
Chapter 3
Fundamentals of Sliding-Mode Control Design

3.1 Introduction

This chapter provides an introduction to Variable Structure Control (VSC) theory
and its extension to the so-called Sliding-Mode (SM) control. Note that the pre-
sentation is not intended as a comprehensive survey of the state-of-the-art in the
field, but to merely supply the basic concepts on SM control required to understand
the developments to come in this book. Readers well acquainted with this subject
matter may omit this chapter. On the other hand, first-timers can use this material
as a straightforward, but incomplete, introduction to the field of SM control, and
are strongly encouraged to search for further and more substantial reading in the
seminal works cited in the bibliography (useful introductory material could be, for
instance, [5, 12, 14, 25, 26, 38, 44, 45]).

The chapter is divided in two parts. In the first one, Sect. 3.3, a general analysis
of the classic or first-order SM control is formulated, which is the natural back-
ground to the subsequent generalisation known as Higher-Order Sliding-Mode con-
trol (HOSM). This section is mainly based on the influential works [38, 42, 44] and,
to a lesser extent, on contributions from a series of classic survey papers such as
[12, 45].

In the second part, Sects. 3.4 and 3.5, a general study of systems operating in
sets of arbitrary sliding-mode order is presented. This section outlines the fun-
damentals of Higher-Order Sliding-Mode control theory, particularly focusing on
Second-Order Sliding-Mode (SOSM) controllers. To a great extent, this part has
been inspired in the works and results from [5, 25, 31, 33].

3.2 Variable Structure Control Preliminaries

The variable structure control and associated sliding modes were firstly proposed
and developed by Stanislav Emelyanov and Vadim Utkin in the early 1950s in the
Soviet Union [16, 43]. The most relevant feature of the SM control is its ability to
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generate robust control algorithms that are invariant under certain conditions. Briefly
speaking, the concept of invariance indicates that the system remains completely
insensitive to certain types of disturbances and uncertainties [13].

Since the 1990s, the control of systems subject to external disturbances and
model uncertainty has been the focus of increasing interest. Among the different
existing alternatives, the SM control has proven to be an attractive option to im-
plement in systems electronically controlled, proving to be highly robust and even
insensitive against certain system uncertainty and perturbations. The feasibility and
benefits of SM control applied to electronically controlled actuators have been ex-
tensively demonstrated in the literature, such as [44]. In addition, the SM control
allows a relatively simple design approach, even dealing with nonlinear systems,
admitting a successful combination with other nonlinear control techniques such
as energy shaping and model predictive control. As a result, the research and de-
velopment of SM control design methods have been greatly accelerated, both in
theoretical and practical fields [1, 6, 15, 36, 46].

One of the most distinctive aspects of the SM is the discontinuous nature of its
control action. Its primary function consists in performing a switching between two
different structures in order to get a desired new dynamics in the system, known as
sliding-mode dynamics. This feature allows the system to have an enhanced per-
formance, including insensitivity to parametric uncertainties and rejection to distur-
bances that verify the so-called matching condition [13, 38]. When the concept of
parametric uncertainties is considered, it is referred to both external and internal un-
certainties in the parameters as the product of the process of model reduction used
in control design [14, 42].

However, a great deal of the success to fulfil the control objectives depends
on the capability of the sliding-mode controller design to reduce chattering. The
term chattering describes the phenomenon of finite-frequency, finite-amplitude os-
cillations appearing in many sliding-mode implementations. These oscillations are
caused by the high-frequency switching of a sliding-mode controller under practical
(non-ideal) operating conditions, such as unmodelled dynamics in the closed-loop
or finite switching frequency [9, 22, 23, 44].

A successful alternative to reduce this undesired phenomenon, currently ad-
dressed by many control researchers and engineers, is to use the so-called Higher-
Order Sliding-Mode control. In this case, from the definition of a continuous control
action, the HOSM generalises the notion of sliding surface or manifold while keep-
ing the main advantages of the original approach of SM for Lipschitz continuous
uncertainty/perturbations. In particular, there are several promising results related
to Second-Order Sliding-Mode control, existing several algorithms that solve the
robust stabilisation of nonlinear uncertain systems, while guaranteeing a finite-time
convergence of the sliding variable [5, 24, 29, 34].

3.3 Fundamentals of Sliding-Mode Control

The SM control is a strategy based on output feedback and a high-frequency switch-
ing control action which, in ideal conditions, is infinite. Essentially, this high-speed
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control law can lead the system trajectories to a subspace of the state space (com-
monly associated to a sliding surface or manifold). If a system is forced to con-
strain its evolution on a given manifold, the static relationships result in a dynam-
ical behaviour determined by the design parameters and equations that define the
surface [38]. On average, the controlled dynamics may be considered as ideally
constrained to the surface while adopting all its desirable geometrical features.

Thus, making an appropriate design of the sliding surface (i.e. embedding the
control objectives into the control function that gives rise to such manifold), it is
possible to achieve conventional control goals such as global stability, optimisation,
tracking, regulation, etc.

In the sequel, the basics of the theory of classical sliding-mode control are intro-
duced, focusing on Single-Input Single-Output (SISO) systems. Note that in most
sections of this chapter, the possible explicit dependence on time of the dynamical
system has been omitted for the sake of clarity and economy of notation. In the
present approach, this compacted notation can be used without loss of generality,
provided that in the case of a non-autonomous system, it could be rewritten as au-
tonomous by treating t as an additional dependent variable, with its trivial evolution
given by the fictitious equation ṫ = 1 (obviously, at the expense of increasing the
dimension by one).

3.3.1 Diffeomorphisms, Lie Derivative and Relative Degree

Firstly, it is useful to review some mathematical tools and procedures that will be
necessary later. Let a control affine nonlinear system be given by

ẋ = f (x) + g(x)u

y = h(x)
(3.1)

with x ∈ X ⊂ R
n, f : Rn → R

n and g : Rn → R
n smooth vector fields (infinitely

differentiable) with g(x) 6= 0, h(x) smooth scalar field and u : Rn → R possibly
discontinuous. These systems are linear in the control, so they are called control
affine systems or analytical linear systems.

A diffeomorphism is defined as a coordinate transformation of the form z = φ(x)

with φ : Rn → R
n vector field with inverse φ−1. In particular, we only consider

transformations such that φ and φ−1 are C n (i.e. with n continuous derivatives).
This last condition ensures that the transformed system preserves the original system
structure.

After making the proposed change of coordinates, the dynamical system (3.1)
looks as follows:

ż = φ̇(x) = ∂φ

∂x
ẋ = ∂φ

∂x
f (x) + ∂φ

∂x
g(x)u (3.2)

Note that ∂φ
∂x

= [ ∂φ(x)
∂x1

∂φ(x)
∂x2

· · · ∂φ(x)
∂xn

] gives the direction of the gradient vector of
φ(x), ∇φ(x). So the system (3.1) can be written in terms of the new variable z:
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ż = f̃ (z) + g̃(z)u

y = h̃(z)
(3.3)

where

f̃ (z) = ∂φ

∂x
f (x)

°
°
°

x=φ−1(z)

g̃(z) = ∂φ

∂x
g(x)

°
°
°

x=φ−1(z)

h̃(z) = h(x)kx=φ−1(z)

(3.4)

To simplify the notation, it is necessary to define the concept of directional
derivative or Lie derivative [40], which is expressed as

(Lf h)(x) = Lf h(x) :Rn → R (3.5)

and represents the derivative of a scalar field h(x) : Rn → R in the direction of a
vector field f (x) :Rn → R

n,

Lf h(x) = ∂h

∂x
f (x) (3.6)

Lf is a first-order differential operator, while the composition Lf ◦Lg , which is usu-
ally written as Lf Lg , is a second-order operator. Moreover, the directional deriva-
tive can be applied recursively:

Lk
f h(x) = ∂

∂x

¡

Lk−1
f h(x)

¢

f (x) (3.7)

In this way, a compact notation for the derivatives of scalar functions in the di-
rection of vector fields is obtained. Either in the direction of a single vector field (f )
or more (f and g):

LgLf h(x) = ∂

∂x

¡

Lf h(x)
¢

g(x) (3.8)

Finally, assuming a smooth output h(x) of system (3.1), the relative degree of
h(x) at the vicinity of a given point x is defined as the smallest positive integer r , if
one exists, with the property that

LgL
i
f h = 0 ∀0 ≤ i ≤ r − 2 (3.9)

and

LgL
r−1
f h 6= 0 (3.10)

Therefore, a system output h(x) with relative degree r implies, in a simplified
way, that u explicitly appears for the first time at the r th time derivative of h(x). In
short, r gives an idea about how directly the control influences the output.
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3.3.2 First-Order Sliding Mode

Consider the nonlinear dynamical system (3.1), with control action u : Rm → R

(possibly discontinuous), f and g smooth vector fields with g(x) 6= 0 ∀x ∈ X. Let s

be defined as a smooth constraint function s : X → R, designed according to the
desired control objectives (i.e. the specifications are fulfilled when s is constrained
to zero), with gradient ∇s = ∂s

∂x
non-null on X [38]. Then the set

S = ©

x ∈ X ⊂ R
n : s(x) = 0

ª

(3.11)

defines a locally regular manifold in X (of dimension n − 1 in the case of a SISO
system), called sliding manifold or, simply, switching surface. This order reduction
feature is a characteristic of SM control systems (first and HOSM) and indicates that
the subspace on which the sliding movements occur have “non-zero co-dimension”,
meaning that after reaching the sliding regime, the trajectories of the system will
remain within a subspace of lower dimension than the space generated by n states.
The results obtained below are of a local nature, restricted to an open neighbourhood
of X ⊂ R

n, having a non-empty intersection with the sliding manifold S [16, 28,
42].

