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Abstract

We have developed a new approach towards a new database of the ionospheric parameter f oF 2. This parameter, being the frequency
of the maximum of the ionospheric electronic density profile and its main modeller, is of great interest not only in atmospheric studies but
also in the realm of radio propagation. The current databases, generated by CCIR (Committee Consultative for Ionospheric Radiowave
propagation) and URSI (International Union of Radio Science), and used by the IRI (International Reference Ionosphere) model, are
based on Fourier expansions and have been built in the 60s from the available ionosondes at that time. The main goal of this work is to
upgrade the databases by using new available ionosonde data. To this end we used the IRI diurnal/spherical expansions to represent the
f oF 2 variability, and computed its coefficients by means of a genetic algorithm (GA). In order to test the performance of the proposed
methodology, we applied it to the South American region with data obtained by RAPEAS (Red Argentina para el Estudio de la Atmós-
fera Superior, i.e. Argentine Network for the Study of the Upper Atmosphere) during the years 1958–2009. The new GA coefficients
provide a global better fit of the IRI model to the observed f oF 2 than the CCIR coefficients. Since the same formulae and the same
number of coefficients were used, the overall integrity of IRI’s typical ionospheric feature representation was preserved. The best
improvements with respect to CCIR are obtained at low solar activities, at large (in absolute value) modip latitudes, and at night-
time. The new method is flexible in the sense that can be applied either globally or regionally. It is also very easy to recompute the coef-
ficients when new data is available. The computation of a third set of coefficients corresponding to days of medium solar activity in order
to avoid the interpolation between low and high activities is suggested. The same procedure as for f oF 2 can be perfomed to obtain the
ionospheric parameter M(3000)F2.
� 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: f oF 2 maps; Genetic algorithm; Ionosphere; F region
1. Introduction

A more accurate prediction and forecast capability of
the ionospheric climate and weather is an integral element
of the current space weather activities worldwide (Cander,
2015), because the ionosphere plays a critical role for all
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techniques, either ground-based or space-based, that
depend on radio wave signals travelling through it such
as radio astronomy or Earth observation from space
(Hargreaves, 1992).

The core model used for the ionospheric study is that of
the International Reference Ionosphere (IRI). IRI is a
data-based model of the ionosphere that describes the elec-
tron and ion densities and temperatures in the Earth’s
ionosphere at altitudes in the range from 50 km to
2000 km. Since its inception in 1969 the model has been
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steadily improved as new data became available, as old
data sources were fully exploited and as new modeling
techniques were applied (Bilitza, 1990; Bilitza and Rawer,
1996; Bilitza et al., 2014; Bilitza, 2015). The IRI model is
the standard model for the ionosphere recommended by
both the Committee on Space Research (COSPAR) and
the International Union of Radio Science (URSI), and also
by the International Telecommunication Union (ITU) and
the International Standardization Organization (ISO).

The IRI electron density profile is critically dependent
on the correct values of the F2 layer peak height and den-
sity, hmF2 and NmF2 (or f oF 2). To compute these param-
eters, the IRI model applies a numerical mapping
technique based on orthogonal Fourier functions (ITU,
2009). This model uses the CCIR (Committee Consultative
for Ionospheric Radiowave propagation) numerical map
model (Jones and Gallet, 1962; Jones et al., 1969; CCIR,
1966). IRI recommends to use the CCIR numerical map
coefficients over land areas and the URSI numerical map
coefficients (Fox and McNamara, 1988; Rush et al.,
1989) over the oceanic areas. The CCIR map is based on
monthly median values obtained by the worldwide network
of ionosondes (about 150 stations) during the years 1954–
1958, altogether about 10,000 station-months of data. On
the other hand, the URSI map is based on 45,000
station-months of ionosonde data and includes theoretical
considerations to establish screen points in data-sparse
areas of the world.

The frequency f oF 2 and the propagation factor
M(3000)F2, closely related to hmF2, are routinely
monitored by the worldwide network of ionosondes from
the ground and a long data record going back to the late
1950s exists. However, the distribution of the ground-
based ionosondes is too sparse to capture the large-scale
features of the ionosphere. Therefore, in order to obtain
more accurate and reliable ionospheric maps, different
methodologies were developed.

