and
Small sizes. The main differences between the
one that we are using and the rest is the num
ber of entries in the ROB and some LI-cache
parameters. Thus, in the configuration WithN-
LargeBooms the value of notable parameters are
shown in Table 4. More information on the de
tails of the configuration can be found in [19].
The Large size was chosen because it is just big
enough to provide the required performance with
minimum power consumption.

5. Platform 5: BOOM dual core.
This is the same configuration as Platform 4 but
it includes two Large BOOM cores, with the MT-
Models option enabled.

6. Platform 6: Heterogeneous BOOM single core +
Gemmini Accelerator.

This architecture is made up by a Large BOOM
core and a Gemmini matrix multiplication accel
erator, which has been designed with the default
options explained earlier.

5.2 Workloads generated

Different workloads were designed for running on the
platforms described in the previous section. They are
the following:

1. Workload 1: Multithreaded application on top of
Linux buildroot distribution.

In this workload, a multithreaded application
(with each thread computing the addition of 2

- 135 -

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

Table 4: Platform configuration options.
Big Rocket Large Boom

I&D Cache Size 16KB 32KB
Sets 64 64
Ways 4 8
Prefetching no disabled

TLB Sets 1 1
Ways 32 512

BTB Entries 28 28
ROB Entries no 96
FPU yes yes
Branch predictor
entries no 128

long arrays, as explained in [19]) is executed on
top of Linux. It has been specifically designed to
fully exploit the parallel features of the platforms,
so that it can be used to evaluate the maximum
performance obtainable in the different multicore
designs. This value will serve as an upper bound
when we evaluate the performance achieved by
our target application.

2. Workload 2: Line detection algorithm on top of
Linux buildroot distribution.

In this workload, the modified version of the line
detection application explained in Section 4 is
executed on top of Linux.

3. Workload 3: Line detection algorithm for bare-
metal platforms with Gemmini.

In this workload, in addition to the modifications
in Section 4, we have modified the line detection
algorithm to add matrix multiplications. In the
original version, this algorithm multiplies some
mask values to a pixel neighborhood manually
by writing the corresponding scalar multiplica
tions. We have rewritten these multiplications
in a matrix form, obtaining a 5x5 matrix for the
mask and a 5x5 neighborhood matrix for each
pixel. As for the platform, the differences with
respect to the previous workload are that this plat
form includes a Gemmini accelerator for matrix
multiplication and the fact that no operating sys
tem is available for this platform. Thus, matrix
multiplications in the code have to be replaced
by calls to a Gemmini multiplication. As pre
viously explained, some C macros are provided
with the designs that make it possible to easily
programming the accelerator. First, data need to
be moved from the main memory to the scratch
pad memory in Gemmini, then the multiplication
is performed in tiles and finally the results are
transferred back to the main memory. We will
use the tiled-matmuLauto function that receives
the dimensions of both matrices as input parame
ters and automatically splits the multiplication in

blocks of suitable size for the systolic array and
memory, thus performing the whole multiplica
tion. Finally, system calls not available outside
Linux were removed from the code and their func
tionality was implemented in an equivalent way.

5.3 Experiments

In this section we show the results obtained from the
execution of the workloads on the different platforms
designed. The metrics measured are clock cycles and
instructions retired provided by the performance coun
ters of the target platforms.

5.3.1 Experiment 1: Execution of a multithreaded
application on single core and dual core plat
forms both with Rocket and BOOM cores.

The goal of this experiment is to verify the maximum
performance attainable in the different platforms by
using a massively parallel application. Therefore we
employ Workload 1, configured with as many indepen
dent threads as the number of cores in the system, i.e.,
1 or 2 depending on the specific platform.

The target platforms in this case include both single
and dual core processors (either Rocket or BOOM,
running at 80MHz) that correspond to the Platforms 1,
2, 4 and 5 previously described.

The results of the experiment are shown in Table
5, both for a simulation in which the main loop is
executed once (column labelled N-times = 1) and 8
times (column N-times = 8). The number of clock
cycles for the experiment with 8 iterations is 8 times
the one of the single iteration experiment. Besides,
speedup of the dual core version with respect to the
single core is very close to 2x for both Rocket and
BOOM. Finally, comparing the performance of the
different cores, BOOM achieves almost 2.2x higher
performance than Rocket, so that a single BOOM core
outperforms a dual core Rocket running at the same
frequency for this highly parallel application.

Thus, it has been verified that multithreaded appli
cations are being correctly simulated in the multicore

- 136-

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

Table 5: Cycles when executing Workload 1 on Plat
forms 1, 2, 4 and 5.