In order to attain the sliding motion in such manifold, a variable structure control
law can be proposed by imposing a discontinuous control action u, which takes one
of two possible feedback values, depending on the sign of s(x). For example,

u =
½

u+(x) if s(x) > 0

u−(x) if s(x) < 0
with u+ 6= u− (3.12)

The upper and lower levels of u (u+(x) and u−(x), respectively) are smooth
functions of x. Moreover, without loss of generality, it can be assumed that u+(x) >

u−(x) holds locally in X. Note that if u+(x) > u−(x) for any point x, then the
inequality holds for every x, given that the functions are smooth and do not intersect.

Suppose that, as a result of the control law (3.12), the constraint function locally
satisfies the following inequalities in the neighbourhood of S :

½
ṡ(x) < 0 if s(x) > 0

ṡ(x) > 0 if s(x) < 0
(3.13)

Under these conditions, the system will reach the sliding manifold S and there-
after will remain confined in a vicinity of S (see Fig. 3.1). Then, it is considered
that a sliding regime is established on S whenever (3.13) holds.

Using the notation of the directional derivative, ṡ(x) can be expressed as follows:

ṡ(x) = Lf +gus = Lf s + Lgs · u (3.14)

Note that the output s(x) must have relative degree 1 with respect to u, i.e.
Lgs 6= 0, to ensure that the discontinuous control action is able to influence the sign
of ṡ(x).

Expression (3.13) can also be written as follows:
⎧

⎨

⎩

lim
s→+0

Lf +gu+s < 0

lim
s→−0

Lf +gu−s > 0
(3.15)
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Fig. 3.1 Sliding manifold and system trajectories

meaning that the rate of change of the constraint or SM function s(x), evaluated in
the direction of the control field, is such that a crossing of the surface is guaranteed
from each side of the surface, by using the switching law (3.12). This can be graphi-
cally interpreted with the help of Fig. 3.1, analysing the projection of the controlled
field f + gu onto the gradient vector ∇s at both sides of S .

To conclude this subsection, a succinct final remark regarding the SM control
finite reaching time is pertinent. Note then that the explicit condition (3.13) can be
condensed as ṡ(x)s(x) < 0. From this it is simple to understand that, to achieve
finite reaching time, the control law (3.12) must be designed to fulfil the previous
inequality, but in a more strict way, that is according to the scalar sufficient condition
ṡ(x)s(x) < κ|s(x)| with κ > 0 (or, similarly, ṡ(x) sign s(x) < κ). This means that
the system should always be moving toward the switching surface with non-zero
speed. This can be straightforwardly proven by taking V = 1

2 s2(x) as a Lyapunov
function.

3.3.3 Equivalent Control Regularisation Method. Ideal Sliding
Dynamics

From a methodological and systematic point of view, it is convenient to develop a
regularisation method for deriving the sliding-mode equations for system (3.1). As-
suming that the state vector is in the manifold S (s(x) = 0) and the sliding mode oc-
curs with the state trajectories confined to this manifold for t > 0, one way to define
the ideal sliding mode is using the so-called equivalent control method [44]. Since
the motion in the sliding mode implies s(x) = 0 for t > 0, it may be assumed that
ds/dt = ṡ = 0 as well. Hence, in addition to s(x) = 0, the time derivative ṡ(x) = 0
may be used to characterise the state trajectories during the sliding mode.
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In summary, the equivalent control action is defined by the following invariance
conditions on the switching manifold S [38]:

½
s(x) = 0

ṡ(x) = Lf s + Lgs · ueq = 0
(3.16)

where ueq(x) is a smooth control law called equivalent control that makes S a local
invariant manifold of system (3.1). Therefore, the equivalent control ueq(x) can be
obtained from Eq. (3.16):

ueq(x) = −Lf s

Lgs

¯
¯
¯
¯
s(x)=0

(3.17)

Thus, once s = 0 is attained, ueq(x) would provide the continuous control action
required to maintain the system confined in the sliding surface.

The ideal sliding-mode dynamics, i.e. the closed-loop dynamics on the mani-
fold S , is obtained by substituting ueq for u into (3.1):

ẋ = f (x) + g(x)ueq|s(x)=0 = f (x) − g(x)
Lf s

Lgs

¯
¯
¯
¯
s(x)=0

(3.18)

Note that the state variables are related by the algebraic equation s(x) = 0, reducing
the order of the closed-loop system dynamics to n − 1.

Substituting the Lie derivative and operating in (3.18), we have

ẋ =
·

I − g

µ
∂s

∂x
g

¶−1
∂s

∂x

¸

f (x) = Ψ (x)f (x) (3.19)

Evaluated in s(x) = 0, (3.19) gives an idealised version of the motions occurring on
the sliding manifold S , constituting an “average” description of the trajectories of
system (3.1) controlled with the VSC law (3.12).

The geometrical representation presented in Fig. 3.2 can be of help for a better
understanding. In accordance with ueq being the control action that makes the sys-
tem remain on S , the vector Ψf = f + gueq must lie in Tx , the tangent plane to
S (i.e. normal to the gradient ∇s, as can be seen in Fig. 3.2). Mathematically this
is expressed as

Ψ (x)f (x) ∈ ker(∇s) ≡ Tx (3.20)

Consequently, the matrix Ψ (x) can be considered as a projection operator that,
applied to the vector f (x), projects it onto the plane tangent to surface S at the
point x.

To conclude, it is of interest to briefly consider the effect of projector Ψ over
any vector collinear with g(x). Let Λ be a general vector of arbitrary amplitude,
possibly a function of x, such that Λ ∈ span(g):

Λ(x) = g(x)μ(x) with μ(x) :Rn → R (3.21)

Note then that the application of the operator Ψ (x) to this vector projects Λ to
the origin. In fact,

Ψ (x)Λ(x) =
·

I − g

µ
∂s

∂x
g

¶−1
∂s

∂x

¸

g(x)μ(x) = 0 (3.22)
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Fig. 3.2 Sliding surface and detail of the vector fields and projections

The cancellation of expression (3.22) can be interpreted in Fig. 3.2 as follows: the
operator Ψ (x) projects any vector in the direction of g(x) onto the tangent subspace
of S . Hence, the projection of any vector that belongs to span(g) would result in
just a point on Tx .

3.3.4 Existence Conditions for the First-Order Sliding Regime

3.3.4.1 Existence of Equivalent Control

It can be stated that the equivalent control is well defined if ueq exists and is uniquely
determined from the invariance conditions (3.16) [38].

Lemma 3.1 The equivalent control is well defined if and only if the following con-
dition is satisfied locally in S :

Lgs(x) = ∂s(x)

∂x
g(x) 6= 0 (3.23)

This condition is known as “transversality condition” and may be inferred
from (3.14). The proof of the lemma can be found in [38].

Geometrically, this lemma states that the vector field g cannot be tangential to
the sliding manifold (S : g /∈ ker(∇s)); otherwise it could not force the system to
cross the surface. The transversality condition represents just a necessary condition
for the existence of a first-order sliding mode.
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3.3.4.2 Necessary Conditions for the Existence of a First-Order Sliding
Regime

Based on the transversality condition, the following necessary condition for the ex-
istence of a sliding regime can be stated.

Lemma 3.2 A necessary condition for the existence of a local sliding mode in S
is that the equivalent control action ueq(x) must be well defined.

Indeed, if ueq is not well defined, i.e. Lgs = 0 at some point, the existence con-
ditions of the sliding mode (3.15) cannot be satisfied simultaneously.

Lemma 3.3 Assume, without loss of generality, that u+(x) > u−(x). Then the fol-
lowing condition is necessary for the existence of a sliding regime on S :

Lgs(x) = ∂s

∂x
g(x) = ∇sg(x) < 0 (3.24)

The proof, direct from (3.15) and (3.16), is given in [38] and can be easily in-
ferred from Fig. 3.2 by analysing the sign of the projection of g(x) onto ∇s(x).

