Electronic Supplementary Material (ESI) for New Journal of Chemistry. 1 This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

The role of non-covalent interactions in some 2trifluoromethylchromones in the solid state

Christian David Alcívar León,¹ Gustavo Alberto Echeverría,² Oscar Enrique Piro,² Sonia Elizabeth Ulic,^{3,4*} Jorge Luis Jios,^{5*} Jaime Andrés Pereañez,⁶ Isabel Cristina Henao

Castañeda,⁷ Hiram Pérez⁸

Supporting Information

Experimental details and spectroscopic characterization of compounds 1 - 4.

3-Cyanomethyl-2-trifluoromethylchromone (1). In a round-bottom flask a mixture of 2-bromomethyl-2-trifluoromethylchromone **6** (1.2 g, 3.92 mmol), potassium cyanide (0.3 g, 4.65 mmol) and DMSO (7.0 mL) were stirred at 60 °C for 3 h. The reaction mixture was extracted (4 x 10 mL ethyl acetate) and the organic layer was washed (2 x 10 mL water), dried over Na₂SO₄ and evaporated *in vacuum* to give a brown oil. The product was purified by flash chromatography (hexane/ethyl acetate, 7:3) and the solid recrystallized twice from hot hexane. The white crystalline solid (m.p. 109–112 °C) was suitable for spectroscopic studies. Yield 21 %. ¹H NMR (500 MHz, CDCl₃) δ= 8.20 (d, 1H, H-5, *J*= 8 Hz), 7.81 (t, 1H, H-7, *J*= 7.5 Hz), 7.56 (d, 1H, H-8, *J*= 8.5 Hz), 7.52 (t, 1H, H-6, *J*= 7.5 Hz), 3.80 ppm (s, 2H, CH₂). ¹³C NMR (126 MHz, CDCl₃) δ= 175.4 (C-4), 155.0 (C-8a), 150.5 (q, C-2, *J_{CF}*= 38 Hz), 135.7 (C-7), 127.1 (C-5), 126.3 (C-6), 122.2 (C-4a), 119.1 (q, <u>C</u>F₃, ^{*1*}*J_{CF}*= 277 Hz), 118.4 (C-8), 115.6 (CN), 114.8 (C-3), 12.2 ppm (d, <u>C</u>H₂CN, ^{*4*}*J_{CF}*= 2.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ= -66.5 ppm. MS: m/z (%) = 253 ([M]⁺, 100); 234 ([C₁₂H₆F₂NO₂]⁺, 10); ([C₁₂H₆F₂NO₂]⁺, 10); 184 ([M]⁺-CF₃, 50); 120 ([C₇H₄O₂]⁺, 15); 92 ([C₆H₄O]⁺, 30). *UV-Vis* (methanol): λ_{max}= 204, 221, 245 and 300 nm.

3-Nitromethyl-2-trifluoromethylchromone (2) and 3-Hydroxymethyl-2-trifluoromethylchromone (3). A mixture of 2-bromomethyl-2-trifluoromethylchromone 6 (1.1 g, 3.60 mmol), silver nitrite (1.1 g, 6.95 mmol) and H_2O (20.0 mL) were added in a round-bottom flask and the suspension heated at 60 °C with vigorous stirring for 24 h. The reaction mixture (yellow) was extracted with ethyl acetate (3 x 20 mL), the organic layer was dried over Na₂SO₄, filtered and the solution was brought to dryness in vacuum. The crude product was subjected to flash chromatography (hexane-ethyl acetate 9:1) to give compounds **2** and **3**. Attempts to maximize the yield of **2** by replacing water for other non-nucleophylic solvents failed due to the insolubility of the silver nitrite salt.

Compound **2** (recrystallized from ethanol, m.p. 110–113 °C), yield 11%. ¹H NMR (500 MHz, CDCl₃) δ = 8.23 (dd, 1H, H-5, *J*= 8 and 1.5 Hz), 7.84 (ddd, 1H, H-7, *J*= 8.5, 7 and 1.5 Hz), 7.60 (d, 1H, H-8, *J*= 8.5 Hz), 7.55 (t, 1H, H-6, *J*= 7.5 Hz), 5.64 ppm (br.d, 2H, CH₂, ⁵*J*_{*HF*}= 1 Hz). ¹³C NMR (126 MHz, CDCl₃) δ = 175.7 (C-4), 155.2 (C-8a), 152.9 (q, C-2, ²*J*_{*CF*}= 38 Hz), 135.9 (C-7), 127.3 (C-5), 126.5 (C-6), 122.6 (C-4a), 119.1 (q, CF₃, ¹*J*_{*CF*}= 277 Hz), 118.6 (C-8), 113.7 (C-3), 66.7 ppm (d, CH₂NO₂, ⁴*J*_{*CF*}= 2.5 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ = -65.6 ppm. GC-MS: m/z (%) = 273 ([M]⁺, 0.2); 227 ([M-NO₂], 100); 199 ([C₁₀H₆F₃O]⁺, 10); 120 ([C₇H₄O₂]⁺, 42); 92 ([C₆H₄O]⁺, 75). DIP-EI-MS: m/z (%) = 274 ([M+1]⁺, 83). *UV-Vis* (methanol): λ_{max} = 204, 220, 246 and 302 nm.