To reconstruct maps of f oF 2, Liu et al. (2008) used the
Kriging algorithm, which is a widely used interpolation
method originally developed for geology (Krige, 1951;
Matheron, 1963). The Kriging algorithm is more accurate
when larger numbers of recorded data are utilized.

In the past decades the technique of neural networks
(NNs) has been successfully employed by a number of
researches for prediction of ionospheric parameters, such
as f oF 2, M(3000)F2 and total electron content (TEC)
(Scotto, 2001; Xenos, 2002; Habarulema et al., 2009;
McKinnell and Oyeyemi, 2010), specially over particular
regions. A neural network is a program trained to learn
the relationship between the inputs and the outputs
(Haykin, 1994; Fausett, 1994). After determining the rela-
tionship, the model can predict the values at any given time
and location. Then, to avoid the local minimum phe-
nomenon in most NNs applications, the GA-NNs models
were developed (Wang et al., 2013; Huang et al., 2015),
where a genetic algorithm (GA) is used to optimize the ini-
tial weights of the NNs. To obtain a good spatial descrip-
tion with these models, long training samples are required,
which are prone to overfit and can lead to unexpected
results with noisy data.

On the other hand, data assimilation techniques to
describe ionospheric conditions far from an average quiet
time behavior also were developed (Galkin et al., 2012
and references therein). In addition, Mandrikova et al.
(2015) suggested a multiscale wavelets decomposition to
determine the time variation of f oF 2; and Jiang et al.
(2016) reconstructed the vertical electron density profile
and estimated the parameters f oF 2 and hmF2 based on ver-
tical TEC data by using the simulated annealing algorithm.

The aim of this paper is to upgrade the CCIR numerical
map coefficients for f oF 2 by using both a genetic algorithm
and new available observed data. That is, with the
increased data base that accumulated since the CCIR/
URSI models were built, and by applying the modern tech-
nique of genetic algorithms, we expect that a better repre-
sentation of f oF 2 (or NmF2) can be achieved, leading to
an increase in accuracy of the ionospheric model. We
describe the proposed methodology in Section 2. In Sec-
tion 3 we present an application to the South American
region. We analyze and illustrate the results in Section 4,
followed by conclusive remarks in Section 5.
2. Methodology

We used the IRI numerical mapping technique (ITU,
2009) based on the CCIR model (Section 2.1) to compute
the f oF 2 frequencies. The numerical map coefficients were
computed to match the ionosondes measurements by
means of a genetic algorithm (Section 2.2).
2.1. Diurnal/spherical expansions for foF2

Following a numerical mapping procedure developed by
Jones and Gallet (1962), the diurnal variation of the f oF 2
for a given geographical location (latitude u, longitude k)
and a given universal time (s) is computed in the IRI model
(ITU, 2009) by means of:

f oF 2ðu; k; sÞ ¼ A0ðu; kÞ þ
X6

i¼1

ðA2i�1ðu; kÞ cosðisÞ

þ A2iðu; kÞ sinðisÞÞ; ð1Þ

that is, a Fourier series expansion, up to sixth order,
amounting to a total of 13 coefficients.

Then, each Fourier coefficient, in turn, is computed by
means of a spherical harmonics expansion in geographical
coordinates, up to degree 8, which means there is a total of
76 coefficients:

Aiðu; kÞ ¼
XJð0Þ
j¼0

Cij0Pj0ðu; kÞ þ
X8

k¼1

XJðkÞ
j¼0

ðCijð2k�1Þ cosðkkÞ

þ Cijð2kÞ sinðkkÞÞP jkðu; kÞ; ð2Þ
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where Jð0Þ and JðkÞ are the maximum order of the expan-
sions of degree 0 and k, respectively, and

Pjkðu;kÞ¼ ðsinvðu;kÞÞjðcosuÞk and vðu;kÞ¼ tan�1 Iðu;kÞffiffiffiffiffiffiffiffiffiffi
cosk

p
� �

;

ð3Þ

where I (u, k) stands for the true magnetic dip angle at a
height of 350 km over the considered location.