3.3.4.3 Necessary and Sufficient Condition for the Existence of a First-Order
Sliding Regime

A necessary and sufficient condition for the local existence of a sliding mode in S
is that, for x ∈ S ,

u−(x) < ueq(x) < u+(x) (3.25)

This condition can also be proved from (3.15) and (3.16) [38].
Then, ueq can be interpreted as the averaged control signal resulting from the

implementation of the maximum and minimum control actions, with an infinitesimal
duty cycle resolution (in ideal sliding mode). However, in practice, several model
imperfections and finite switching frequency make the state oscillate in a vicinity of
the manifold [44].

3.3.4.4 Robustness of the First-Order SM

The behaviour of SM controlled systems under the effect of disturbances is dis-
cussed briefly. To this end, consider system (3.1) perturbed as follows:

ẋ = f (x) + g(x)u + ζ(x) (3.26)

with ζ(x) a vector of lumped perturbations that may take into account paramet-
ric perturbations of the nominal drift field or unstructured external disturbances
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Fig. 3.3 Sliding surface and detail of the vector fields with perturbations

[38]. The vector ζ(x) can be uniquely decomposed into two components, one in
the span(g), g(x)υ(x), and the other, η(x), onto the tangent plane Tx (see Fig. 3.3):

ζ(x) = g(x)υ(x) + η(x) (3.27)

It is said that the disturbances that belong to span(g) satisfy the matching condi-
tion, and the SM control is not merely robust to them but exhibits a strong invari-
ance property. Effectively, as it can be observed in Fig. 3.3, if u+ and u− are strong
enough, the component g(x)υ(x) can be completely annihilated by the control, sim-
ply generating a new infinitesimal duty cycle and, consequently, a new equivalent
control for the disturbed system (ueqp

(x) = ueq(x) − υ(x)). In addition, the undis-
turbed or nominal sliding dynamics suffers no modifications.

On the other hand, it can be appreciated (in Fig. 3.3) that the tangential compo-
nent of the disturbances, η(x), cannot be rejected. However, it does not compromise
the local existence of the sliding motion, but definitely influences the ideal sliding
dynamics.

In accordance with this analysis, it can be stated that a necessary and sufficient
condition for the local existence of a sliding mode in the perturbed system is

u−(x) < ueqp
(x) = ueq(x) − υ(x) < u+(x) (3.28)

A detailed demonstration is provided in [38].
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3.3.5 Extension to Nonlinear Systems Non-affine in Control

Consider a generic system described by the following differential equation:

ẋ = F(x,u) (3.29)

Using the same SM function s(x), the controlled system can be again de-
composed into two subsystems or structures, depending on whether s(x) > 0 or
s(x) < 0:

ẋ = F(x,u) =
½

F(x,u+) = F+ if s(x) > 0

F(x,u−) = F− if s(x) < 0
(3.30)

Along the trajectories of the system, the dynamics of s(x) has the following
expression:

ṡ(x) = ∂s

∂x1
ẋ1 + ∂s

∂x2
ẋ2 + · · · =

·
∂s

∂x1

∂s

∂x2
· · ·

¸

⎡

⎢
⎣

ẋ1
ẋ2
...

⎤

⎥
⎦ = LF s(x) (3.31)

In the same way as in system (3.30), in the time derivative of the SM function
two cases can be distinguished:

if s > 0 → ṡ = LF+s(x)

if s < 0 → ṡ = LF−s(x)
(3.32)

As the trajectory has to converge to the manifold, when s(x) > 0, the states
should move towards s(x) = 0 (i.e. ṡ(x) < 0, so s(x) decreases), and conversely
in the reciprocal case. This means that the establishment of the sliding mode on
s(x) = 0 is fulfilled with a condition similar to (3.13):

if s > 0 → ṡ = LF+s(x) < 0

if s < 0 → ṡ = LF−s(x) > 0
(3.33)

3.3.6 Filippov Regularisation Method

Besides the equivalent control method presented in Sect. 3.3, at this point it is of
interest to introduce another regularisation method, also capable of dealing with
discontinuous systems. In particular, the underlying concept behind this method will
be of use in the higher-order SM control strategies to come.

Recall that conventional theory of differential equations is limited to continuous
state functions, hence when dealing with discontinuous systems, it does not answer
even fundamental questions, such as the existence and uniqueness of the solution.
Strictly speaking, most conventional methods require the right-hand side of the dif-
ferential equation (3.29) to satisfy the Lipschitz condition

°
°F(x1) − F(x2)

°
° < Lkx1 − x2k (3.34)
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Fig. 3.4 Hysteresis of the
switching device

with L being some positive value, known as Lipschitz constant, for any x1 and x2.
This condition implies that the function does not grow faster than some linear func-
tion [44]. Nevertheless, this is not the case for discontinuous functions if x1 and x2
are close to a discontinuity point.

So as previously stated, in situations where conventional methods are not applica-
ble, the common approach is to employ different methods of regularisation like the
equivalent control method proposed in [42]. Another useful regularisation method
usually applied to general nonlinear systems as (3.29) is the so-called Filippov
method [20]. This procedure consists of considering that the discontinuous con-
trol is implemented with a switching device with small imperfections. In particular,
if a hysteresis loop of width 2Δ is considered, then the state trajectories oscillate in
a Δ-vicinity of the switching surface when the control takes one of the two extreme
values, u+(x) or u−(x) (see Fig. 3.4).

Δ is considered small enough, so the state velocities F+ = F(x,u+) and F− =
F(x,u−) are assumed to be constant for some point x on the surface s(x) = 0
within a short time interval [t, t + Δt]. Let the time interval Δt consist of two sets
of intervals Δt1 and Δt2 such that Δt = Δt1 + Δt2, u = u+ during Δt1 and u = u−
during Δt2. Then, the increment of the state vector once Δt is elapsed is found as

Δx = F+Δt1 + F−Δt2 (3.35)

and the average velocity of the state vector is given by the convex average of the
velocity vectors:

¯̇x = Δx

Δt
= μF+ + (1 − μ)F− (3.36)

where the convex average factor μ = Δt1/Δt can be understood as the percentage
of time that the control takes the value u+, while (1 − μ) is the percentage cor-
responding to u−, with μ belonging to the closed set [0,1]. Now, the procedure
to get the state vector movement ẋ is to make Δt tend to zero. Nevertheless, this
limit is intrinsic to the assumption that the state velocity vector, or equivalently the
vector field F(x), is constant within the time interval Δt . Then, for the Filippov
regularisation method, the convex expression

ẋ = μF+ + (1 − μ)F− (3.37)
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Fig. 3.5 Filippov’s
regularisation method

represents the motion during the first-order sliding mode (see the convex closure in
Fig. 3.5, as a graphical interpretation of the Filippov method). Accordingly, since
the trajectories during the sliding mode are on the manifold s(x) = 0, the following
equation holds:

ṡ = ∇s(x)ẋ = ∇s(x)
£

μF+ + (1 − μ)F−¤ = 0 (3.38)

so the parameter μ should take a value that allows the state velocity of the system
(3.37) to lie on the tangent plane (see Fig. 3.5). From (3.38) it can be easily inferred
that such value of μ must be

μ = ∇s(x)F−

∇s(x)[F− − F+] . (3.39)

Note For control affine systems, the resultant sliding equations derived from the
Filippov regularisation method are the same as those obtained from the Utkin equiv-
alent control.

3.3.7 Discontinuous Control Action in Classic Sliding-Mode
Control. Chattering Problem

One of the main drawbacks of the first-order sliding-mode control in certain appli-
cations is the direct use of discontinuous control actions. In actual implementations,
the discontinuous control law, together with unmodelled dynamics and finite switch-
ing frequency, may produce fast oscillations in the outputs of the system. This effect
is known as “chattering” phenomenon.

During the mid-1980s, the following three main approaches to reduce chattering
in sliding-mode controlled systems were proposed [8]:

• The use of a saturation control instead of the discontinuous action [10, 39]. This
well-established approach allows the control to be continuous, restraining the sys-
tem dynamics not strictly onto the sliding manifold, but within a thin boundary
layer of the manifold. This method ensures the convergence to the boundary layer,
whose size is defined by the slope of the saturation linear region.
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• The observer-based approach [9, 44]. This method allows bypassing the plant
dynamics by the chattering loop. This approach successfully reduces the problem
of robust control to the problem of exact robust estimation. However, in some
applications it can be sensitive to the plant uncertainties, due to the mismatch
between the observer and plant dynamics [45].

