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By means of Monte Carlo simulations we studied the 
properties of diffusion limited recombination reactions 
(DLRR's) and random walks on two dimensional incipi- 
ent percolation clusters with multifractal jump probabili- 
ties. We claim that, for these kind of geometric and ener- 
getic heterogeneous substrata, the long time behavior 
of the particle density in a D L R R  is determined by a 
random walk exponent. It is also suggested that the ex- 
ploration of a random walk is compact. It is considered 
a general case of intersection in d euclidean dimension 
of a random fractal of dimension DF and a multifractal 
distribution of probabilities of dimensions Dq (q real), 
where the two dimensional incipient percolation clusters 
with multifractal jump probabilities are particular exam- 
ples. We argue that the object formed by this intersection 
is a multifractal of dimensions D'q = Dq + DF--d, for a fi- 
nite interval of q. 

I. Introduction 

Recently, fractals and multifractals [1 a] which appear 
in many physical applications have attracted a growing 
interest (Refs. 1 5 and references cited therein). For ex- 
ample, it is known [-6 and references therein] that the 
surface of most solids at the molecular scale is fractal. 
Consequently, many physico-chemical properties and 
processes related to such systems have to be carefully 
examinated. In this context, diffusion and reaction stu- 
dies on disordered systems have recently been reported 
[-7-123. Major interest arises because a random walk 
on fractal media exhibits anomalous long-time behav- 
ior which implies that the reaction order of a diffusion 
limited recombination reaction (henceforth DLRR) is 
also anomalous in a low concentration regime [9-12] 
and this fact has been experimentally verified [9, 11]. 
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On the other hand, the study of the properties of random 
walks on square lattices with multifractal distribution 
of jumping probabilities [13], which constitutes an inter- 
esting open problem, has recently been initiated. 

The purpose of this work is to study, by means of 
the Monte Carlo simulations, the behavior of random 
walkers and DLRR's  on two dimensional percolation 
clusters with multifractal jump probabilities. These sub- 
strata can be considered as the "intersection" of two 
dimensional incipient percolation clusters (i.e. geometric 
heterogeneous objects) and planar multifractal distribu- 
tions of jumping probabilities (i.e. energetic heteroge- 
neous objects), where the concept of "intersection" has 
to be interpreted in a restricted manner as it is discussed 
in Sect. II. As it is shown in Sect. III, these substrata 
are a new kind of multifractals, called percolation multi- 
fractals (PM), which have a non trivial spatial fractal 
dimension. The PM's combine both geometric and ener- 
getic heterogeneities which are strongly complex and to 
the best of our knowledge, this is the first model intro- 
duced in order to study the diffusion on substrata with 
these properties. Explicitly, our study is mainly focused 
on the computation of random walk exponents and the 
exponent related to the time behaviour of the particle 
density in a D L R R  and to analyse the relation between 
them. Our hope is that this investigation could help in 
the comprehension of complex recombination reactions 
which occur on fractal catalysts with geometric and ener- 
getic heterogeneities. 

It is also presented a conjecture about the set of di- 
mensions of the objects formed by the intersection of 
a random geometric fractal and a multifractal distribu- 
tion of probabilities. 

The paper is organized as follows: In Sect. II it is 
defined the PM model. In Sect. III the theoretical argu- 
ments to obtain the conjecture about the intersection 
of fractals and multifractals are discussed. In Sect. IV 
it is presented the theory about random walkers and 
DLRR's  on multifractal structures. In Sect. V the Monte 
Carlo simulation is described. Finally in Sect. VI the dis- 
cussion of the results and the conclusion are stated. 
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II. The P M  model  