In short, one day of the global f oF 2 distribution
requires 13 diurnal � 76 spherical = 988 coefficients Cijk.
The coefficients are computed twice: one set is computed
for high solar activity and another one for low solar activ-
ity. For intermediate levels of solar activity, a linear inter-
polation is done. Taking into account that each month of
the year has its own set of coefficients, and that two differ-
ent levels of solar activity are considered, the total number
of coefficients needed to compute f oF 2 at any location or
time is therefore 23,712 (= 988 � 12 months � 2 levels of
solar activity).

When a universal time s and a location (u, k) are spec-
ified, the model uses s to obtain the set of 988 coefficients
Cijk interpolated to the specific level of solar activity and
day of the month, and then uses Eq. (2) to compute the
13 coefficients Ai of Eq. (1) to finally obtain the f oF 2 value.
2.2. Genetic algorithm optimization

A genetic algorithm (GA) (Goldberg, 1989; Davis, 1991)
is an optimization algorithm that uses the concepts of nat-
ural selection and biological evolution to achieve its goal,
i.e., to find the maximum of a given function. Its main
advantages over other methods are (a) its ability to cope
with very complex functions, in particular with non-
analytical functions of many variables, and (b) its ability
to find the global maximum even when there are multiple
local maxima, which is usually the case with functions of
many variables. GAs has been successfully applied on
other disciplines (Charbonneau, 1995; Gularte and
Carpintero, 2006; Carpintero et al., 2013) to solve mixed
problems.

Our implementation of a GA is based on the PIKAIA
paradigm (Charbonneau and Knapp, 1995). Fig. 1 shows,
in a general case, the flow chart followed by our GA in
order to find the maximum of a given function, called the
fitness. The algorithm starts by disseminating N points at
random all over the domain of the function. Each point
is called an individual, or phenotype. This set of N individ-
uals is the first generation. Next, the fitnesses of each indi-
vidual are computed, that is, the function to be maximized
is evaluated at the points corresponding to the individuals.
A greater fitness indicate a greater possibility that the indi-
vidual is near the global maximum.

Once the first population is set, the cycle of reproduction
is initiated by translating the phenotype to a genotype. The
translation consists in taking the digits of the independent
variables of each individual and putting them one after
another, thus forming a string of digits or chromosome cor-
responding to that individual. This step is merely a tool to
facilitate the following operations. Next, two of the inhab-
itants are selected to be parents. This selection is done
according to the fitness: higher fitnesses convey a higher
probability of being chosen, this probability being con-
trolled by a selection pressure parameter. Once the couple
is selected, they breed by splitting their genotypes at a ran-
domly chosen point of their chromosomes, the same point
for both, and crossing the resulting chunks. Also, these
fresh genotypes are subjected to mutation of one or more
of its genes, that is, its digits. This mutation ensures that
the domain is thoroughly explored in search for different
maxima, avoiding the algorithm to be trapped in a local
one. After crossing and mutation, the resulting two siblings
are decoded, that is, their strings of integers are translated
back to a set of real numbers, thus becoming two new
points in the domain of the function, or citizens of the pop-
ulation, the fitnesses of which now have to be computed.
This is repeated N/2 times, after which a whole new gener-
ation has been created. This new generation will have, on
average, better fitnesses than the previous one
(Charbonneau and Knapp, 1995).

A reproduction plan should be used to choose how the
new individuals are to be inserted into the population,
and how the old ones should be deleted. In all our runs,
a reproduction plan was used which choose the best N

among the 2N individuals of both the old and the new gen-
erations. These chosen ones constitute the population of
the second generation. This cycle is repeated until M gener-
ations have passed, although one may continue the algo-
rithm from the last generation if desired. The fitness of
the fittest individual of the last generation is the result:
the point of the domain corresponding to a maximum
value of the function, or, at least, a point very close to
the one corresponding to that maximum.