• The Higher-Order Sliding-Mode approach (HOSM) [18, 29]. This method allows
the finite-time convergence of the sliding variable and its derivatives. This ap-
proach was actively developed since the 1990s [2, 4, 5, 29, 32, 37], not only pro-
viding chattering attenuation, but also robust control of plants of relative degree
one and higher. Theoretically, an r-order sliding mode would totally suppress
the chattering phenomenon in the model of the system (but not in the actual sys-
tem) when the relative degree of the model of the plant (including actuators and
sensors) is r . Yet, no model can fully account for parasitic dynamics, and, conse-
quently, the chattering effect cannot be totally avoided. Nevertheless, theoretical
results in HOSM, especially Second-Order Sliding-Mode algorithms, have been
successfully proven in practice, encouraging the progress of the research activi-
ties.

Then, it is of natural interest the study of sliding-mode control alternatives that,
smoothing the control action, reduce the chattering effects and avoid unnecessary
requirements on the actuators. This is particularly relevant in fuel cell control, as
there are mechanical actuators involved that may suffer when exposed to control
actions of high frequency and amplitude.

It should be noted that when using Higher-Order Sliding Modes, it is not possible
to maintain the invariance properties against matched disturbances as in the original
approach. However, different control schemes that guarantee robust stability of the
system can be achieved, satisfying the condition s(x) = 0 (and even zeroing higher-
order derivatives of s(x)) in finite time [18, 25].

In the sequel, a brief introduction to Higher-Order Sliding-Mode control applied
to uncertain nonlinear systems is presented. Then, Second-Order Sliding-Mode con-
trol and in particular three different algorithms are analysed in detail.

3.4 Some General Concepts on Higher-Order Sliding Modes

As discussed in Sect. 3.2, first-order sliding-mode control has certain properties that
make it particularly attractive to apply to uncertain nonlinear systems. Among them,
it can be highlighted finite convergence to the surface, system order reduction and
robustness against certain disturbances. In this context, Higher-Order Sliding-Mode
control will inherit some of these properties. This control approach generalises the
idea of first-order sliding mode, by acting on the higher-order derivatives of the con-
straint function s(x), instead of influencing the first derivative (as in (3.14)). Keep-
ing the main advantages of the original approach, the HOSM control works with
continuous action over ṡ(x), relegating the discontinuous control to operate on the
higher derivatives of s(x). This weakens the effect of chattering in the output, pro-
viding greater accuracy in realisation. Additionally, in some applications (namely,
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plants with relative degree 1 with respect to s), the resultant physical control input
to the plant is continuous, contributing to the longer service life of certain actuators.
A significant number of these controller proposals can be found in [2, 7, 18, 21, 25,
29, 30, 35].

An important concept in HOSM is the notion of sliding order. If the goal is to
maintain a constraint given by s(x) = 0, the sliding order is defined as the number
of continuous time derivatives of s(x) (including the zero-order one) in the vicinity
of a sliding point. With these considerations, a sliding mode of order r is determined
by the following equalities:

s = ṡ = s̈ = · · · = s(r−1) = 0 (3.40)

Expression (3.40) represents an r-dimensional condition in the dynamic system,
which implies an order reduction of r (that is, (3.40) specifies r algebraic equations
that bond the state variables).

3.4.1 Definition of Differential Inclusion

As in first-order sliding-mode control, the HOSM scheme forces a movement on a
set of discontinuity, demanding an approach to the problem capable to deal with dif-
ferential equations with right-hand side single-valued, but discontinuous, functions.
Such an approach can be found in the Filippov concepts introduced in Sect. 3.3.6.
The basic idea behind Filippov’s method was not to focus on the value of the vector
function precisely at the discontinuity point, but on its values in the point’s imme-
diate neighbourhood. Then, the function at the point is replaced with an average
function, taken from a set generated by the convex combination of the values at
each side of the discontinuity point.

This replacement can be interpreted as including or covering the discontinuous
right-hand side single-valued function with a more comprehensive set-valued func-
tion (as would be the convex closure presented in the case treated in Sect. 3.3.6).
This idea of inclusion, or better expressed differential inclusion, will be of help
when designing SOSM controllers for dynamical system with uncertainties.

To better formalise this mathematical concept, consider a general differential
equation of the form

ż = v(z, t) (3.41)

where the generic variable z ∈ R
n, and v(z, t) is a piecewise-continuous single-

valued function in a domain G with some points of discontinuity in a set M of
measure zero. Note that in the framework of the SM control problem the generic
variable z could be particularised to be a suitable variable of the dynamical system
under control (for instance, x or, through a diffeomorphism, s, ṡ and any appropriate
internal variables), while the discontinuity set M could be the sliding manifold.

Next, for each point (z, t) of the domain G, a set-valued function V (z, t) in an
n-dimensional space must be considered. Note that just as the single-valued func-
tion takes a point in its domain into a single point (direction) in another space, the
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set-valued function take a point in its domain into a set of points (directions) in
another space [11]. In this particular case, for points (z, t) where function v(z, t) is
continuous, the set V (z, t) trivially consists of one point (direction) which coincides
with the single value of v(z, t) at this point. On the other hand, if (z, t) is a point
of discontinuity of function v(z, t), then V (z, t) comprises a set of directions rather
than a single specific one. Now, in accordance with Filippov’s definition, the dis-
continuous differential equation (3.41), can be formally replaced by an equivalent
differential inclusion of the form

ż ∈ V (z, t) (3.42)

The expression above, is called a Filippov differential inclusion if the set V (z, t)

is non-empty, closed, convex, locally bounded and upper-semicontinuous. In this
way, V (z, t) can cover the situation in which the state derivative belongs to a set of
directions, not to a single one. In the simplest case, i.e. when v(z, t) is continuous
almost everywhere, V (z, t) is the convex closure of the set of all possible limits of
v(t, zcont) as zcont → z, while zcont are continuity points of v(z, t).

Note that this definition verifies the description of V (z, t) previously given.
When zcont approaches a continuity point, the limits converge to a single value,
so, as expected, V (z, t) effectively coincides with the continuous value of v(z, t).
Conversely, when zcont approaches a discontinuity point, limits are different, and
V (z, t) comprises a set of directions.

It can be stated, then, that a solution z(t) of the differential equation (3.41) is
understood as a solution in the Filippov sense, if it is an absolute continuous function
in an interval and satisfies the differential inclusion (3.42) almost everywhere on
such interval [19, 20].

Summarising, the Filippov definition replaces the discontinuous differential
equation (3.41) by the differential inclusion (3.42). Removing sets of zero measure
(discontinuity points) from the values taken by v(z, t) corresponds to purposely ig-
noring possible misbehaviour of the right-hand side in (3.41) on small sets.

3.4.2 Sliding Modes on Manifolds

The notion of sliding mode manifold acquired with the first-order SM can be ex-
tended to HOSM. The progression that generates the successive sliding manifolds
can be described as follows. Let S be the smooth manifold defined from a smooth
function s(x) (see Eq. (3.11)). The set of points x for which the set of possible ve-
locities entirely lies in the subspace Tx tangent to S is defined as a second-order
sliding set with respect to S (recall that in a first-order SM the set of possible veloc-
ities of the system does not lie in Tx , but intersects it. See Fig. 3.2). The former con-
cept means that once S is reached, the Filippov solutions of Eq. (3.41) fall within
the tangent space of the manifold S . This set of points is denoted as S2. Assum-
ing that S2 can be considered as a manifold smooth enough, the same construction
can be performed for S2, calling S3 to the corresponding set of second-order slid-
ing solutions with respect to S2 or third-order sliding set with respect to S . Thus,
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continuing this way, one can find sliding sets of any order [25]. Summarising, it is
said that there is an r th-order sliding mode on the manifold S in a neighbourhood
of an r th-order sliding point x ∈ Sr if in a neighbourhood of this point x, the set
Sr is an integral set, and this means that the set of trajectories is understood in the
Filippov sense.

3.4.3 Sliding Modes and Constraint Functions. Regularity
Condition

3.4.3.1 Definition of Regularity Condition

At this point, it is useful to briefly introduce the definition of the regularity condition
and its relation with other concepts, such as the normal form of nonlinear systems.
Hence, reconsider the constraint given by s(x) = 0, where s : Rn → R is a function
smooth enough. Assume also that the time derivatives of s(x), i.e. ṡ, s̈, . . . , s(r−1)

exist and are single-valued functions of x (which is not trivial in discontinuous dy-
namical systems). Recall that the discontinuity does not appear in the first r − 1
derivatives of the constraint function s, or analogously, s is an output of relative
degree r with respect to the discontinuous input, according with (3.9) and (3.10).
When these assumptions hold, the sliding set of order r will be unequivocally deter-
mined by Eqs. (3.40), implying that the reduced system dynamics has order n − r .

Definition 3.1 Consider the non-empty r th-order sliding set (3.40) and assume that
it is a set locally integrable in the sense of Filippov (i.e. consisting of Filippov tra-
jectories of the discontinuous dynamical system). Then, the corresponding motion
that satisfies (3.40) is called r th-order sliding mode with respect to the constraint
function s.