Let us start with the definition of planar multifractals 
which have recently been proposed by Meakin [-1 e, 13] 
and will be used in this work. The multifractal distribu- 
tion of probabilities on square lattices of size L x L, with 
L = 2", are constructed as follows. Four normalized prob- 
abilities Pz (i = 1 . . . .  ,4), are selected. In the first step, these 
probabilities are randomly assigned to the four quad- 
rants of linear size l l=L/2, of the lattice (see Fig. 1). 
In the second step, each quadrant is divided into four 
smaller quadrants of linear size 12 =L/22 (in the m-th 
step, lm=L/2m), and the probability associated to each 
quadrant prior to the division is multiplied by /)1, P2, 
P3 and P4 in random order. This procedure is continued 
and after n-generations each lattice site B is associated 
to a probability #B of the form 

#, = eSl pS2 pS~ pS~, (1) 

with $1 + S: + $3 + $4 = n. In the limit n-~ oo a multifrac- 
tal distribution of probabilities on the two dimensional 
space is obtained (see below). Also, one can assume that 

# , = e x p ( - E , / k T ) ,  (2) 

where EB is the activation energy of diffusion at the site 
B, k the Boltzmann constant and T the temperature. 
Equation (2) is consistent with the jumping probability 
of a random walk defined in Sect. IV (see (29)). 

A multifractal is characterized by an infinite set of 
dimensions Dq (q real) [-3, 5]. For the planar multifractals 
used in this work, these dimensions can be defined by 

22m 
E #q~(lm/L)(q-1)Dq (3)  

S = I  

where the sum runs over all the quadrants S of linear 
size Ira, and/~s is the probability (or measure) associated 
to the S th quadrant. This measure is given by #s = ~ #B, 

B 
where the sum runs over all the sites of the S th quadrant. 
This implies that in the limit lm/L--*O, the number % 
of measures behaving as (for more details see [5]) 

#~( Im/L)  ~, (4) 

scales as 

N~ ,.~ (lm/L)-S(~), (5) 

a b 

P4P1 P4P3 P1P1! P1P2 
P/-. P1 

~1~ P/-.,P2 P4P/-., P1P3 P1P4 

P2P4~ P2F~ P3P2 P3P3 
P2 P3 

P2P2 P2P1 P3P1 P3P4 

I 

Fig. I a, b. An example of construction of a planar multifractal. 
a first step; b second step 

where e = d [ ( q -  1)Dql/dq and f (cQ=qc~-(q-  1)Dq. This 
means that the system consists of pieces with fractal di- 
mension f(~) and power law singularities e. Explicitly, 
in our case, from relation (3) one obtains 

Dq = in (P~ + P~ + P~ + P~) 
(1 - q) In 2 (6) 

The percolation model has been extensively studied (see 
for example [-14-16] and references therein) in the field 
of geometric phase transitions, and its definition and 
properties will neither be presented nor discussed here. 
But let us recall that the incipient percolation cluster 
in two dimensions is a geometric fractal structure with 
fractal dimension Dv=91/48 [17]. Let us stress that, in 
general, for a geometric fractal of dimension DF one can 
assume that #c = const if the site C belongs to a fractal, 
and/~c-- 0 otherwise. Then using the appropriate version 
of relation (3) one obtains Dq = D v for all q. In this sense 
a geometric fractal is a "trivial" multifractal. 

Let us finally define the PM model as the intersection 
of an incipient percolation cluster on a square lattice 
with a planar multifractal of probabilities #B defined 
above. Note that both, the percolation clusters and the 
multifractals are confined in 2 D planes and the intersec- 
tion considered here is restricted to the case where the 
angle 5 between these planes is zero (cases with 6 4=0 
which cause the formation of 1 D objects are not consid- 
ered). So, in the PM model the probabi l i ty/~ associated 
to a site B is given by 

C#~, if the site B belongs 
#~ = to the incipient percolation cluster (7) 

0, otherwise 

where C is the normalization constant obtained by de- 
manding that the following equation holds 

' 1 Y , . =  , (s) 
B 

where the sum runs over all B sites of the square lattice 
(note that ~/~B = 1). 