N times = 1 N times=8
Cycles

Rocket singlecore 2.01 x 10y 1.59 x 10lu
BOOM singlecore 9.17 x 10s 7.31 x 10y
Rocket dualcore 9.97 x 10s 7.99 x 10y
BOOM dualcore 4.53 x 10s 3.66 x 10y
Speedup BOOM
vs Rocket 2.19x 2.18x
Speedup Rocket
dual vs single 2.02x 1.99x
Speedup BOOM
dual vs single 2.02x 1.99x

platforms, achieving the expected speedup. Further
more, the comparison between both types of cores has
been established.

5.3.2 Experiment 2: Execution of the line detec
tion application on Rocket and BOOM sin
gle cores.

This second experiment involves simulating the execu
tion of the line detection application (workload 2) on
the Rocket and BOOM single core platforms employed
in the previous experiment (Platforms 1 and 4), also
running at 80MHz. In Table 6 we report the number
of clock cycles and instructions retired corresponding
to each of the different parts of the line detection al
gorithm, as well as the average cycles per instructions
(CPI) value. In addition, we calculate the actual time
from the cycles and clock frequency, resulting in times
of around half second. In particular, for the Rocket
core we obtain a total execution time of 0.648s and
for the Boom core 0.327s. As shown, the CPI for
the Hough transform is higher than 3 in both Rocket
and BOOM platforms. Moreover, its execution on the
BOOM processor almost matches the time reported on
the Rocket platform, as the multiple data dependencies
in the code make out-of-order capabilities useless.

On the other hand, the Canny and the GetCoordi-
nates algorithms exhibit lower CPI numbers in both
platforms, achieving a speedup of 2x when executing
on the Boom processor with respect to Rocket, due
to the greater instruction level parallelism that can be
extracted from both algorithms. Recall that the Canny
algorithm is the most relevant part of the line detection
application, consuming close to 90% of the total exe
cution time (as shown in Table 3). In conclusion, using
the BOOM core for the execution of the workload is
interesting in terms of the global speedup achieved.

5.3.3 Experiment 3: Execution of the line detec
tion application on heterogeneous platforms
with a Rocket or BOOM single core and a
Gemmini matrix multiplication accelerator.

This experiment consists on simulating the execution
of the modified line detection application (workload
3) on the heterogeneous single core platforms made
up by a Rocket or BOOM processor plus a Gemmini
matrix multiplication accelerator running at 50MHz.

Table 7 shows first the results obtained in the simula
tion of Workload 3 (line detection application for bare
metal) on a Rocket single core (used as baseline for
computing speedups) and a BOOM single core, both
running at 50MHz. As the first row shows, BOOM is
41% faster than Rocket. The execution results from
the previous section, that is, those corresponding to
Workload 2 (line detection application for Linux) on
Rocket and BOOM single core at 80MHz are also com
pared to the baseline execution, achieving speedups
of 2.09x and 3.76x respectively. It is worth noting
that although the code of Workloads 2 and 3 does not
exactly match, it performs the same functionality. Fi
nally, the results from the simulation of Workload 3 on
heterogeneous platforms in which matrix multiplica
tions are performed using the Gemmini accelerator are
also recap in Table 7. According to them, speedups
of 2.36x and 3.7x are reported for Rocket and BOOM
based platforms respectively, with respect to the base
line. Although these speedups can be considered as
significant, they are far from the maximum values at
tainable by the accelerator. The reason is that the size
of the matrices employed is smaller than that of the
systolic array, which indeed is not fully utilized.

Furthermore, in the graph shown in Fig. 5 we can
see the time corresponding to all the single core and
heterogeneous experiments. The first thing we notice
is that the out-of-order execution of the Boom core is
beneficial for the Canny algorithm, leaving the Rocket
core as the slowest by far at both 50 and 80MHz. Fur
thermore, we see how the combination of the cores
with the Gemmini accelerator at 50MHz gives us a
similar time to the same cores without accelerator at
80MHz, which gives us a great benefit in terms of con
sumption by running at a lower clock frequency which
should be taken into account in the field of autonomous
vehicles, as it would provide greater autonomy. In ad
dition, we note that the shortest time is under half a
second, in particular 300ms, and we achieve it with
the combination of the Boom core and the Gemmini
accelerator at a clock frequency of 50MHz. Thus, a
vehicle travelling at 50km/h could run the algorithm
every 4 metres approximately and if necessary, options
such as mounting several systems in parallel or slightly
increasing the clock frequency for faster processing
could be explored.