To show the relationship of this definition with other control definitions, consider
a manifold S given by the equation s(x) = 0. Suppose that s, ṡ, s̈, . . . , s(r−1) are
smooth functions of x and

rank
©∇s,∇ ṡ,∇ s̈, . . . ,∇s(r−1)

ª = r (3.43)

holds locally. Then, since all Si , i = 1, . . . , r − 1, are smooth manifolds, Sr is a
differentiable manifold determined by (3.40). Recall that the rank of a set of vectors
indicates the dimension of the subspace they define.

Equation (3.43), together with the requirement that the corresponding time
derivatives of s are smooth functions of x, is referred to as the “sliding regular-
ity condition” [25, 31].

This is a useful definition because if condition (3.43) is reached, new local coor-
dinates y1 = s can be taken, and the system can be described through the following
set of equations:
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⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẏ1 = y2

ẏ2 = y3

...

ẏr = Φ(y, ξ)

ξ̇ = Ψ (y, ξ) with ξ ∈R
n−r

(3.44)

Note that this is similar to the normal form of nonlinear systems; the only differ-
ence is that in the normal form ẏr = a(y) + b(y)u [31].

Additional Remark It is sometimes mentioned that the higher-order sliding
modes differ depending on the number of total derivatives of s which are extin-
guished when reaching the manifold S . However, this number cannot be consid-
ered as a feature of the HOSM, since formally all orders of derivatives are cancelled
at S [4]. The most important feature of a sliding mode is the number of successive
continuous derivatives of s in the neighbourhood of the manifold. In other words,
the value of r is taken from computing the first discontinuous or non-existent time
derivative of s. The sliding order r is understood in this sense.

3.4.3.2 Connection with Other Well-Known Results in Control Theory

Let the control affine nonlinear system (3.1) be recalled as

⎧

⎨

⎩

ẋ = f (x) + g(x)u

s = s(x) ∈ R

u ∈R

(3.45)

with f , g and s sufficiently smooth vector functions.
Assuming that the output s(x) has relative degree r , according to (3.9) and (3.10),

this means that in the neighbourhood of a given point,

Lgs = LgLf s = · · · = LgL
r−2
f s = 0; LgL

r−1
f s 6= 0 (3.46)

hence s(i) = Li
f s for i = 1, . . . , r −1, and the regularity condition (3.43) is automat-

ically satisfied. For this reason, a direct analogy between the relative degree notion
and the regularity condition of sliding mode can be established. In general terms, it
can be stated that the regularity condition (3.43) means that the relative degree of
system output with respect to the discontinuity is at least r . Similarly, the notion of
r th-order sliding-mode dynamics is analogous to the zero dynamics concept defined
in [27]. The nominal stability of the controlled system can be guaranteed if the sta-
bility of (3.44) holds when y = 0, i.e. when the reduced system ξ̇ = Ψ (y, ξ) with
ξ ∈R

n−r is stable.
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3.4.4 Closing Comments on Higher-Order Sliding Modes in
Control Systems

3.4.4.1 An Observation Regarding the Accuracy of Real Sliding Modes

It is necessary to clarify that when referring to a system operating in sliding mode,
it can be both ideal (nominal) sliding, which takes place when the switching imper-
fections are neglected and the restriction is maintained accurately, or real sliding,
which occurs when the switching imperfections are taken into account. In the latter
case the restriction can be satisfied only approximately.

The “quality” of the control design is related to the sliding accuracy. It is worth
mentioning that in practice, there are no design methods that can ideally maintain
the desired constraint s(x) = 0. Therefore, there is a need to introduce some sort
of comparison between different control systems. Further details and proofs can be
found in [25].

Strictly speaking, any ideal sliding mode should be understood as the limit of
movements when the imperfections disappear and the switching frequency tends to
infinity. Therefore, if ε is taken as a measure of these imperfections, the accuracy of
any sliding-mode control design can be characterised by its asymptotic behaviour
as ε → 0 [29].

For example, to obtain a real sliding mode of order r (with discrete switching), it
is required to satisfy an order r of ideal sliding (at infinite switching frequency). So,
most of the real second-order algorithms come from discretising ideal second-order
algorithms [17, 29].

A special discrete switching algorithm that provides second-order real sliding
was presented in [41]. Another example of a second-order real sliding controller is
the “Drift Algorithm” [29]. Moreover, a real third-order sliding controller that only
uses measures of s has been presented in [3].

3.4.4.2 HOSM Convergence Time

Prior to entering the section devoted to the design of specific Second-Order Sliding-
Mode (SOSM) algorithms, a final general comment concerning the convergence
time is of interest. Convergence in HOSM can be either asymptotic or in finite time.
Examples of asymptotically stable sliding-mode algorithms of arbitrary order are
well known in the literature [24]. On the other hand, fewer examples can be cited
for r-sliding controllers that converge in finite time. For instance, these can be found
for r = 1 (which is trivial), for r = 2 [2, 5, 29] and for r = 3 [24, 31]. Despite the
fact that some arbitrary-order sliding-mode controllers of finite-time convergence
have already been presented [33], its implementation is not yet widespread.
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3.5 Design of Second-Order Sliding-Mode Controllers

3.5.1 Second-Order Sliding Generalised Problem

This final section is focused on the design of SISO second-order sliding-mode con-
trollers, aiming to explain the specific algorithms that will be used in this book.

To this end, consider the uncertain nonlinear system (initially, not necessarily
affine in the control), explicitly defined as

⎧

⎨

⎩

ẋ = F(x,u, t)

s = s(x, t) ∈ R

u = U(x, t) ∈R

(3.47)

with x ∈ R
n, u the single control input, and F and s smooth functions. Note that

in this section the possible direct dependence on t has been explicitly manifested in
system (3.47), in order to better explain the subsequent SOSM design procedure.

As always, the ultimate control objective would be steering the sliding output
s to zero. However, the SOSM approach enables not only that s = 0 and its time
derivative ṡ = 0, but also finite time stabilisation of both, as long as s is of relative
degree 1 or 2 with respect to the control input u. Moreover, in the former case the
physical control action synthesised by the SOSM algorithm is continuous.

The SOSM design procedure depends on the bounds of certain functions that
constitute the second time derivative of the sliding output s. Hence, as a first step,
s is differentiated twice, and the following general expressions are derived:

ṡ = ∂

∂t
s(x, t) + ∂

∂x
s(x, t)F (x,u, t) (3.48)

s̈ = ∂

∂t
ṡ(x, t) + ∂

∂x
ṡ(x, t)F (x,u, t) + ∂

∂u
ṡ(x, t)u̇(t) (3.49)

Then, two different cases will be addressed, depending on the relative degree of
s with respect to input u. Systems with relative degree 1 and relative degree 2 will
be considered, respectively.

Case 1 Systems with relative degree 1.

In relative degree 1 systems, u appears in ṡ, thus in the expression of s̈ the deriva-
tive u̇ is explicitly presented in affine form, as in (3.49). Therefore expression (3.49)
can be given as follows:

s̈ = ϕ(x,u, t) + γ (x,u, t)u̇(t) (3.50)

with ϕ(x,u, t) and γ (x,u, t) uncertain but uniformly bounded functions in a
bounded domain. In order to specify the control problem, the following conditions
must be assumed [29]:
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1. There are bounds Γm and ΓM such that within the region |s(x, t)| < s0 the fol-
lowing inequality holds for all t, x ∈ X , u ∈ U :

0 < Γm ≤ γ (x,u, t) = ∂

∂u
ṡ(x, t) ≤ ΓM (3.51)

The constant s0 defines a region of operation around the sliding manifold, where
the bounds are valid. Note that, eventually, an appropriate control action has to be
included in the controller, in order to attract the system into this validity region.

2. There is also a bound Φ such that, within the region |s(x, t)| < s0,
¯
¯
¯
¯
ϕ(x,u, t) = ∂

∂t
ṡ(x, t) + ∂

∂x
ṡ(x, t).F (x,u, t)

¯
¯
¯
¯
≤ Φ (3.52)

for all t, x ∈ X , u ∈ U .
With these bounds at hand, the following differential inclusion can be proposed

to replace (3.50) [33]:

s̈ ∈ [−Φ,Φ] + [Γm,ΓM ]u̇ (3.53)

This is a very important relation when considering robustness. As it will be
demonstrated in the following subsection, many SOSM controllers ensure finite-
time stabilisation of both s(x, t) = 0 and ṡ(x, t) = 0, not merely for the nominal
original system, but for (3.53). Since inclusion (3.53) does not remember whether
or not the original system (3.47) is perturbed (it will include both cases, as far as
perturbations had been computed into the bounds), then such a controller will be
obviously robust with respect to any perturbation or uncertainty existing in (3.47)
and, consequently, translated to (3.50).

Case 2 Systems with relative degree 2.