B 
Let us stress that the explicit value of C does not 

affect at all the jumping probability of random walkers 
(see (29)), but we impose the condition (8) in order to 
deal with normalized probability distributions as used 
in multifractals (as it will be shown in Sect. III, the PM 
is a multifractal in the limit of very large square lattices). 

Due to the intersection, the PM is a structure which 
combines both, the geometric (fractal) heterogeneity of the 
percolation cluster and the energetic heterogeneity 
(see (2)) of the planar multifractal. It can also be thought 
of as a dilute planar multifractal. 

III.  The intersection of  fractals and multifractals 

Let us consider a general case (in which the PM is a 
special one) of intersection, in a space of d euclidean 
dimensions, of a geometric random fractal structure of 



dimension DF with a multifractal (normalized) probabili- 
ty distribution, both with overall linear size R and a 
short cut off r0, where the restricted interpretation of 
the concept of intersection has to be remembered. 

At the scale r, with r o__<r~R (strictly speaking in 
the limit fiR+O), the fractal is composed by (r/R) -DF 
boxes of linear size r and the multifractal has 

N~ ~ (r/R)- :(~) (9) 

boxes of measure 

~~(r/R)=. (10) 

The intersection of two fractal objects of dimensions Dr 
and f respectively, gives a new ffactal of dimension f ' ,  
where [18, 193 

f ,  ~ f + D v - d ,  if f + D v - d > O  (11) 
= (0 ,  otherwise 

Before the intersection, the measures are normalized 

~ N ~ # ~ = I .  (12) 

The intersection is defined following the same procedure 
as in the PM. That is, at the short cut off ro the measure 
#B becomes #~ = Co #B if the box B belongs to the fractal; 
and #~ = 0, otherwise, where C o is the normalization con- 
stant. Consequently, at the scale r > r o one has 

with the same C value for all c(, and the measures #' 
remain normalized 

Z N', #'~. = 1. (14) 

Assuming f +  D r -  d > O, one obtains from (9) and (11) 

N ,  ~ (r /R)  - :' ~ N= (r /R)  ~-  oF, (15) 

and then (see (13)) 

N', #'~, ~ C(r/R) d-~ N~ #,. (16) 

But from (12) and (14) one has 

C~(r/R) ~ (17) 

and finally (see (10) and (13)) 

#'~,~(r/R) ~', a'=c~+Dp-d. (18) 

Let us note that a more detailed analysis (see [5]) shows 
that in the limit r/R -* O, only the term with cr = c2, where 
c2 is obtained from the equality f(c2)=c2, contributes to 
the sum of (12). But the arguments to obtain (18) remain 
valid. 
In summary, from (11) and (18) one has 

f'(c~ + Df--d)= f (cQ+ Dr--d, (19) 
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and from this relation one can obtain the dimensions 
D'q, of the measures #'. In fact [5], as ( q -  1)Oq = q c~-f(cO, 
where q=df/de,  and analogously for the measure #', 
one has (note that q '=  q) 

D'q = Dq + D r -  d. (20) 

In the above discussion, it is assumed that f +  DF--d>  0. 
As usual, small values of f correspond to large values 
of lql, so (20) is only valid for qmin < q < q . . . .  where the 
values qmin and qmax depend on each particular intersec- 
tion. In summary, we claim that in d euclidean dimensions 
the equation (20) holds for the intersection of a random 
geometric fractal of dimension D e with a multifractaI prob- 
ability distribution of dimensions Dq, at least for a finite 
interval of q. In this sense, the intersection gives a new 
rnultifractal structure. 

Let us note that for both, the case q = 0  (D O is the 
fractal dimension of the support of the measures) and 
the case of a trivial multifractal (that is Dq= D, for all 
q), the Eq. (20) is verified because it corresponds to the 
intersection of two fractal objects [18, 19]. 