In order to adapt this algorithm to compute the coeffi-
cients defined in Section 2.1 the following considerations
were made. Our unknowns are the 1,976 coefficients corre-
sponding to a given month (i.e., 13 diurnal � 76 spheri-
cal � 2 levels of solar activity). Therefore, we have a
fitness function of 1,976 variables. Each individual will be
a point in the domain of these variables, that is, a complete
set of coefficients. The genotype will be the string of the
digits of the 1,976 coefficients. The fitness function f was
defined as

f ¼ 1Pnobs
i¼1 f oF 2ðu; k; sÞ � f oF 2Obsj j ; ð4Þ

where nobs is the number of observations used for the
month (from any time and location), f oF 2ðu; k; sÞ are the
frequencies computed by Eq. (1) with the coefficients of
the individual, and f oF 2Obs are the observed frequencies.
Note that f is a measure of how well the set of f oF 2 fre-
quencies computed with a given set of coefficients (a point
in the domain) fit the observed set of frequencies f oF 2Obs.
The fitness function has been chosen as simple as possible



Fig. 1. The flow chart followed by our GA in order to find the maximum of a given function, called the fitness. N is the number of individuals (phenotypes)
in the population and M is the number of generations.
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since its repeated evaluation during the GA process is com-
putationally very demanding.

The initial population is generated by choosing, for each
coefficient of each individual, a random value between
+5% and �5% of the corresponding CCIR coefficient.
These initial values were chosen in order to be not too
far from the CCIR solution, which is itself a good solution.
Also, as the domain increases, more difficult is for the algo-
rithm to arrive at a solution, so the chosen interval of ±5%
was found to be a good compromise.
The population size was set at 5,100 individuals, a num-
ber chosen according to the memory capacity of our com-
puters (recall that each phenotype represents a set of 1,976
coefficients). Also, a combined full generational replace-
ment reproduction plan was considered: once a full fresh
set of N individuals was generated, we sorted them by fit-
ness with the N individuals of the generation that gave rise
to them, and chose among the 2N resulting individuals the
fittest N as the new generation. Finally, the number of gen-
erations through which the population is to be evolved was
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set in 500, which determines the end of the search. Instead
of a number of generations, we may have chosen a given
value of f in order to finalize the program, but we decided
not to do that because the ideal maximum of f is infinite,
and this makes difficult to foresee which maximum value
of f will correspond to a good fit. Anyway, a given run
may always be continued for more generations as needed,
if the final fit were considered not good enough.

To achieve more efficiency in computing time, the pro-
gram, written in standard Fortran77, was parallelized by
using the MPI paradigm. The parallelization region corre-
sponds to the computation of the fitness, which can be
done for each individual independently from the others.
This allows a near maximum gain in computation time,
given that the fitness is by far the most demanding part
of the algorithm.

The entire process (i.e., 500 generations) was run 12
times, each one corresponding to a different month of the
year. In the end, we obtained the 23,712 coefficients
(= 1,976 � 12 months) needed to compute the f oF 2 fre-
quency for any desired time and location, that is, the global
map of f oF 2.
Fig. 2. Distribution map of the ionosondes used in this study. Each
ionosonde is marked with a big black point.
3. Application/datasets

In order to test the performance of the proposed
methodology, we chose the South American region. Since
the Argentine Network for the Study of the Upper Atmo-
sphere (RAPEAS, for the Spanish acronym) compiled
Argentine ionosondes data from 1958 on, a wealth of
new data is available in the South American region.
RAPEAS provides hourly f oF 2 measurements (most of
them manually scaled) from seven ionosonde stations: Jica-
marca, San Juan, Buenos Aires, Concepción, Trelew, Ush-
uaia and San Martı́n. The geographic coordinates and
modip latitudes of each station are tabulated in Table 1
and their spatial distribution map is shown in Fig. 2. Note
that this set of ionosonde stations cover a wide range of lat-
itudes, from the equatorial up to the sub-auroral regions.

The dataset used for this work consists of 78,339
observed values of f oF 2 taken hourly and in quiet days
from 1958 to 2009, covering many solar cycles.

We also obtained an additional set of about 100 obser-
vations from the ionosonde at La Plata,
ðu ¼ �34:9; k ¼ 302:1Þ, corresponding to February, May,
Table 1
Geographic coordinates and modip latitudes of the ionosondes used in this
reference only.

Station Geographic latitude [�]

Jicamarca �12.0
San Juan �31.5
Buenos Aires �34.6
Concepción �36.8
Trelew �43.2
Ushuaia �54.8
San Martı́n �68.1
August and October of 2012. Though the comparison of
our model is to be done through the residuals and against
the CCIR maps, we nevertheless set aside this data to com-
pare predictions of both models.