Compound **3** (recrystallized from methanol, m.p. 125–126 °C), yield 20 %. ¹H NMR (500 MHz, CDCl₃) δ = 8.19 (dd, 1H, H-5, *J*= 8 and 1.5 Hz), 7.77 (ddd, 1H, H-7, *J*= 8.5, 7 and 1.5 Hz), 7.53 (d, 1H, H-8, *J*= 8.5 Hz, 1H), 7.48 (ddd, 1H, H-6, *J*= 8, 7 and 1.5 Hz), 4.76 (br.s, 2H, CH₂, ⁵*J*_{HF}= 1 Hz), 3.18 ppm (s, 1H, HO). ¹³C NMR (126 MHz, CDCl₃) δ = 179.0 (C-4), 155.2 (C-8a), 149.5 (q, C-2, ²*J*_{CF}= 38 Hz), 135.4 (C-7), 126.6 (C-5), 126.0 (C-6), 123.0 (C-4a), 122.7 (q, C-3, ³*J*_{CF}= 1 Hz), 119.5 (q, CF₃, ¹*J*_{CF}= 277 Hz), 118.5 (C-8), 55.5 ppm (q, CH₂OH, ⁴*J*_{CF}= 3 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ = -64.0 ppm. DIP-EI-MS: m/z (%) = 245 ([M+1]⁺, 62). *UV-Vis* (methanol): λ_{max} = 204, 222, 243 and 303 nm.

3-Aminomethyl-2-trifluoromethylchromone (4). 2-Bromomethyl-2trifluoromethylchromone (0.324 g, 1.1 mmol) was dissolved in absolute ethanol (10.0 mL).

The flask was connected to a vacuum line and ammonia gas (130 Torr, 2.31 mmol) was condensed into the solution. The reaction mixture was stirred at -30 °C for 4 h. The yellow solution was poured into 50 mL of ice-water and the mixture was brought to dryness in vacuum. The crude product was extracted (ethyl acetate 4 x 10 mL), the organic layer was washed, dried over Na₂SO₄ and filtered. The pure product was obtained by selective precipitation of a methanolic solution stored at -20 °C (white dust, m.p. 163–164 °C), yield 30 %. ¹H NMR (500 MHz, CDCl₃) δ = 8.19 (dd, 1H, H-5, *J*= 8 and 1.5 Hz), 7.74 (ddd, 1H, H-7, *J*= 8.5, 7 and 1.5 Hz), 7.50 (d, 1H, H-8, *J*= 8.5 Hz), 7.45 (t, 1H, H-6, *J*= 8 Hz), 3.93 (s, 2H, CH₂), 3.26 ppm (s, < 2H, NH₂). ¹³C NMR (126 MHz, CDCl₃) δ = 177.9 (C-4), 155.1 (C-8a), 149.9 (q, C-2, ²*J_{CF}*= 37 Hz), 135.1 (C-7), 126.4 (C-5), 126.2 (C-6), 122.9 (C-4a), 121.6 (C-3), 119.6 (q, CF₃, ¹*J_{CF}*= 277 Hz), 118.3 (C-8), 42.2 ppm (d, CH₂NH₂, ⁴*J_{CF}*= 2 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ = -64.1 ppm. GC-MS: m/z (%) = 243 ([M]⁺, 12); 242 ([M-H]⁺, 100); 227 ([M-NH₂]⁺, 7); 199 ([M-CO₂]⁺, 2); 121 ([C₇H₅O₂]⁺, 15); 92 ([C₆H₄O]⁺, 10). *UV-Vis* (methanol): λ_{max} = 205, 225, 244 and 305 nm.

Figure S1. A view of molecular structure of compound **1** showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level.

Figure S2. A view of molecular structure of compound **2** showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level.

Figure S3. A view of molecular structure of compound **3** showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level.

Figure S4. A view of the hydrogen-bonding interactions (dashed lines) for compound 5.

Figure S5. A view of the hydrogen-bonding interactions (dashed lines) for compound 6.

Figure S6. Hirshfeld surfaces mapped with electrostatic potential (ESP) showing selected electropositive and electronegative potentials (au).

Figure S7. A view of the π - π stacking and C-O··· π (dashed lines) interactions showing intercentroid and O···Cg1 distances for compound **5**.