For the special case of PM's, D'q can be defined 
through (3) but replacing #s by #} (#s = ~ #B, where the 

B 

sum runs over all sites of the S th quadrant). Then 

22rn 

2 #tsq ~ (lm/L)(q - 1 )D~  ( 2 1 )  

s = 1  

but now this relation is only valid in the limit Im/L-*O 
(i.e. in the case of very large lattices, L ~ o o ;  and for 
m---+ o0) .  

The relation (21) can be written as 

22m 

#} exp [(q - 1) In #}] ~ exp [-(q- 1)D'~ In (Im/L)]. (22) 
S = l  

Expanding this relation in the limit q-+l, one obtains 
(remember that due to the normalization ~ #} = 1) 

22m 

#} In #} ~ a' In (lm/L), (23) 
S = I  

where 

t a' = lim D~, (24) 

is the so-called information dimension [3]. On the other 
hand, for a planar multifractal one has (see (6)) 

1 4 

Dq - (1 - q) In 2 In ~' P~ exp [ ( q -  1) In P~3. (25) 
i = 1  

Then 

1 
--4 

cr - lim D - ~ P~ in P~. (26) 
q--*X q ln2 i=1 

Finally, Eq. (20) implies 
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a ' = c r + ~ - 2 ,  (27) 

where a' and a are obtained from (23) and (26) respective- 
ly. For q = 2 one has 

Di = D2 + ~ -  2, (28) 

where D~ and D2 are obtained from (21) and (6) with 
q = 2, respectively. As we will see below (in Sect. VI) the 
Monte Carlo results suggest that (27) and (28) are ful- 
filled. 

IV. Random walkers and recombination reactions 
on multifractal structures 

Meakin [13] has studied the properties of random 
walkers on planar multifractals. According to this work, 
we have assumed that the probability PBc of a random 
walk at the site B with measure/.t~ to jump into a ran- 
domly chosen nearest-neighbour site C with measure #b 
is 

R S#'c/ls if #b < #~ (29) 
Bc =)1 ,  otherwise 

In the computation of the time t only the jumping at- 
tempts to sites with no null measures are considered 
(see (7)). The average number SN of distinct sites visited 
by a random walker after N steps is expected to behave, 
for large N, as 

SN ~ N n, (30) 

where ~1(0<~<1) is the random walk exponent I/ (for 
geometric fractals, q =g/2, for g<2,  where ~ is the spec- 
tral dimension related to the density of states for scalar 
harmonic excitations of the fractal [20, 21]). 

The visitative efficiency e of a random walker is de- 
fined through the derivative of SN with respect to time 

e=dSN/dt. (31) 

For DLRR's between A particles; 

A + A ~ products, (32) 

where the products are removed from the substratum; 
the reaction rate may be written as 

- d p / d  t ,.~ g p2, (33) 

where p is the density of A particles. This relation is 
only rigorous for the two body approximations (i.e. using 
the concept of relative diffusion between two walkers 
[9-11]) and for the substrata used in this work, the valid- 
ity of the above mentioned relation is the first hypothesis. 
Note that t is proportional to the number of jumping 
attempts whereas N is the number of successful jumping 
events. Then, one could assume (the second hypothesis) 
that in average 

N ~ t, (34) 

for large N. Let us stress that in a multifractal the jump- 
ing probability strongly depends on the spatial region 
of the substratum, then the relation (34) is not trivial 
at all (note that for some substrats, N,-~ t ~, with fl=# 1 
[22]). From (30), (31), (33) and (34) one obtains in the 
low density regime (i.e. in the limit t ~ oo) 

p ~ t  -~. (35) 

In summary, the conjecture is that in multifractals the 
diffusion limited recombination reaction exponent tl (35) 
is the same as the random walk exponent 11 (30). 

