
A PRACTICAL APPROACH TO IDENTIFYING AND PRIORITIZING
MODERNIZATION OF LEGACY SYSTEMS

Mauricio Ortiz-Ochoa
Universidad Politécnica Salesiana

Cuenca, Azuay, Ecuador
email: mortizo@ups.edu.ec

Leandro Antonelli
Universidad Nacional de La Plata
La Plata, Buenos Aires, Argentina

email: leandro.antonelli@lifia.info.unlp.edu.ar

Roxana Giandini
Universidad Nacional de La Plata
La Plata, Buenos Aires, Argentina

email: roxana.giandini@lifia.info.unlp.edu.ar

ABSTRACT
Currently, there are information systems that were created
decades ago but are still being used, thus, today such tech-
nology is considered obsolete. In this regard, new require-
ments, changes or improvements are more expensive be-
cause those systems are still playing a significant role in
organizations and therefore need maintenance. This paper
presents a basic process that enables us objectively identi-
fying software assets in the organization, categorize differ-
ent systems as legacy and finally prioritize modernization
through four levels of action called: remove application,
normal maintenance, conditional maintenance and modern-
ization.

KEY WORDS
Software maintenance, Software Reusability, Legacy sys-
tems, Modernization, Prioritizing

1 Introduction

Legacy systems will always be an object of study in soft-
ware engineering [6] [9] [14] [10] [19] [4], since, as it
is proposed Zhang ”today’s best solutions are tomorrow’s
legacy systems” [26].

The modernization of legacy systems has become a
complex and costly decision to be taken in every organi-
zation and that cannot be postponed indefinitely because
”currently, CIOs are struggling with replacing aging sys-
tems” [20].

With regard to organizations, many of them, due to
their lack of knowledge or bad experiences trying to reuse
legacy architectures like SOA systems [3], prefer to mod-
ernize their applications either by rebuilding the system
with new technology development or trying with imple-
mentations in the market that allow them to solve their re-
quirements.

With this background and before opting for an up-
grade, a planning must be first created [16] in order to pro-
vide updated data and detailed characteristics of each of the
services or software systems of the organization.

Then a set of options that can be considered for the
definition of a legacy system are detailed [25]:

• Expert judgment: These are opinions, reports and res-
olutions of professionals who have been consulted on
the subject and who have extensive experience in iden-
tifying legacy systems [20]. These experts may be in-
ternal entities, or external entities related to the orga-
nization through audit engagements.

• Political decisions: The executive branch, operational
plans, rules or regulations specifying the list of soft-
ware applications that must modernize and therefore
can be implicitly considered as legacies.

• Demanding users: Sometimes, modernization deci-
sions can be affected by users who imposed their ac-
tivities related to administrative processes or systems
to have preferential treatment. In theory, this situation
should not exist, but the lack of an adequate guide-
lines for the process of identification of legacy soft-
ware, causes that the decisions based on demanding
user has become a common practice.

• Technical Criteria: This possibility should have ob-
jective criteria that have to be related to inherent prop-
erties to legacy systems.

As shown in the above list, the definition of technical crite-
ria can be considered the best possibility to identify legacy
systems and therefore, how the principal goal of this paper,
we define a basic process that enables us objectively identi-
fying software assets in the organization, categorize differ-
ent systems as legacy and finally prioritize modernization
through four levels of action called: remove application,
normal maintenance, conditional maintenance and mod-
ernization. Moreover, we can determinate what informa-
tion systems can be considered as legacies from the func-
tional or technological point of view [15]. Understanding
by functional point of view the extent to which the func-
tional requirements [13] of the business are fulfilled, while



the technological point of view refers to the degree of ob-
solescence of the technology that was used to design and
implement the information system [7] [17].

This proposal is presented in Figure 1, where a pro-
cess consisting of three sequential activities and work prod-
uct called ”Software systems catalog”.

Figure 1. Process for identification and specification of pri-
orities for modernizing legacy systems.

With respect to related work, our proposal uses the
term portfolio analysis. This approach is used by several
authors[7][23][24]; these authors present specific parame-
ters to assess the technical value and business value.

The advantage of our proposal is the identification
and categorization of software assets of the organization
through a set of generic parameters that can be modified
according to the needs of the organization. Once identi-
fied and classified the software assets, a portfolio analysis
is used.

The rest of the paper is structured as follows: Sec-
tion 2 explains how defining identification parameters of
software assets. Section 3 presents the creation of a Soft-
ware system catalog. Section 4 specify modernization pri-
orities. Section 5 presents a case study that implements the
proposal and Section 6 presents the main conclusions and
future work.