4. Results and discussion

Once the coefficients were computed with the GA, we
feeded them to the algorithm described in Section 2.1 in
order to compute a new set of f oF 2 values, f oF 2GA, at
the times and places of all the observed points. These val-
ues were to be compared with the corresponding f oF 2 val-
ues obtained with the IRI algorithm using the CCIR maps,
f oF 2CCIR. In order to make this comparison, we first plot-
ted both sets of f oF 2 values against the observed ones,
f oF 2Obs (Fig. 3). By fitting a straight line by least squares
to both sets we obtained the equations shown at the top
of the Figure. We see that, for the f oF 2GA values, the slope
study. Due to their variations along time, modip latitudes are values for

Geographic longitude [�] Modip latitude [�]

283.0 2.73
290.4 �27.94
301.7 �31.70
287.0 �34.44
294.7 �41.49
291.7 �49.45
293.0 �60.20



Fig. 3. f oF 2 modeled values against the observed ones, f oF 2Obs. Here f oF 2GA are the f oF 2 values obtained with the GA coefficients and f oF 2CCIR are the
f oF 2 values using the CCIR maps. By fitting a straight line by least squares to both sets we obtained the equations shown at the top.
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is closer to 1 and the ordinate at the origin is closer to 0
than for those obtained with the CCIR ones. That is, in
a mean sense, the GA coefficients produce a set of f oF 2
values closer to the observed ones.

To further quantify this difference, we computed the
correlation coefficients (e.g., Press et al. 1992, Sec. 14.5)

between the f oF 2GA (:¼ f oF 2
GA) and the f oF 2Obs

(:¼ f oF 2
Obs) values, q½GA Obs�, and between the f oF 2CCIR

(:¼ f oF 2
CCIR) and the f oF 2Obs values, q½CCIR Obs�, by means

of

q½GAObs� ¼
r½GA�½Obs�
rGArObs

:¼
Pn

i¼1 f oF 2
GA
i �lGA

� �
f oF 2

Obs
i �lObs

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 f oF 2
GA
i �lGA

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 f oF 2

Obs
i �lObs

� �2q

ð5Þ
and

q½CCIRObs� ¼
r½CCIR�½Obs�
rCCIRrObs

:¼
Pn

i¼1 f oF 2
CCIR
i �lCCIR

� �
f oF 2

Obs
i �lObs

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 f oF 2
CCIR
i �lCCIR

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 f oF 2

Obs
i �lObs

� �2q ;

ð6Þ
where rX is the dispersion and lX the mean of the f oF 2i
values corresponding to set X, r½ �½ � are the covariances
and n the number of observed points. The resulting values
were q½GA Obs� ¼ 0:897 and q½CCIR Obs� ¼ 0:869. Though the

two values are close to each other, the GA result is slightly
better than the CCIR one. We made sure that the correla-
tion coefficients were statistically significant by performing
a Student t test on them (e.g., Press et al., 1992, Sec. 14.5),
with n� 2 ¼ 78; 337 degrees of freedom. In both cases, the
tests gave statistical significance at any prefixed level, that
is, the area at the left of the observed t below the curve
of the distribution of t gave unity. So, both sets of coeffi-
cients give f oF 2 values which are quite representative of
the observed frequencies.

Due to the similarity of the correlation coefficients, we
may ask whether the two sets are indeed statistically the
same. To answer this, we computed the dispersions corre-
sponding to both sets, and performed a Fisher F test on
their quotient (e.g., Press et al. 1992, Sec. 14.2), with a null
hypothesis that the samples belong to the same mother
population. The resulting dispersions were
r2
½GA Obs� ¼ 0:043 and r2

½CCIR Obs� ¼ 0:061, which, with

n� 1 ¼ 78; 338 degrees of freedom for both samples, gave
an observed F = 1.42. The P-value, that is, the area below
the F distribution’s curve at the right of the observed F, is
1. This means that the two samples are indeed statistically
different at any level of significance.