On the other hand, the behaviour for large N of the 
average square distance R~ from the origin of the walk 
is characterized by the random walk exponent v. That 
is 

R~.,~N 2~. (36) 

Furthermore, as Do is the fractal dimension of the sup- 
port of the measure, one can see that the number of 
points within a region of radius RN behaves, for large 
N, as R~v ~ Then from (36) one gets 

S N ~ N vD~ (37) 

where ZN is the number of accessible sites for a random 
walker after N steps. Now assuming that the random 
walk explores all the accessible space [21, 23] (i.e. SN 
~ ZN), one obtains from (30) and (37) that 

~vDo, if vD o < 1 (38) 
t/= [1, otherwise 

where the case q = 1 means that the number SN of distinct 
sites visited by a random walker cannot exceed the 
number of N steps. This compact exploration assumption 
holds in fractals [21, 23] and it will be analysed for the 
multifractals used in this work. 

V. The Monte Carlo simulation 

Monte Carlo simulations are performed using L x L 
quare lattices with L = 28= 256. The planar multifractals 
are generated by using 

Pi = Qi- 1 Q j -  1 ; i = 1, ..., 4, (39) 
\ j =  1 / 

where Q(0< Q < 1) is a free parameter [13]. For obtain- 
ing PM's only clusters which percolate in both directions 
of the square lattice (i.e. they have both their width and 
their length equal to L) at the critical probability Pc 
= 0.5927 (see for example [24, 25]) are selected. Free (pe- 
riodic) boundary conditions for the random walkers 
(DLRR's, respectively) are used. 

In order to verify the relations (27) and (28), we com- 
puted ~#~ln#}  and ~,/.t} 2 for PM's (see (40) and (41) 
below and Fig. 2). 

For a simple random walk (using the jumping proba- 
bility (29), SN and RN (see (30) and (36)) are computed 
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Fig. 2. Plot of yt and Y2 (In scale) as a function of lm/L=2 " 
(In scale, see (40) and (41)). The data, averaged over 400 samples, 
were obtained for PM's with Q = 0.5 (L = 28= 256) 
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Fig. 3. In-In plot of R~ (o), S N ( I )  and p (A) versus N and t, respec- 
tively; for PM substrata with Q =0.75. The results of R N and S N 
(of p) were obtained averaging over 200 walks (75 simulations), 
a new substratum was generated after 50 walks (15 simulations, 
respectively) and each of these walks starts from different points. 
The straight full line corresponds to q = 0.61 
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Fig. 4. The same as Fig. 3 hut now for Q=0.50. The results of 
RN and S~ (of p) were obtained averaging over 210 walks (40 simula- 
tions) and a new substratum was generated for every 30 walks (10 
simulations, respectively). The straight full line corresponds to 
~/=0.52 

as a funct ion of N and these results are averaged  over  
a large n u m b e r  of  walks (see Figs. 3 and  4). 

T o  s imulate  the D L R R ' s  the sites with no null mea-  
sures are covered by A particles at r andom.  After  tha t  
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the diffusion starts. The  probabi l i ty  of  a r a n d o m l y  se- 
lected A particle to j u m p  into a r a n d o m l y  chosen near-  
es t -ne ighbour  site with a no null measure  is defined as 
for r a n d o m  walkers  (see (29)). W h e n  two A particles are 
at the same subs t r a tum site as a consequence  of the 
jumps ,  bo th  part icles are r emoved  f rom the subs t r a tum 
(successful r ecombina t ion  event). The  t ime t is defined 
as t = 0 . 0 5  M, where M is the n u m b e r  of  j u m p i n g  at- 
t empts  per  particle (i.e. the n u m b e r  of  successful j u m p i n g  
events plus the failed ones). The  densi ty p of  A particles 
against  t (see (35)) is ob ta ined  and  averaged  over  m a n y  
s imulat ion react ions (see Figs. 3 and  4). 