Figure S8. A view of the π - π stacking (dashed lines) interactions showing intercentroid distances for compound **6**.

Figure S9 Views of the Hirshfeld surfaces in two orientations for compounds **5** and **6**. The surfaces in column 3 are 180° rotated around the vertical axis of the plot; labels denote hydrogen bonding contacts:1: C-H···O; 2: C-H···F; 4: C=O··· π ; 5: F···F, 6: C-H·· Br.

Compound 5

Figure S10 Hirshfeld surfaces mapped with *shape index* and *curvedness* for compounds **5** and **6**. The surfaces in columns 3 and 4 are 180° rotated around the horizontal axis of the plot.

Figure S11. Fingerprint plots of compounds **5** and **6**. Close contacts are llabelled as (1) $O \cdots H$, (2) $F \cdots H$, (3) $C \cdots H$, (4) $N \cdots H$, (5) $B F \cdots H$, (6) $H \cdots H$, (7) $F \cdots F$ and (8) $C \cdots C$.

Figure S12. Potential energy curve for the torsional angle around ϕ (CC-CCH₂R) of **1 (a), 2 (b), 3 (c)** and **4 (d)**, calculated at the B3LYP/6-311++G(d,p) level of theory.

Figure S13. Infrared spectra of the solid at room temperature (upper trace, KBr pellets) and Raman spectra (lower trace) of 1 (a), 2 (b), 3 (c) and 4 (d).

Figure S14. Experimental (full trace, in methanol) and calculated electronic spectra CPCM/ B3LYP/6-311++G(d,p), dashed and full trace) for **1 - 4** compounds.

Figure S15. Molecular orbitals involved in the electronic transitions of **1**. The energy scale is only qualitative and does not represent the actual energy of the molecular orbitals

Figure S16. Molecular orbitals involved in the electronic transitions of **2**. The energy scale is only qualitative and does not represent the actual energy of the molecular orbitals

Figure S17. Molecular orbitals involved in the electronic transitions of **3**. The energy scale is only qualitative and does not represent the actual energy of the molecular orbitals

Figure S18. Molecular orbitals involved in the electronic transitions of **4**. The energy scale is only qualitative and does not represent the actual energy of the molecular orbitals.

Figure S19: Comparison of experimental and theoretical chemical shifts of 1: (a) 1 H, (b) 13 C; 2: (c) 1 H, (d) 13 C; 3: (e) 1 H, (f); 4: (g) 1 H, (h) 13 C calculated at the B3LYP/6-311+g(2d,p) level of the theory.

Figure S20: a) ¹H and b) ¹³C NMR spectra of 3-cyanomethyl-2-trifluoromethylchromone (1).

Figure S21: a) ¹H and b) ¹³C NMR spectra of 3-nitromethyl-2-trifluoromethylchromone

Figure S22: a) ¹H and b) ¹³C NMR spectra of 3-hydroxymethyl-2-trifluoromethylchromone (3).

Figure S23: a) ¹H and b) ¹³C NMR spectra of 3-aminomethyl-2trifluoromethylchromone. (4).

Figure S24. Docking results between compounds and a snake venom PLA_2 for compound 1 (a) and 2 (b). Blue sphere represents Ca^{2+} . Dotted blue line represents a hydrogen bond.

Parameter	1		2		3		
	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	
r (C5-O2)	1.222(3)	1.223	1.225(6)	1.223	1.231(3)	1.230	
r (C5-C6)	1.468(3)	1.486	1.476(7)	1.485	1.464(4)	1.474	
r (C6-C7)	1.339(3)	1.351	1.497(6)	1.495	1.348(4)	1.350	
<i>r</i> (C6-C11)	1.516(3)	1.519	1.497(6)	1.495	1.508(4)	1.517	
<i>r</i> (C7-O1)	1.345(2)	1.349	1.343(5)	1.345	1.350(3)	1.350	
<i>r</i> (C7-C10)	1.511(3)	1.523	1.525(7)	1.523	1.507(4)	1.526	
<i>r</i> (C12-N)	1.134(3)	1.153					
<i>r</i> (C11-N)			1.514(7)	1.535			
<i>r</i> (N-O3)			1.206(5)	1.218			
<i>r</i> (C11-O3)					1.407(4)	1.418	
∠(C5-C6-C11)	116.70(18)	115.2	116.2(4)	115.5	116.1(3)	116.1	
∠(F1-C10-C7)	111.68(18)	112.7	111.8(4)	110.8	113.43	111.3	
∠(C12-C11-C6)	111.44(18)	112.9					
∠(C6-C11-N)			111.8(4)	113.4			
∠(03-C11-C6)					111.0(3)	111.7	
∠(N-C12-C11)	179.2(3)	179.8					
Φ (O1-C7-C10-F1)	-113.9	-1.4	-115.2	172.9	-47.59	-121.0	
Ф (С5-С6-С11-С12)	-75.44	-101.3					
Ф (C6-C11-C12-N)	-128.4	75.1					
Ф (C5-C6-C11-N)			-82.63	-98.5			
Ф (С5-С6-С11-О3)					-77.75	57.3	

Table S1. Selected experimental (X-ray diffraction) and calculated (B3LYP/6-311++g(d,p)) bond lengths [Å], bond angles [°], and torsion angles [°] a of 1-3.