Fig. 4 shows a histogram of the distribution of the rela-
tive errors DeGA ¼ f oF 2GA � f oF 2Obsð Þ=f oF 2Obs (black
bars) and DeCCIR ¼ f oF 2CCIR � f oF 2Obsð Þ=f oF 2Obs (white
bars). As expected from our previous results, the resulting
errors of the GA set are smaller in mean that those of the
CCIR set. Besides, one can observe a systematic tendency
of the latter in overestimating the frequency f oF 2 more
than the former. At the same time, a trend towards more
underestimation is visible in the GA set, though it is smal-
ler than the above mentioned overestimation. It is worth
noticing that more than 60% of the computed frequencies
using the GA algorithm have relative errors between



Fig. 4. Histogram of the distribution of the relative errors DeGA ¼ f oF 2GA � f oF 2Obsð Þ=f oF 2Obs (black bars) and DeCCIR ¼ f oF 2CCIR � f oF 2Obsð Þ=f oF 2Obs

(white bars).
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�0:1 < DeGA < 0:1, whereas less than 50% of the frequen-
cies computed with the CCIR lie between those values.

Now, we want to analyze how these results depend on
various variables that enter the computation of the f oF 2
frequency. We first divided our collection of observations
in three sets, one corresponding to values of solar index
IG12 > 120 (i.e., high solar activity), the second one to val-
ues of 40 < IG12 < 120 (medium solar activity), and the
third to IG12 < 40 (low solar activity). We performed, for
each of the three sets, the same computations and tests
already described for the general case (i.e., slopes and ordi-
nates at the origin of the least squares straight lines, corre-
lation coefficients and their statistical signification, and
dispersions for GA and CCIR with their F values and F-
tests). Fig. 5 shows the corresponding plots of f oF 2GA vs.
f oF 2Obs and f oF 2CCIR vs. f oF 2Obs for each interval of solar
activity, together with the corresponding least squares fits.
Table 2 shows the values of the rest of the indicators.
Except for the medium solar activity, the conclusions are
the same as in the general case: similar correlation coeffi-
cients, with that of the GA slightly better than that of
the CCIR; both coefficients statistically significant (not
shown in the Table); dispersion of the f oF 2GA values less
than that of the f oF 2CCIR ones, and an F value which
proves that the dispersions belong to different populations,
that is, the P-value of the observed F is 1. For the medium
solar activity, the conclusions are the same except for (a)
the dispersions, which are inverted in magnitude, i.e., the
one corresponding to the GA is slightly greater than that
of the CCIR, and (b) the correlation coefficients are smaller
than the other cases, that is, the fit to the observed values is
poorer. It is worth noticing that both GA and CCIR corre-
lation coefficients are worse than those of the general case.
This may be probably due to the fact that the CCIR coef-
ficients were computed separately in two subsets: one set is
based on high solar activity days, and the other one based
only on low solar activity days (see Section 2.1). Since an
f oF 2 value is obtained by interpolating to the solar activity
of the time of the computation, a medium solar activity is
the less accurate situation. On the other hand, the GA coef-
ficients, as already said, are always between 95% and 105%
of the CCIR ones, and the computation of the f oF 2 values
follows the same procedure as in the IRI algorithm. Thus,
we expect a less accurate result at medium solar activities
also in this case.

We also examined the behavior of the f oF 2 values in dif-
ferent seasons. Table 2 shows the statistical values. The
conclusions are the same as in the general case. We note
that the smaller dispersions are achieved in Summer.

We also studied how the f oF 2 values vary with modip
latitude. The polar latitude is excluded due to the lack of
observations. Table 2 resumes the obtained statistical val-
ues. Although the general result is similar to the other
cases, we want to emphasize two points. First, at the mid-
dle and high latitudes the fits, both for the GA and the
CCIR models, are noticeably better than in the general
case, whereas in the equatorial region the opposite is true.
This last result may be due to the fact that the IRI mathe-
matical model is less accurate in the equatorial band
(McKinnell and Oyeyemi, 2010). Second, in the subauroral
zone the f oF 2GA values give a considerable better result
than the f oF 2CCIR values.