2 Defining Identification parameters

Within the first task to detail, a parameter is considered to
be a variable value that can store a specific characteristic of
an information system. The code assigned to a system, the
detailed description, or version number of tables, may be
regarded as identification parameters.

The main objective of this task is to define a set of
parameters for the objective and uniform identification of
the different information systems of an organization. In this
sense, all the parameters that are defined must be related to
a technology category, as well as to cross categories. Both
categories are contributions trying to formally propose the
empirical experiences of the author.

In Figure 2, the relationship between the parameters
and categories presented is shown by a class diagram [18];
understanding that a parameter must be assigned to a single
cross-category, but may be related to various technology
categories.

2.1 Technological Categories

A technology category is the description of the main plat-
form for implementing a group of systems or applications
[12]. In this way, you can group quickly a set of applica-
tions that have been implemented with the same technol-
ogy.

The modernization project manager must identify the
technology platforms available to the organization and con-
duct a brief classification of the different applications. In
case there is a single application with multiple develop-
ment technologies, it is up to the person in charge to iden-
tify which would be the main development technology. An
example of technology categories defined by the project
manager for the modernization of an organization could
be: COBOL aplications, Foxpro aplications, JSP apli-
cations, Forms-Reports aplications, PHP aplications and
APEX aplications.

While there may be other types of classifications such
as a functional identification by coupling level [14] or re-
sponsible, it is preferred to use technological categories as
first classification, as they can identify easily and quickly
the character of obsolescence of information systems.[11]

2.2 Cross cutting categories

Cross categories refer to the set of parameters or attributes
that a software system possess or can be associated with it.
In this article, four cross categories are arisen:

• Functional Identification: They are independent pa-
rameters of the technological category, which together
allow having an application overview. Within this cat-
egory of parameters: code, name, version, date of pro-
duction, physical location and responsible, etc. can be
found.



Figure 2. Relationship between categories and parameters.

• Software Process: This set of parameters is respon-
sible for the process quality of the software process
that the application has [5]. The software process is
divided into five stages and a discrete value is associ-
ated with each one.

Requirements: This item shows the grade of docu-
mentation for nonfunctional requirements, functional
requirements and business rules.

Design documentation: It can be considered the heart
of the transactional systems as it defines storage struc-
tures of information in database, or displays the fea-
tures of the objects in case it is required.

Development practices: Actually, good development
practices depend on the language or programming lan-
guages defined for application deployment. In this
case, discrete scales can be set mainly with regard to
compression or code readability.

Tests: A suitable test process should consider three
types of tests: unit, functional and non-functional.
The quantitative capacity of managing this process
can be reflected in this section.

Maintenance: This feature quantitatively identifies the
answer the development team has at an incidence (new
requirement, improvement or error) generated by the
system.

• Technical characteristics: At this point, the techno-
logical categories that have been defined become nec-

essary, because the technical characteristics are differ-
ent for each type of application. It means that, the
manager of the modernization project must define the
attributes or suitable technical parameters for each de-
fined technological feature because it is not the same
to identify applications in COBOL than applications
in PHP. For example, in a Forms / Reports applica-
tion, the path of production forms can be considered
as a technical parameter, while for a Java application,
the name of data source would be considered an ade-
quate technical parameter.

• Measuring artifacts: In this category, the parameters
associated with the various artifacts that can be mea-
sured quantitatively and which in turn depend on the
defined technology category are defined. Within this
category, parameters such as number of reports, num-
ber of tables, number of forms, number of packets or
the number of classes may be found.

It is important to remember the need to define a proper and
sufficient identification number of parameters, since they
all together should allow representing each and every one
of the existing applications.

3 Creation of Software systems catalog

Once the categories and identification parameters of dif-
ferent applications are defined, it is time to collect all in-
formation concerning and related to the applications under
consideration.

This section is not intended to give details on how to
collect information from each application, but to show what
information we should collect and how to formalize it in a
way that allows the creation of Software systems catalog.
It should include assessments of each application around
the parameters defined in the first activity of the primary
process.

At this point of the proposal, the basic structure of the
IEEE standards [1] [2] is used as reference for the creation
of a document with four sections as shown in the template
of Figure 3, and establishes a framework for registration
and formalization of different software assets the organiza-
tion possesses.

3.1 Introduction

The first chapter about the catalog should present the main
information concerning the document and at the same time
it must contain: purpose, scope, change control, defini-
tions, acronyms, abbreviations, references, and overview
of each chapter of the document.