VI. Discussion of the results and conclusion 

VI.1. The a' and D'2 for P M ' s  

Let  us now obta in  D ' ~ = a  ' and  D~ for PM's .  As Im/L 
= 2 -  m, f rom (23) (q = 1) one has 

2 2 m  

Yl = ~ #} In/~} ,-- o-' In 2 -  m, (40) 
S=I 

and f rom (21), (with q = 2) it follows 

2 2 r n  

Y2 - 2 m  Z #s 2~2-m(~  (41) 
S = 1  

In  Fig. 2 we have a plot  of y l  versus l n 2 - "  and  ln-ln 
plot  of  Y2 versus 2 -m for P M ' s  with Q = 0 . 5 .  F o r  this 
case, and  using (6) and  (26)-(28) one obta ins  

o-' -~ 1.536, D~ = 1.300. (42) 

C o m p a r i n g  bo th  Yl and  Y2 with the two s traight  lines 
of  slopes 1.54 and  D ~ - 1  (with D ~ =  1.30) respectively, 
in Fig. 2, one can see that  the M o n t e  Car lo  results are 
in agreement  with (27) and  (28). Then  the relat ion (20) 
is verified for P M ' s  in the limit q ~ 1 and  for q = 2. 

VI.2. The Exponent r I 

Figures  3 and  4 show plots  of  SN versus N and p versus 
t ob ta ined  for P M ' s  with Q = 0 . 7 5  and  Q=0 .50 ,  respec- 
tively. The  slopes of  these curves s t rongly suggest tha t  
the r a n d o m  walk and  the D L R R  exponents  t/ (see (30) 
and  (35)) are the same. This conclusion agrees with the 
results ob ta ined  work ing  with o ther  P M ' s  as well as with 
p lanar  mult i fractals  (see Table  1). 

Based on all these evidences, we claim that for the 
multifractals studied in this work, the random walk expo- 
nent tl (30) and the diffusion limited recombination reaction 
exponent rl (35) are the same. Then,  the s imulat ion of 
D L R R ' s  is an al ternat ive m e t h o d  to ob ta in  the r a n d o m  
walk exponen t  q. Fu r the rmore ,  in D L R R ' s  t/ is related 
to the react ion order  X =  1 + l/t/ [-9-12, 26], which can 
be exper imenta l ly  determined.  



152 

Table 1. The exponents q and v. The error bars are of about 
__+5% (a), + 10% (b), and they do not take into account any possi- 
ble corrections due to finite size effects. For PM substrata, the 
~/values were obtained considering both, random walk and DLRR 
simulation results. For planar multifractals the r/values correspond 
to DLRR simulations only [26]. The square L x L lattice size is 
L=256. ~ and ~' are the values previously published by Meakin 
[13] for random walks, assuming that SN behaves as N r or 
(N/In N) r respectively; and on square lattices of size L = 1024. Note 
the remarkable agreement with the results obtained from DLRR's 
even when the used lattice sizes were different 

Q PM Planar Multifractal 

q 2v t/ r {' 

0.75 0,61 a 0.70 b 0.96 a 0.885 0.985 
0.50 0.52 a 0.52 a 0.79 b 0.769 0.856 
0.25 0.28 b 0.26 b 0.56 b 0.541 0,603 

VI.3. The compact exploration 

Figures 3 and 4 also show plots of R 2 versus N. The 
v exponents obtained fi'om these figures and for the case 
Q =0.25 are presented in Table 1. Let us note that: i) on 
an incipient percolation cluster the visitation is compact 
[-21, 23]; ii)the fractal dimension Do of PM substrata 
is the same as that of the incipient percolation cluster; 
(DF) and iii)the obtained exponents (see (Table 1) for 
MP's (with Q < 1) are smaller than the v value (v = 0.352) 
for the percolation cluster. This implies that for the 
number N of steps, the distance R N travelled by the ran- 
dom walk on a PM structure is smaller than that over 
a percolation cluster. Therefore, one expects that the ex- 
ploration would also be compact on PM substrata. 
Moreover, the results shown in Table 1 agree,, within 
the error bars, with ~ = vD0, and Meakin [133 has shown 
that the visitation is compact on planar multifractals. 

Summing up, from these evidences it seems that the 
compact exploration assumption holds for the multifrac- 
tals studied in this work. 
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