In conclusion, for this application with small matri
ces, both platforms based on the BOOM core deliver
similar performance (speedup of around 3.7x with re-

- 137-

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

Table 6: Cycles, instructions retired and CPI when executing Workload 2 on Platforms 1 and 4 at 80MHz.
Cycles Instructions CPI Time(ms)

Rocket singlecore Canny 2.18 x 10y 9.06 x 10s 2.40 648,38
Hough 3.32 x 10s 9.35 x 107 3.55 98,86
Coordinates 6.49 x 10b 3.47 x 10b 1.87 1,93

Boom singlecore Canny 1.08 x 10y 9.06 x 10s 1.19 327,10
Hough 3.16 x 10s 9.35 x 107 3.38 96,07
Coordinates 3.2 x 106 3.47 x 106 0.92 0,97

Speedup Boom vs Rocket Canny 2.02x l.OOx 2.02x 1.98x
Hough 1.05x l.OOx 1.05x 1.03x
Coordinates 2.03x l.OOx 2.03x 1.99x

Speedup vs Rocket singlecore 50MHz

Table 7: Speedup results when executing Workload 2 on Platforms 1 and 4 at 80MHz, and Workload 3 on Platforms
3, 4, 6 at 50MHz, with respect to execution of Workload 3 on Platform 1 at 50 MHz.

Canny Hough Coordinates Total
Boom singlecore 50MHz 1.44x 1.04x 1.85x 1.41x
Rocket singlecore 80MHz 2.26x 0.98x 1.07x 2.09x
Boom singlecore 80MHz 4.57x 1.03x 2.18x 3.76x
Rocket + Gemmini 50MHz 2.54x 1.16x 1.03x 2.36x
Boom + Gemmini 50MHz 4.43x 1.07x 1.98x 3.70x

spect to the Rocket baseline), being the BOOM single
core at 80MHz slightly faster than the BOOM + Gem
mini at 50MHz. Even in this non favourable scenario,
the accelerator allows to report high performance work
ing at a lower frequency, being more power efficient
than the single core platform running at higher fre
quency.

6 Conclusions and future work

In this paper we have explored the acceleration of a
line detection algorithm in the autonomous car envi
ronment using a heterogeneous system consisting of a
general-purpose RISC-V core and a domain-specific
accelerator. In particular, we analyzed the application
to identify the most computationally intensive parts of
the code and adapted it accordingly for more efficient
processing.

The first conclusion we extract from this work is that
RISC-V architecture provides a hw-sw ecosystem that
is well suited for IoT in general and autonomous vehi
cle systems in particular, due to its versatility and mod
ularity, which allows to generate platforms adapted
to different scenarios. In fact, in this work, we de
signed six different platforms covering a wide spec
trum of alternatives: on one side single and dual core
homogeneous systems, and on the other side hetero
geneous platforms with a single core plus a matrix
multiplication accelerator -all of them including high
performance BOOM cores or more efficient Rocket
cores.

Also, a multithreaded application with high data par
allelism has been designed to analyze the performance
of the homogeneous platforms built. Thus, it has been

verified that multithreaded applications are being cor
rectly simulated in the multicore platforms, achieving
the expected speedup. Furthermore, the comparison
between both types of cores determined that a single
BOOM core is up to 2.19 times faster than a Rocket
one.

Finally, the original application of line detection
has been modified in order to decrease its execution
time without losing accuracy, and it has also been
adapted for bare metal and Gemmini execution. We
simulated the application on all designed platforms.
BOOM-based platforms reported the best performance
numbers, achieving speedups of 3.7x with respect to
the baseline (a single Rocket core running at 50MHz),
and being the single BOOM core running at 80MHz
slightly faster than the BOOM + Gemmini platform at
50MHz. As previously stated, even working at a lower
frequency the accelerator allows to report high per
formance, being more power efficient than the single
core counterpart working at a higher frequency. It is
worth noting that our goal in this work was to explore
how an domain-specific accelerator was able to accel
erate the baseline execution (just using a conventional
single core) in applications belonging to autonomous
vehicles environment.

As future work, other applications which involve
multiplication of big matrices can be adapted to het
erogeneous platforms in order to implement more
of the functionalities required for autonomous vehi
cles. Moreover, Gemmini is expected to achieve much
higher speedups for inference using neural networks,
as shown in [6], so exploring this issue constitutes an
interesting avenue for future work.

- 138-

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

Rocket singlecore 50MHz
■ Boom singlecore 50MHz
■ Rocket singlecore 80MHz
■ Boom singlecore 80M Hz
■ Rocket + Gemmini 50MHz
■ Boom + Gemmini 50MHz

Figure 5: Time results when executing Workload 2 on Platforms 1 and 4 at 50MHz and 80MHz, and Workload 3 on
Platforms 3 and 6 at 50MHz.

Competing interests

The authors have declared that no competing interests
exist.

Funding

The present work has been funded by the Comunidad
de Madrid through project S2018/TCS-4423 and by
the Ministry of Science, Innovation and Universities
through project RTI2018-093684-B-I00.

Authors’ contribution

MJB wrote the programs, conducted the experiments,
analyzed the results and wrote the manuscript; KO and
FC conceived the idea, analyzed the results and wrote
the manuscript; FT revised the manuscript. All authors
read and approved the final manuscript.