3.2 Definition of identification parameters

This chapter about the catalog of software systems must
record all identification parameters defined and organized



Figure 3. Template for the development of software sys-
tems catalog.

according to the technological categories and cross cate-
gories presented in section II of this article. Thus, this sec-
tion should provide the reader all parameters that have been
selected and if possible a justification of their choice.

3.3 Systems Catalog

This chapter is the most extensive since it is where the val-
ues of the different parameters in each and every one of the
applications of the organization must be registered.

Depending on the category, a subsection of technol-
ogy will be created. For example, 3.1 COBOL Applica-
tions, 3.2 Forms / Reports Applications, 3.3 APEX Ap-
plications, etc. Within each subsection, each application
should be recorded with the values corresponding to the
identification parameters associated with the definition pro-
vided in chapter two of the catalog.

In Table I, the data collected from a software applica-
tion with JSF Application technology category + EJB +JPA
is exemplified. In the first column there are the names of
the different parameters grouped into transverse categories
(functional identification, software process, technical char-
acteristics and measuring devices) and on the right the cor-
responding values are shown.

3.4 Appendices

This is an optional section, in which you can record any
information that may provide details for the document in
full.

4 Specify modernization priorities

This is the final activity of the process and involves the
evaluation of each of the applications from the Software
systems catalog. This assessment is based on a quadrant
analysis consisting of two axes: technical value and busi-
ness value.

The quadrant used is initially proposed by Andrew
Sage [23] and it is presented once again in Dedeke
Adenekan’s work [7]. In our proposal, this quadrant is ex-
tended to support hierarchies of values that allow a quanti-
tative measure in setting the priorities for modernization.

4.1 Technical value

The technical value of a software asset can be quantitatively
defined according to a scale of 1 to 5 for each of the follow-
ing parameters:

• Quality characteristics (QC): A system with high
quality features could be modified or functionally ad-
equate to the requirements and business rules.

• Service Reliability (SR): Refers to the continuity of
the service provided by the system. An application
that is continuously in maintenance will have a lower
reliability score.

• Maintenance costs (MC): It involves financial expen-
diture or effort required to keep the system running.
The higher the expenditure, the lower the system
value.

• Degradation factor (DF): This factor depends on the
scale that is set in the organization. Within this scale
we can find the years, licenses costs, additional users
and extensions.

While the degradation factor higher, the system value
is lower.

For the calculation of the technical value, we used the
equation (1):

vt = (QC ∗ SR)/(5 ∗MC ∗DF ) (1)

4.2 Business value

The business value of a software asset can be quantitatively
defined according to a scale of 1 to 5 for each of the follow-
ing parameters:

• Competitive Advantage (CA): The first parameter de-
fines what level of software assets can help in taking
advantage of market opportunities.

• Profitability Impact (PI): This parameter indicates the
maintenance costs within the overall budget.



• Interdependency with other systems (IS): It obeys the
percentage of applications that rely with the system.
This relationship can be functional or for data process-
ing.

• Security (SC): It depends on the robustness of the sys-
tem with respect to different security threats.

For the calculation of the business value, we used the equa-
tion (2)

vb = (CA ∗RI ∗ IS ∗ SC)/4 (2)

4.3 Quadrant analysis

For each software asset, you must calculate the value in
each axis and plot it in the quadrant of Figure 4 [7]. Then,
if a software asset has a high business value and a low tech-
nical value, then you can consider the modernization of the
software asset.

Figure 4. Quadrant analysis of modernization.

Both the technical value and the business value can
generate a quantitative value that allows suggesting deci-
sions regarding:

• Application Removal: These are applications that
have been relegated and it makes no sense to mod-
ernize them. Instead, you should replace or otherwise
dismiss them.

• Normal maintenance: It means that the application
can continue to operate, but with a preventive main-
tenance if necessary.

• Conditional maintenance: These kinds of applications
do not play a crucial activity in the business, but its
high technical value causes them to support new fea-
tures. Maintenance should be conditioned to the ad-
justment of business rules.

• Modernization: Applications in this range will be the
target or priority of a modernization plan as they are
necessary for business applications, but their technical
value makes them to have an obsolescence character.

5 Case study

In this section, the information Systems of Salesian Poly-
technic University are presented as a case study [8] to val-
idate the process called identification and specification of
priorities for modernizing legacy systems.