In relative degree 2 systems, u is not present in ṡ, hence the derivative u̇ does not
appear in s̈ (i.e. the third term of (3.49) is null), resulting in

s̈ = ∂

∂t
ṡ(x, t) + ∂

∂x
ṡ(x, t)F (x,u, t) (3.54)

In this case, we will limit the analysis to affine in the control nonlinear systems
of the form:

ẋ = F(x,u, t) = f (x, t) + g(x, t)u(t) (3.55)

Therefore, expressions (3.54) and (3.55) can be combined as follows:

s̈ = ϕ0(x, t) + γ 0(x, t)u(t) (3.56)

Once again ϕ0(x, t) and γ 0(x, t) are uncertain but uniformly bounded functions in a
bounded domain.
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Fig. 3.6 System trajectory
on the plane (s, ṡ)

As in the relative degree 1 case, analogous conditions must be assumed:

1. There are bounds Γ 0
m and Γ 0

M such that, within the region |s(x, t)| < s0, the
following inequality holds for all t, x ∈ X , u ∈ U :

0 < Γ 0
m ≤ γ 0(x, t) ≤ Γ 0

M (3.57)

and s0 defines the region of validity around the sliding manifold.
2. There is also a bound Φ 0 such that, within the region |s(x, t)| < s0,

¯
¯ϕ0(x, t)

¯
¯ ≤ Φ 0 (3.58)

for all t, x ∈ X , u ∈ U .
In this case, the following differential inclusion can be proposed to replace (3.56):

s̈ ∈ £−Φ 0,Φ 0¤ + £

Γ 0
m,Γ 0

M

¤

u (3.59)

Robustness considerations similar to the prior case can be established.

3.5.2 Solution of the Control Problem. SOSM Algorithms

There is a wide variety of proposals for second-order sliding-mode controllers that
provide solutions to the aforementioned problem of finite-time convergence and ro-
bust stability. In this section three of the most widely-known algorithms will be
reviewed. Two of them, the Twisting and Sub-Optimal algorithms, are devised for
relative degree 2 systems, and the other one, the Super Twisting algorithm, is for
relative degree 1 systems.

3.5.2.1 Twisting Algorithm

This is one of the first SOSM mode algorithms, and it is primarily intended for
relative degree 2 systems. Once the initialisation phase is elapsed (i.e. the region
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Fig. 3.7 Expanded system

|s| < s0 is reached by using an appropriate extra control action), it generates system
trajectories that encircle the origin of the plane (s, ṡ) an infinite number of times
(Fig. 3.6), converging to it in finite time [29].

Consider system (3.47) under the conditions of Case 2 of Sect. 3.5.1; these are
of relative degree 2 with respect to s and affine in the control form, as in (3.55). Ad-
ditionally, the bounds defined in Case 2, conditions 1 and 2, exist and are available
for the designer. Then, the Twisting algorithm can be written as

u = −r1 sign(s) − r2 sign(ṡ) (3.60)

where r1 and r2 are the controller parameters, to be tuned based on the system
bounds. It will be demonstrated in the sequel that if they simultaneously satisfy the
conditions

r1 > r2 > 0

Γ 0
m(r1 + r2) − Φ 0 > Γ 0

M(r1 − r2) + Φ 0

Γ 0
m(r1 − r2) > Φ 0

(3.61)

then the Twisting controller (3.60) generates a second-order sliding mode that at-
tracts the trajectories of the system to s = ṡ = 0 in finite time [25].

Twisting Adaptation to Relative Degree 1 Systems Prior to proving the con-
vergence of the Twisting algorithm, it would be useful to explain how to apply it to
relative degree 1 systems.

It is rather obvious that algorithms intended for relative degree 2 can straight-
forwardly be adapted for its implementation on relative degree 1 systems. The pro-
cedure would be as simple as to artificially increase the relative degree to 2 by
expanding the system. To this end, an integrator is incorporated prior to input u, and
a new artificial input ν is created (see Fig. 3.7) in accordance with the differential
equation below:

u̇ = ν(t) (3.62)

Now, u has become a new internal state variable (xi = u) of the following ex-
panded system with artificial or auxiliary input ν:

ẋe = Fe(xe, ν, t) = fe(xe, t) + ge(xe, t)ν(t) (3.63)
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with xe = [xT xi]T ∈R
n+1, ν the new input of the expanded system, and Fe, fe and

ge smooth functions.
The expanded system (3.63) is then of relative degree 2 with respect to s and,

consequently, fulfils the conditions required for the design of the Twisting algorithm.
Following the steps previously described, a Twisting SOSM control signal would be
synthesised for the relative degree 2 input:

ν = u̇ = −r1 sign(s) − r2 sign(ṡ) (3.64)

To conclude, it is pertinent to remark on the bounds required for the design. It is
straightforward to infer, according with (3.56), that the expression of s̈ in terms of
the expanded system becomes

s̈ = ϕ0(xe, t) + γ 0(xe, t)ν(t) (3.65)

In turn, if the expression of s̈ of the original system, i.e. the expression for relative
degree 1 systems (3.50), is also written in terms of the expanded system variables,
it results in

s̈ = ϕ(x,u = xi, t) + γ (x,u = xi, t)u̇(t)

= ϕ(x, xi, t) + γ (x, xi, t)ν(t) (3.66)

Comparing (3.65) and (3.66), it can be appreciated that in this case, in which the
relative degree 2 system comes from an artificially expanded relative degree 1 sys-
tem, the functions to be bounded are exactly the same to those of the latter (i.e.
ϕ0(xe, t) = ϕ(x,u, t) and γ 0(xe, t) = γ (x,u, t)). So, in this particular case, this
would allow the use of the same bounds for designing either relative degree 1 or
2 SOSM controllers. In this way, the computations involved in the design procedure
of this type of systems are significantly alleviated.

Proof of Convergence of the Twisting Algorithm Auxiliary System To analyse
the convergence of the algorithm, consider a suitable auxiliary system, namely a
double integrator s̈ = u. This system has been chosen given that it will behave as a
“majorant” of the system under consideration (3.56), i.e. it will give the worst case
for the region of convergence in the phase plane (s, ṡ). Then, controlling the auxil-
iary system with a control law of the Twisting form u = −b1 sign(s) − b2 sign(ṡ),
yields

s̈ = dṡ

dt
= dṡ

ds
ṡ = −b1 sign(s) − b2 sign(ṡ) (3.67)

with constant parameters b1 and b2 satisfying b1 > b2 > 0.
Now, the task in this first stage will be to show that the solutions of (3.67) con-

verge to the origin (ṡ = s = 0) in finite time. This result will be used at the end of
the subsection to prove the convergence of the uncertain system under study.
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Fig. 3.8 Vector field

Analysing the differential equation it can be noticed that

dṡ

ds
=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−b1−b2
ṡ

if s > 0, ṡ > 0
−b1+b2

ṡ
if s > 0, ṡ < 0

b1−b2
ṡ

if s < 0, ṡ > 0
b1+b2

ṡ
if s < 0, ṡ < 0

(3.68)

Then, the system vector field will take the shape shown in Fig. 3.8.
Taking the initial conditions P1 = (0, ṡ0), the solution of (3.67) for the first quad-

rant can be found as follows:
Z ṡ

0
ṡdṡ =

Z s

s1

−(b1 + b2)ds (3.69)

1

2
ṡ2 = (b1 + b2)(s1 − s) (3.70)

⇒ s = s1 − ṡ2

2(b1 + b2)
(3.71)

For the second quadrant, a similar expression can be found:

s = s1 − ṡ2

2(b1 − b2)
(3.72)

Taking two fixed points of this trajectory, P1 = (0, ṡ0) and P2 = (0, ṡ1) (see
Fig. 3.9), it can be concluded that

ṡ2
0 = s12(b1 + b2)

ṡ2
1 = s12(b1 − b2)

(3.73)
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Fig. 3.9 Phase trajectory of
the Twisting algorithm

⇒ |ṡ1|
|ṡ0| =

s

b1 − b2

b1 + b2
= q < 1 (3.74)

Extending this reasoning to the rest of the trajectory, it is verified that the follow-
ing inequality always holds:

|ṡi+1|
|ṡi | = q < 1 (3.75)

Therefore, the algorithm converges to the origin.