Finally, we studied the daily variations of the f oF 2 com-
parisons. To this end, we took the f oF 2 values correspond-
ing to a interval near the noon and another one near the
midnight. Table 2 shows the results. We note that the



Fig. 5. Same as Fig. 3 but for (a) high solar activity, (b) medium solar activity and (c) low solar activity. The straight lines are the least squares fits, whose
equations are at the top of each plot.
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night-time values are similar to the general ones, but at
noon the correlation is slightly worse, both for the GA
and the CCIR models.

We show now some examples of the behavior of the
GA-computed values of f oF 2. We first computed for each
observed day the quantity

Df c ¼
X23
i¼0

f oF 2GA � f oF 2Obsj j; ð7Þ

where the sum is over all the hours of the corresponding
day. After this, we sorted all the resulting Df c according
to their values, from the best result (the smallest number)
to the worst one (the biggest number). From this list, we
chose, among the best days, that with 24 observed hours;
the same we did among the worst days. Fig. 6 shows the
observed, GA-computed and CCIR-computed f oF 2 values
of these best and worst days. For the best day (Fig. 6, left),
we see that the CCIR prediction is very good indeed, but
the GA prediction is even better. For the worst day
(Fig. 6, right) we see that neither the CCIR nor the GA
can reproduce well the observations, though the GA pre-
diction performs slightly better. Note that the observations
correspond to the Jicamarca station, near the Equator,
which is therefore in a region where the mathematical
model may be not good enough.

Next, in order to compare more directly the GA-based
values of f oF 2 with those obtained with the CCIR coeffi-
cients, we computed for each observed day the quantity
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Df cp ¼
X23
i¼0

f oF 2GA � f oF 2Obsj j � f oF 2CCIR � f oF 2Obsj jð Þ;

ð8Þ
with the sum again over all the observed hours of the cor-
responding day. As before, we chose a best and a worst
day. The best one (Fig. 7, left) shows that while both the
CCIR and the GA results follow the general pattern of
Table 2
Statistical indicators for the different solar activities, the seasons, the different
coefficient q½GA Obs� (or q½CCIR Obs�) between the f oF 2GA (or f oF 2CCIR) and th
observations (n) and the F values (F-tests).

Parameter q½GA Obs� q½CCIR

Solar activity High
IG12 > 120

0.870 0.823

Medium
40 < IG12 < 120

0.787 0.767

Low
IG12 < 40

0.860 0.818

Seasons Autum 0.898 0.875
Spring 0.886 0.856
Winter 0.887 0.870
Summer 0.855 0.818

Modip latitude Equatorial
(Jicamarca)

0.509 0.502

Low
(San Juan)

0.852 0.841

Mid
(Concepción)

0.943 0.922

High
(Ushuaia)

0.936 0.900

Subauroral
(San Martı́n)

0.886 0.745

Daily variations Noon
[11 h: 14 h]

0.865 0.838

Midnight
[23 h: 2 h]

0.901 0.862

Fig. 6. The observed (f oF 2Obs; points), GA-computed (f oF 2GA; squares) and C
for: (left) a good and (right) a bad performance day, determined according to
the observed values, the GA values fit them far better.
For the worst day (Fig. 7, right), we have an example of
the CCIR result outperforming that of the GA on most
hours of the day, though, again, both follow the general
trend of the observed pattern.

In order to show an example of the regional behaviour
of the results, we show in the left panels of Figs. 8 and 9
contour maps of f oF 2GA for the South American conti-
nent, both in the daytime (16:00 local time for the central
modip latitudes and the daily variation. The table shows the correlation
e f oF 2Obs values, the dispersion r2

½GA Obs� (or r2
½CCIR Obs�), the number of

Obs� r2½GA Obs� r2½CCIR Obs� n� 1 F

0.049 0.074 35.621 1.51

0.116 0.048 9.449 2.71

0.026 0.036 33.266 1.40

0.052 0.079 19.080 1.53
0.039 0.049 20.441 1.27
0.053 0.080 19.651 1.50
0.026 0.032 19.163 1.24

0.195 0.275 3.384 1.41

0.079 0.094 9.119 1.19

0.016 0.029 31.651 1.84

0.024 0.039 8.406 1.65

0.029 0.040 7.163 1.37

0.054 0.080 13.339 1.53

0.036 0.054 12.391 1.56

CIR-computed (f oF 2CCIR; stars) f oF 2 values vs. local time (LT) is plotted
the Df c quantity (Eq. (7)).