5.1 Research Methodology

In search of a methodology [22] that allows evidence of
the scientific process in the design of the case study, active
research is intended to influence or change any actual as-
pect of the object of the case study [21]. From this point
of view, the purpose of the case study is the information
systems from Salesian Polytechnic University and the real
change is focused on how to identify legacy systems.

5.2 Case Study Objectives

• Identify the legacy systems of the organization in a
uniform and objective manner.

• Identify legacy systems that must be part of a modern-
ization plan.

5.3 Proposed Solutions

According to the various defined challenges, the proposed
solutions go hand in hand with the implementation of the
identification and specification of priorities for moderniz-
ing legacy systems; it will serve to understand and analyze
the different information systems, since it is necessary to
have a catalog of software systems to identify priorities for
modernizing legacy systems. With this stage, we aim to
fight against the lack of documentation and the complexity
of the structure of the data, since parameters for a compre-
hensive view of the applications will be able to be defined.

5.4 Analysis and presentation of results

It is this section, we analyze the case study and a set of
benefits achieved as a result of the implementation process
and how this implementation has contributed directly to the
management of the Coordination of software development
and other areas of technology from Salesian Polytechnic
University.

• Definition of information systems as legacies: The
definition of a legacy system into the Coordination
of development has been carried out thanks to expert
judgment but this situation has generated biases due



to explicit human intervention decisions. The imple-
mentation of the method in the first stage avoids these
biases in the consideration of a legacy system because
all applications are analyzed with the use of a set of
similar parameters previously specified.

• Catalog software systems: When creating a catalog
that organizes applications according to technological
categories proposed in the case study, it was possible
determine verifiable information which is subject to
exchange controls of all existing applications within
the Coordination of development.

• Specify priorities of modernization: this activity in
the proposed process becomes the key objective to ad-
dress modernization of legacy systems and can be the
basis for the creation of the Plan for Modernization of
information systems from Salesian Polytechnic Uni-
versity.

6 Conclusions

This article describes the process of identification and spec-
ification of priorities for modernizing legacy systems which
defines three main tasks: the first is the definition of iden-
tification parameters, the second is the documentation of
software systems and the third specifies modernization pri-
orities for each previously listed systems.

With regard to the definition of parameters, it is pos-
sible to identify a common set of characteristics that can
be used in gathering all information relating to the systems
has to be analyzed. This collection is the second task of
the overall process and aims to create a catalog of software
systems generated from a technical and objective point of
view. This catalog is linked to common parameters that
avoid the use of other sets of possibilities for identification
as expert judgment, policy decisions or demanding users.

Finally, the identification stage of legacy systems
points to the use of technical value and business value as
a quantitative measure for the prioritization of moderniza-
tion, and suggest decisions regarding: application removal,
normal maintenance performance, conditionally mainte-
nance or modernization of the application.

Future work that can be generated from this article is
the proposal of a process or structure that allows the cre-
ation of a modernization plan. The plan must be based
on legacy systems identified through the implementation
of the process of this article.

References

[1] Iso/iec/ieee 29148:2011 systems and software engi-
neering -life cycle processes- requirements engineer-
ing, 2011.

[2] Iso/iec/ieee 42010:2011 systems and software engi-
neering - architecture description, 2011.

[3] Patricia Bazan, Gabriela Perez, Roxana Giandini,
Elisabet Estevez, and Javier Diaz. Services conceptu-
alization within soa/bpm methodology. In Informat-
ica (CLEI), 2012 XXXVIII Conferencia Latinoameri-
cana En, pages 1–10. IEEE, 2012.

[4] Fevzi Belli. Assuring dependability of software reuse:
An industrial standard. In Software Technologies,
pages 72–83. Springer, 2014.

[5] Pierre Bourque, Richard E Fairley, et al. Guide to the
Software Engineering Body of Knowledge (SWEBOK
(R)): Version 3.0. IEEE Computer Society Press,
2014.

[6] Michael L Brodie and Michael Stonebraker. Migrat-
ing legacy systems: gateways, interfaces & the incre-
mental approach. Morgan Kaufmann Publishers Inc.,
1995.

[7] Adenekan Dedeke. Improving legacy-system sus-
tainability: A systematic approach. IT Professional,
14(1):38–43, 2012.

[8] Jessica Dı́az, Jennifer Pérez, and Juan Garbajosa. A
model for tracing variability from features to product-
line architectures: a case study in smart grids. Re-
quirements Engineering, pages 1–21, 2014.

[9] Gleison S do Nascimento, Cirano Iochpe, Lucineia
Thom, and Manfred Reichert. A method for rewriting
legacy systems using business process management
technology. 2009.