Time of Convergence Considering t+1 as the time that takes the auxiliary system
trajectories to go from the point ṡ0 to s1. Integrating Eq. (3.67) in the first quadrant,
it results in

Z ṡ

ṡ0

dṡ =
Z t

0
−(b1 + b2)dt (3.76)

⇒ ṡ(t) = −(b1 + b2)t + ṡ0 (3.77)

Knowing that ṡ(t+1 ) = 0, we get that

t+1 = ṡ0

b1 + b2
(3.78)

The computation of t−1 (time that takes the system to go from s1 to ṡ1) is similar
to the previous step:

ṡ(t) = s1 − ṡ2

2(b1 − b2)
= s1 − [−(b1 − b2)t]2

2(b1 − b2)
= s1 − (b1 − b2)t

2

2
(3.79)
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Taking into account that s(t−1 ) = 0 and using (3.73), we can state that

t−1 =
s

2s1

b1 − b2
=

s

1

(b1 − b2)(b1 + b2)
ṡ0 (3.80)

This means that the time interval t1 of the trajectory ṡ0s1ṡ1 is

t = t+1 + t−1 = ηṡ0 (3.81)

where

η = 1

b1 + b2
+

s

1

(b1 − b2)(b1 + b2)
(3.82)

More generally, we can state that

ti = η|ṡi−1| = ηqi−1ṡ0 (3.83)

So the total convergence time of the auxiliary system is given by

T =
∞
X

i=1

ti =
∞
X

i=1

η|ṡi−1| =
∞
X

i=1

ηqi−1ṡ0 = ηṡ0

1 − q
(3.84)

In the sequel, it will be demonstrated that, with an adequate selection of b1
and b2, the auxiliary system effectively acts as a majorant of (3.56) and (3.84) is
a bound for its convergence time.

Convergence of the Uncertain System Once the convergence of the auxiliary
system has been demonstrated, the last stage consists of using this result to prove
the convergence of the relative degree 2 uncertain system under study.

To this end, reconsider the differential equation

s̈ = ϕ0(x, t) + γ 0(x, t)u (3.85)

with the aforementioned bounds
¯
¯ϕ0(x, t)

¯
¯ ≤ Φ 0, 0 ≤ Γ 0

m ≤ γ 0(x, t) ≤ Γ 0
M (3.86)

and the differential inclusion

s̈ ∈ £−Φ 0,Φ 0¤ + £

Γ 0
m,Γ 0

M

¤

u (3.87)

provided that the solutions of (3.85) are understood in the Filippov sense.
The Twisting law (3.60) with r1 and r2 simultaneously satisfying

r1 > r2 > 0

Γ 0
m(r1 + r2) − Φ 0 > Γ 0

M(r1 − r2) + Φ 0

Γ 0
m(r1 − r2) > Φ 0

(3.88)

is used to control the system.
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Fig. 3.10 Twisting algorithm
and majorant trajectories

Then, to prove that the auxiliary system (3.67) is a majorant for (3.85) controlled
with the Twisting algorithm, the following appropriate selection for constants b1 >

b2 > 0 is proposed:

b1 + b2 = Γ 0
m(r1 + r2) − Φ 0, b1 − b2 = Γ 0

M(r1 − r2) + Φ 0 (3.89)

With this parameter selection, trajectories ṡ0s1ṡ1 and ṡ0sM ṡM in Fig. 3.10 corre-
spond to (3.85) and (3.67), respectively, with common initial conditions s = 0 and
ṡ = ṡ0 > 0 for t = 0.

In particular, ṡ0sM ṡM is the so-called “majorant curve” of the system. One of its
points, P(sp, ṡp), in the first quadrant is considered. If the trajectories of the system
(3.85) pass through this point, controlled by (3.60), the system velocity would have
the coordinates (ṡp, s̈p). Note that the horizontal component of velocity (ṡp) is the
y-coordinate of the point P (positive value).

On the other hand, using the control (3.60) in system (3.87) on the first quadrant,
the following will be fulfilled:

s̈ ∈ £−Φ 0,Φ 0¤ + £

Γ 0
m(−r1 − r2),Γ

0
M(−r1 − r2)

¤

(3.90)

Moreover, due to the fact that inequalities (3.88) hold, the vertical component is
kept within the following limits:

−Φ 0 − Γ 0
M(r1 + r2) ≤ s̈ ≤ Φ 0 − Γ 0

m(r1 + r2) < 0 (3.91)

This implies that the velocity of system (3.85), (3.60) at P(spṡp), will always
“point” to the interior of the region bounded by the axes s = 0, ṡ = 0 and the sur-
rounding curve (3.67), (3.89). Then, the trajectory of system (3.85), (3.60) intersects
the axis ṡ = 0 in a point s1 ≤ sM in finite time t+1 ≤ t+M .
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Considering the trajectories s1ṡ1 and sM ṡM of systems (3.85), (3.60) and (3.67)
in the second quadrant (s ≥ 0, ṡ ≤ 0), a point C(sC, ṡC) where similar properties are
verified can be taken. As it can be inferred from inequality (3.88), in this quadrant
the module of the vertical component of velocity vector (3.85), (3.60) is smaller
than the surrounding system (3.67), while the horizontal component is ṡC :

−Φ 0 − Γ 0
M(r1 − r2) ≤ s̈ ≤ Φ 0 − Γ 0

m(r1 − r2) < 0 (3.92)

This means that the trajectories of system (3.85), (3.60) are inside the surround-
ing system. On the other hand, the time required to cover the vertical segment (0, ṡ1)
is the same, but the surrounding trajectory must also cover the vertical segment
ṡ1, ṡM . This is the reason why t−1 ≤ t−M , where t−1 is the time it takes the system to
cover the trajectory s1ṡ1, and t−M is that for sM ṡM .

Then, the trajectory of system (3.85), (3.60) intersects s = 0 at ṡ1 . Moreover,
|ṡ1| ≤ |ṡM |, and therefore the evolution time of the uncertain system is bounded by
the majorant as t1 ≤ tM .

3.5.2.2 Super Twisting Algorithm

The Super Twisting algorithm, one of the most widely used algorithms of the family,
is particularly intended for systems with relative degree 1 [25, 29]. Highly suitable
for real implementation, with a proper choice of parameters, this algorithm con-
verges in finite time after describing a trajectory similar to the one of the Twisting
algorithm (Fig. 3.11). The most distinctive features of the Super Twisting algorithm
are the aforementioned direct applicability to relative degree 1 systems, the syn-
thesis of continuous control actions and the absence of a measurement of ṡ in the
control law. This makes it more immune to output measurement noise and possible
errors in the estimation of ṡ.

The control action u(t) of the Super Twisting algorithm is composed of two con-
tinuous terms, even though the first one is given by the integral of a discontinuous
action. Once the validity region |s| < s0 is attained, with the help of an appropriate
reaching control action, the Super Twisting control is given by

u(t) = u1(t) + u2(t) (3.93)

with

u̇1(t) = −α sign(s)

u2(t) = −λ|s|ρ sign(s)
(3.94)

where α > 0, λ > 0 and ρ ∈ (0,1/2] are the parameters of the controller. The re-
strictions for their design are based on the bounds defined in Case 1 and conditions 1
and 2 in Sect. 3.5.1. The following are sufficient conditions for convergence in finite



64 3 Fundamentals of Sliding-Mode Control Design

Fig. 3.11 Phase trajectory of
the Super Twisting algorithm

time to the sliding manifold [25, 29]:

α >
Φ

Γm

λ2 >
2

Γ 2
m

(Γmα + Φ)2

(Γmα − Φ)
if ρ = 0.5

(3.95)

Note that if ρ = 1 and α and λ/α are large enough, it can be even proven that
there will be a stable second-order sliding mode. In this case, |s| + |ṡ| would tend
to zero with exponential upper and lower bounds.

Super Twisting Adaptation to Relative Degree 2 Systems In similar way that
an algorithm intended for relative degree 2 can be adapted for its implementation on
relative degree 1 systems, the Super Twisting algorithm can be adapted for applica-
tion to relative degree 2 systems. In this case a differentiator should be incorporated
into the system. This is not at all a specific subject matter of this book, and there-
fore it will not be addressed here. Nevertheless, to give an idea of the procedure,
consider that the artificial input ν is created in this case such that u = ν̇, i.e. dif-
ferentiating the new input instead of integrating it (as it was done in the Twisting
analogous case). Then, substituting ν̇ for u in the expression of s̈ for the relative
degree 2 system (3.55), it would become affine with respect to the derivative of the
input, specifically, the artificial input ν. Displaying that form, the differential inclu-
sion proposed for relative degree 1 is applicable to (3.56), hence the standard Super
Twisting algorithm could be used to synthesise the control signal for the artificial
input ν. The actual implementation method and the proper use of differentiators are
much more elaborate and, as previously stated, far exceed the scope of this book.
The interested reader is strongly encouraged to read the specialised literature on this
topic (e.g., [4, 32]).
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Proof of Convergence of the Super Twisting Algorithm Consider now the con-
trolled process (3.47) with output s of relative degree 1 with respect to u. As was
said, if the control problem satisfies conditions (3.51), (3.52), the system solutions
can be understood in the sense of Filippov, and Eq. (3.50) can be replaced by the
differential inclusion (3.53).