Fig. 7. Same as Fig. 6, but the good (left) and bad (right) days determined according to the Df cp quantity (Eq. (8)).

Fig. 8. Left: contour map of f oF 2GA over the South American region at 16:00 local time of the central part, corresponding to February 2nd, 2000. Right:
the same, but for the f oF 2GA � f oF 2CCIR differences.
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stripe of the map, Fig. 8) and at night-time (23:00 local
time, Fig. 9). Figs. 8 and 9 also show the corresponding dif-
ferences f oF 2GA � f oF 2CCIR (right panels).

Finally, we compared the predictions of both models for
a set of about 100 data taken with the ionosonde at La Plata,
Argentina, not included in the set of observations used to
compute the GA coefficients. These data correspond to
12:00 local time for different days and months of 2012.
Fig. 10 shows the outcome for the entire set. From left to
right, the four groups shown in the Figure correspond to
February, May, August and October, respectively. The
mean value of DeGAj j is 0.092, and the mean value of
DeCCIRj j is 0.153, showing once again the slight improve-
ment of the GA algorithm over the CCIR map.

5. Conclusion

A methodology to upgrade f oF 2 maps over a given
region by means of a genetic algorithm optimization was
presented. For the f oF 2 ionospheric parameter, the IRI



Fig. 9. Same as Fig. 8, but at 23:00 local time of the central part.

Fig. 10. Predictions of the models for the set of observations at La Plata,
Argentina. The groups of points from left to right correspond to February,
May, August and October of 2012, respectively. All the observations were
made at 12:00 local time.
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numerical mapping technique based on an orthogonal
Fourier decomposition was applied, but a new set of coef-
ficients (23,712 in all) was obtained in order to improve the
performance.

The new coefficients were computed by the optimization
of a merit function of the differences between the f oF 2 val-
ues obtained with those coefficients and the observed data-
sets obtained from seven ionosondes stations all around the
South American region, which took hourly measurements
for quiet days during the years 1958–2009, and covering
a wide modip latitude and solar activity range.

These new coefficients provide a better global fit to the
observed f oF 2 than the CCIR coefficients. This was quan-
tified by computing the correlation coefficients between the
observed and the computed values, both for the GA-based
coefficients and the CCIR-based ones. The resulting values
(q½GA Obs� ¼ 0:897 and q½CCIR Obs� ¼ 0:869) show that our

new method performs indeed slightly better. We also con-
firmed that these two values correspond to statistically dif-
ferent results, that is, they represent two truly distinct
performances. In this respect, it is worth to note that more
than 60% of the computed frequencies using the GA algo-
rithm have relative errors between �0:1 < DeGA < 0:1.
Also, the variance of the relative difference between the
computed values and the observed ones is less when the
f oF 2 are computed with the GA coefficients
(r2

½GA Obs� ¼ 0:043) than when they are computed with the

CCIR coefficients (r2
½CCIR Obs� ¼ 0:061), that is, there is a

smaller dispersion of relative errors with our coefficients.
Comparing against the observed values, the worst fits

correspond to similar GA and CCIR values. In general,
the trends showed by the CCIR results with solar index
IG12, modip latitude or hour of the day are the same as
with our GA results. The best improvements with respect
to CCIR are obtained at low solar activities, at large (in
absolute value) modip latitudes, and at night-time.
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Therefore, the new method allows to improve the coef-
ficients of the IRI analytical model of f oF 2; it is flexible
in the sense that a particular set of coefficients may be
obtained not only regionally but also globally or locally,
by simply using global or local available data. It is also
very easy to recompute the coefficients when new data is
available, for example when new stations are set or when
additional observations are made along the time.

We plan to improve this methodology in several ways.
For example, the computation of a third set of coefficients
corresponding to days of medium solar activity is probably
worth the effort, in order to avoid the interpolation
between low and high activities. This can easily be done
by simply augmenting the set of corresponding unknowns.
Also, the same procedure as for f oF 2 can be performed to
obtain the ionospheric parameter M(3000)F2, which allows
to obtain the hmF2 parameter.
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