[10] Hugo Gómez. Elaboración de una guı́a para la mi-
gración de sistemas legados oracle form6i hacı́a una
arquitectura multi-capa. 2012.

[11] Arthur Langer. Guide to Software Development: De-
signing and Managing the Life Cycle. Springer Sci-
ence & Business Media, 2012.

[12] Arthur Langer. Legacy systems and integration.
In Guide to Software Development, pages 179–212.
Springer London, 2012.

[13] Pericles Loucopoulos and Vassilios Karakostas. Sys-
tem requirements engineering. McGraw-Hill, Inc.,
1995.

[14] Antonio Massari and Massimo Mecella. Il tratta-
mento dei legacy system. Capitolo 2 del libro Sistemi
informativi, 5, 2002.

[15] Carlos Matos and Reiko Heckel. Migrating legacy
systems to service-oriented architectures. Electronic
Communications of the EASST, 16, 2009.

[16] Mariano Méndez and Fernando Gustavo Tinetti. First
steps towards a tool for legacy systems. In XVII
Congreso Argentino de Ciencias de la Computación,
2011.



[17] T. Mens, Yann-Gaël Guehénéuc, Juan Fernández-
Ramil, and Maja D’Hondt. Guest editors’ introduc-
tion: Software evolution. Software, IEEE, 27(4):22–
25, July 2010.

[18] Mauricio Ortiz and Andrea Plaza. Programación ori-
entada a objetos con Java y UML. Ediciones Univer-
sitarias Universidad Politécnica Salesiana, 2013.

[19] Ricardo Pérez-Castillo, Ignacio Garcı́a-Rodriguez
de Guzmán, Mario Piattini, and Christof Ebert.
Reengineering technologies. IEEE software, (6):13–
17, 2011.

[20] Stacie Petter and Kerry Ward. Countdown to y2gray.
IT Professional, 15(6):49–55, 2013.

[21] Colin Robson. Real world research: A resource
for social scientists and practitioner-researchers, vol-
ume 2. Blackwell Oxford, 2002.

[22] Per Runeson and Martin Höst. Guidelines for con-
ducting and reporting case study research in soft-
ware engineering. Empirical software engineering,
14(2):131–164, 2009.

[23] Andrew Sage. Systems management for informa-
tion technology and software engineering. Wiley-
Interscience, 1995.

[24] Harry M Sneed. Planning the reengineering of legacy
systems. IEEE software, (1):24–34, 1995.

[25] Steven R Walk. Projecting technology change to im-
prove legacy system support strategies. Naval Engi-
neers Journal, 122(3):113–120, 2010.

[26] Zhuo Zhang, Dong-Dai Zhou, Hong-Ji Yang, and
Shao-Chun Zhong. A service composition approach
based on sequence mining for migrating e-learning
legacy system to soa. International Journal of Au-
tomation and Computing, 7(4):584–595, 2010.

PARAMETER VALUE
Code 1.1
Name Socioeconomic Profile
Version Not Available
System National Academic System
Short description Socioeconomic Profile
Detailed description It allows the entry of student’s so-

cioeconomic profile
Production Path services.ups.edu.ec/SDJF
Production Date Monday, January 3RD, 2011
Souerces Path 172.16.1.159/ fuentesaplicaciones/

sercices.ups.edu.ec/ FICHASO-
CIOECONOMICA

Responsible Juan Pérez
Requirements (REQ) 1: There are documents related to

functional requirements as cases of
use or textual descriptions.

Design documenta-
tion (DES)

1: There are documents related to
databases structure level such as an
ER Diagram.

Development prac-
tice (DEV)

1: The code follows regular stan-
dars at a syntatic level but it does
not record te code, it records the
most important business rules.

Testing procedure
(TEST)

2: There is a record through emails
or user’s acceptance letters saying
that the system meets the required
functional characteristics.

Maintenance process
(MAI)

2: Official communication is car-
ried out. It goes through an implicit
process of responsability and prior-
ities assignment.

Application server
path

http://services.ups.edu.ec/
FICHASOCIOECONOMICA

Application server Glassfish Community Edition 3.0.1
Build 22

Database Oracle Standard Edition 11.2.0.4
DataSource JDBC/SDJFPRO
Programming lan-
guage

JAVA, JSF, XHTML, Javascript

JPA Implementation Eclipselink
Packages 5
Pages 5
Entities 0
Beans 1
Controllers 2
Classes 30
Reports 6
Tables 14

Table 1. Identification of a software application