Then, substituting (3.94) into the differential inclusion (3.53), the overall system
performance and the majorant curves that limit the evolution of the system trajec-
tories can be evaluated. Consider the case where |s| < |s0| and the trajectory of the
system is within the first quadrant (s > 0 and ṡ > 0):

s̈ ∈ [−Φ,Φ] + [Γm,ΓM ]¡−λρsρ−1ṡ − α
¢

(3.96)

Due to the fact that in this quadrant ṡ > 0, in order to decrease the value of ṡ and
ensure that the system trajectories cross ṡ = 0, the condition s̈ < 0 must be achieved
in the entire quadrant. The worst possible scenario is when ϕ(x, t) = Φ (maximum
positive value that the vector field ϕ can take) and γ (x, t) = Γm (lower dominance
of control in the system dynamics):

s̈ = Φ + Γm

¡−λρsρ−1ṡ − α
¢

< 0 (3.97)

To keep the sign of s̈ negative, even when λρsρ−1ṡ → 0, the relation Φ −Γmα <

0 must be satisfied. This imposes the first convergence condition of the algorithm:

α >
Φ

Γm

(3.98)

To improve clarity in the analysis, the second convergence condition of the algo-
rithm will be obtained with the help of the following change of notation: s = z1 and
ṡ = z2. Then, the dynamics of the planar system in the first quadrant is given by

½
ż1 = z2

ż2 = ϕ + γ
¡−λρz

ρ−1
1 z2 − α

¢ (3.99)

Considering the worst-case scenario for this quadrant (ϕ = Φ and γ = Γm), sys-
tem (3.99) will have a limit trajectory in the solutions of the following planar system:

½
ż1 = z2

ż2 = Φ + Γm

¡

λρ(−z1)
ρ−1z2 + α

¢ (3.100)

The analytical solutions of this nonlinear system cannot be straightforwardly
found, but numeric tools can be used to predict the solution from an initial condition.
Figure 3.12 presents the results of a numerical evaluation of the limit trajectories of
system (3.99) with a set of parameters arbitrarily chosen as an example (Φ = 10,
Γm = 1, ΓM = 1.7, α = 50, λ = 15 and ρ = 0.5).

The case of slower decrease of s̈ takes place as λρsρ−1ṡ → 0. Thus, in the first
quadrant, the majorant curve is governed by the following expression:

s̈ = Φ − Γmα (3.101)

Integrating successively this equation, the following general expression with ini-
tial conditions (0, ṡ0) can be found, which represent the majorant curve of the sys-
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Fig. 3.12 Example of convergence of the Super Twisting algorithm

tem trajectories in the first quadrant:

s = (ṡ − ṡ0)
2 1

2K
+ (ṡ − ṡ0)

ṡ0

K
(3.102)

with

K = Φ − Γmα < 0 (3.103)

In the example of Fig. 3.12, the external line shows the majorant curve of the
system trajectories (3.99), with the corresponding parameters listed above. It is im-
portant to note that, although the trajectories can be closer to the majorant curve at
certain points, the majorant curve does not represent a possible path of the system,
which would imply λρsρ−1ṡ = 0 for all (s, ṡ).

Using an analogous analysis on the fourth quadrant, similar equations for the
system dynamics can be found:

½
ż1 = z2

ż2 = ϕ + γ
¡

λρ(−z1)
ρ−1z2 + α

¢ (3.104)

In this case, there are no restrictions on the sign of s̈, but it can be known from
the continuity of trajectories that, in the first section, s̈ < 0. Then, from an isocline
analysis, the area where s̈ is zero can be determined. Taking s̈ = 0 in the worst-case
scenario of the quadrant (ϕ = −Φ and γ = Γm), we obtain that

ṡ = −βs1−ρ (3.105)

with

β = Φ + Γmα

Γmλρ
(3.106)
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Therefore, when crossing the curve (3.105), (3.106), the system trajectories will
do it with s̈ = 0, yielding a local minimum at ṡ and a change of sign in s̈ (see
Fig. 3.12). Since in this quadrant ṡ < 0, the function s(x) decreases monotonically.
This ensures an intersection point with the curve (3.105), (3.106). To define a majo-
rant curve of the system, the minimum possible value of ṡ can be analysed, which
is determined by the value taken by (3.105), (3.106) when s = sμ (see Fig. 3.12):

ṡμ = −βs1−ρ
μ = −Φ + Γmα

Γmλρ

µ

− ṡ2
0

2(Φ − Γmα)

¶1−ρ

(3.107)

Finally, to ensure the algorithm convergence to the origin, it is necessary to sat-
isfy that |ṡμ| < |ṡ0|:

|ṡμ|
|ṡ0| = Φ + Γmα

Γmλρ

µ
ṡ2

0

2(Γmα − Φ)

¶1−ρ 1

ṡ0
< 1 (3.108)

If ρ = 0.5, this condition is reduced to

λ2 ≥ 2

Γ 2
m

(Γmα + Φ)2

(Γmα − Φ)
(3.109)

For the case where |s| > s0, a simplified expression similar to (3.102) can be
found, which ensures that the controlled system trajectories arrive at the area |s| < s0
in finite time.

3.5.2.3 Sub-Optimal Algorithm

Similarly to the Twisting algorithm, this SOSM controller is primarily intended for
relative degree 2 systems. It was developed as a Sub-Optimal feedback implemen-
tation of the classical time-optimal control for the uncertain double integrator prob-
lem [2].

In this case, the system trajectories on the plane (s, ṡ) are confined within limit
parabolic arcs that include the origin. So both twisting and leaping behaviours are
possible. A most important feature is that the coordinates of the successive trajectory
intersection with axis s decrease in geometric progression (see Fig. 3.13).

Given that the Sub-Optimal algorithm is a controller primarily intended for rel-
ative degree 2 systems, we consider similar conditions to the ones established for
Twisting algorithm (i.e., conditions of Case 2 of Sect. 3.5.1). Then, once the region
of validity is reached, the Sub-Optimal algorithm is defined by the following control
law:

u = −α(t)U sign(s − βsM)

α(t) =
½

1 if (s − βsM)sM ≥ 0

α∗ if (s − βsM)sM < 0

(3.110)

where α∗ > 1 is the so-called modulation factor, 0 ≤ β < 1 is the anticipation factor,
and U > 0 is the minimum control magnitude. sM corresponds to the last singular
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Fig. 3.13 Phase trajectory of
the Sub-Optimal algorithm

value of the function s, i.e. the last value of s at the time its derivative ṡ reaches
zero (see Fig. 3.13). This value must be refreshed every time ṡ zeroes, thus the Sub-
Optimal algorithm is particularly suitable for plants that incorporate a special device
or software code to detect the singular values (sM ) (i.e. peak detector).

The parameters of the controller, α∗, β and U , should be tuned based on the
bounds defined in conditions 1 and 2 of Case 2, Sect. 3.5.1. The sufficient conditions
for the finite-time convergence and robust stabilisation of the system are

U >
Φ 0

Γ 0
m

α∗ ∈ [1;+∞) ∩
·

Φ 0 + (1 − β)Γ 0
MU

βΓ 0
mU

;+∞
¶ (3.111)

which are known as the dominance condition and the convergence condition, re-
spectively. The former ensures that the control has sufficient authority to affect the
sign of s̈. The latter guarantees the sliding-mode stability and determines the rate
of convergence. A detailed analysis and proof of convergence can be found in [2]
and [5].

Sub-Optimal Algorithm Adaptation to Relative Degree 1 Systems Similarly to
the Twisting algorithm case, the application of the Sub-Optimal algorithm to relative
degree 1 systems can be achieved by artificially increasing the relative degree, with
the incorporation of an integrator prior to the system input u. The procedure to be
followed is exactly the same as that described in the Twisting algorithm Sect. 3.5.2.1.
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3.6 Conclusions

Fundamentals of sliding-mode control have been introduced in this chapter. This
control theory has proven to be capable of successfully dealing with nonlinear sys-
tems, presenting several attractive characteristics. Among them, finite convergence,
system order reduction and robustness against certain disturbances are the most rel-
evant. In this context, the extension known as Higher-Order Sliding Modes adds
chattering reduction to the list of positive features, improving accuracy in realisa-
tion and, in several plants, contributing to extending the service life of the actuators.
These, together with relatively low on-line computational cost, make the HOSM
technique specially suitable for implementation.

To this end, several algorithms have been developed, particularly the Second-
Order Sliding-Mode ones. In this chapter, three of the most widely used SOSM
controllers have been reviewed, namely Twisting, Super Twisting and Sub-Optimal.
There are many others that robustly solve the problem of convergence, each one with
its own advantages and features (e.g., Drift algorithm [18, 29], Global algorithm [5]
and Prescribed convergence law algorithm [29]).

Then, the challenge now is to tackle the specific problem of PEM fuel cell control
and assess the applicability of this control technique, with the objective of enhancing
fuel cell efficiency and increasing their service life. This will be the topic of the next
chapter.
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