References

[1] S.-C. Lin et al.. "The architectural implications of au
tonomous driving: Constraints and acceleration." in
Proceedings of the Twenty-Third International Con
ference on Architectural Support for Programming

Languages and Operating Systems. ASPLOS '18.
p. 751-766. 2018.

[2] S. Kato. E. Takeuchi. Y. Ishiguro. Y. Ninomiya.
K. Takeda, and T. Hamada. "An open approach to
autonomous vehicles." IEEE Micro, vol. 35. pp. 60-68.
11 2015.

[3] P. Bose. A. J. Vega. S. V. Adve. V. S. Adve. and V. J.
Reddi. "Secure and resilient socs for autonomous ve
hicles." in Proceedings of the 3rd International Work
shop on Domain Specific System Arch itecture (DOSSA).
pp. 1-6. 2021.

[4] B. Yu et al.. "Building the computing system for au
tonomous micromobility vehicles: Design constraints
and architectural optimizations." in Proceedings of
53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1067-1081. 2020.

[5] J. Zhao. B. Korpan. A. Gonzalez, and K. Asanovic.
"Sonicboom: The 3rd generation berkeley out-of-order
machine." in Proceedings of the 4th Workshop on Com
puter Architecture Research with RISC-V (CARRV).
pp. 1-7. 2020.

[6] H. Gene et al.. "Gemmini: Enabling systematic deep
learning architecture evaluation via full-stack integra
tion." in Proceedings of the 58th Annual Design Au
tomation Conference (DAC). pp. 769-774. 2021.

- 139-

Journal of Computer Science & Technology, Volume 22, Number 2, October 2022

[7] “The 6 levels of vehicle autonomy explained.”
Available at: https: //www. synopsys. com/
automotive/autonomous-driving-levels.
html. Accessed on 2022-09-07.

[8] O. Vermesan et al., IoT technologies for connected and
automated driving applications. Internet of Things -
The Call of the Edge, pp. 306-332. River Publishers,
Oct. 2020.

[9] R. Coppola and M. Morisio, “Connected car: technolo
gies, issues, future trends,” ACM Computing Surveys
(CSUR), vol. 49, no. 3, pp. 1-36, 2016.

[10] T. Rateke et al., “Passive vision region-based road de
tection: A literature review,” ACM Computing Surveys
(CSUR), vol. 52, no. 2, pp. 1-34, 2019.

[11] F. Bounini, D. Gingras, V. Lapointe, and H. Pollart,
“Autonomous vehicle and real time road lanes detection
and tracking,” in IEEE Vehicle Power and Propulsion
Conference (VPPC), pp. 1-6, 2015.

[12] G. Zhang, N. Zheng, C. Cui, Y. Yan, and Z. Yuan, “An
efficient road detection method in noisy urban envi
ronment,” in Proceedings of IEEE Intelligent Vehicles
Symposium, pp. 556 - 561, 2009.

[13] A. Amid et al., “Chipyard: Integrated design, simula
tion, and implementation framework for custom socs,”
IEEE Micro, vol. 40, no. 4, pp. 10-21, 2020.

[14] S. Karandikar et al., “Firesim: Fpga-accelerated cycle-
exact scale-out system simulation in the public cloud,”

in Proceedings of ACM/IEEE 45th Annual Interna
tional Symposium on Computer Architecture (ISCA),
pp. 29-42. 2018.

[15] “Amazon web services (aws).” Available at: https:
//aws. amazon, com/es, 2021. Accessed on 2022-09
07.

[16] K. Asanovic et al., “The rocket chip generator, eecs
department,” University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17, vol. 4, 2016.

[17] J. F. Canny, “Finding edges and lines in images,” The
ory of Computing Systems - Mathematical Systems
Theory, p. 16, 1983.

[18] R. O. Duda and P. E. Hart, “Use of the hough transfor
mation to detect lines and curves in pictures,” Commu
nications of the ACM, vol. 15, no. 1, p. 11-15, 1972.

[19] M. J. Belda, “Image processing in autonomous vehicles
on a risc-v with accelerator,” Master Thesis, UCM,
2022.

[20] A. Magyar et al., “Golden gate: Bridging the resource
efficiency gap between asics and fpga prototypes,” in
Proceedings oflEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 1-8, 2019.

Citation: M.J. Belda, K. Olcoz, F. Castro and F.
Tirado. Optimization of a line detection algorithm
for autonomous vehicles on a RISC-V with acceler
ator. Journal of Computer Science & Technology,
vol. 22, no. 2, pp. 129-140, 2022.
DOI: 10.24215/16666038.22.el0
Received: April 22, 2022 Accepted: September 7,
2022.
Copyright: This article is distributed under the
terms of the Creative Commons License CC-BY-

VE__,

- 140-

https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://www.synopsys.com/automotive/autonomous-driving-levels.html
https://aws.amazon.com/es
https://aws.amazon.com/es