^aAtom numbering scheme taken from Figures 1 - 3.

Crystallographic Supplementary Information (Tables S2-S13)

=================				=======
C(1)-C(2)	1.384(4)	C(8)-C(4)-C(5)	120.2(2)	
C(1) - C(9)	1.388(3)	C(3)-C(4)-C(5)	121.9(2)	
C(2) - C(3)	1.369(3)	O(2)-C(5)-C(4)	123.7(2)	
C(3)-C(4)	1.405(3)	O(2)-C(5)-C(6)	121.2(2)	
C(4)-C(8)	1.383(3)	C(4)-C(5)-C(6)	115.1(2)	
C(4) - C(5)	1.465(3)	C(7)-C(6)-C(5)	119.0(2)	
C(5)-O(2)	1.222(3)	C(7)-C(6)-C(11)	124.3(2)	
C(5)-C(6)	1.468(3)	C(5)-C(6)-C(11)	116.7(2)	
C(6)-C(7)	1.339(3)	C(6)-C(7)-O(1)	125.6(2)	
C(6)-C(11)	1.516(3)	C(6)-C(7)-C(10)	124.4(2)	
C(7)-O(1)	1.345(2)	O(1)-C(7)-C(10)	110.0(2)	
C(7)-C(10)	1.511(3)	O(1)-C(8)-C(4)	121.5(2)	
C(8)-O(1)	1.381(2)	O(1)-C(8)-C(9)	115.7(2)	
C(8)-C(9)	1.383(3)	C(4)-C(8)-C(9)	122.9(2)	
C(10)-F(3)	1.322(3)	C(8)-C(9)-C(1)	117.7(2)	
C(10)-F(1)	1.323(3)	F(3)-C(10)-F(1)	106.9(2)	
C(10)-F(2)	1.324(3)	F(3)-C(10)-F(2)	107.4(2)	
C(11)-C(12)	1.463(3)	F(1)-C(10)-F(2)	107.1(2)	
C(12)-N	1.134(3)	F(3)-C(10)-C(7)	112.5(2)	
		F(1)-C(10)-C(7)	111.7(2)	
C(2)-C(1)-C(9)	120.6(2)	F(2)-C(10)-C(7)	111.0(2)	
C(3)-C(2)-C(1)	120.8(2)	C(12)-C(11)-C(6)	111.4(2)	
C(2)-C(3)-C(4)	120.0(2)	N-C(12)-C(11)	179.2(3)	
C(8)-C(4)-C(3)	117.9(2)	C(7)-O(1)-C(8)	118.5(2)	

Table S2.	Bond lengths	[Å] and a	angles [°] in 1 .	

Table S3. Bond lengths [Å] and angles [°] in 2.

=======================================	=======================================		==================
C(1)-C(9)	1.378(8)	C(9)-C(1)-C(2)	121.0(5)
C(1)-C(2)	1.393(9)	C(3)-C(2)-C(1)	120.0(5)
C(2)-C(3)	1.361(8)	C(2)-C(3)-C(4)	120.9(5)
C(3)-C(4)	1.403(7)	C(8)-C(4)-C(3)	117.4(4)
C(4)-C(8)	1.387(7)	C(8)-C(4)-C(5)	120.3(4)
C(4)-C(5)	1.461(7)	C(3)-C(4)-C(5)	122.4(5)
C(5)-O(2)	1.224(6)	O(2)-C(5)-C(4)	123.4(5)
C(5)-C(6)	1.476(7)	O(2)-C(5)-C(6)	122.0(4)
C(6)-C(7)	1.324(6)	C(4)-C(5)-C(6)	114.6(4)
C(6)-C(11)	1.497(6)	C(7)-C(6)-C(5)	119.9(4)
C(7)-O(1)	1.342(5)	C(7)-C(6)-C(11)	123.9(4)
C(7)-C(10)	1.523(7)	C(5)-C(6)-C(11)	116.2(4)
C(8)-C(9)	1.382(6)	C(6)-C(7)-O(1)	125.2(4)
C(8)-O(1)	1.388(5)	C(6)-C(7)-C(10)	125.3(4)
C(10)-F(3)	1.292(6)	O(1)-C(7)-C(10)	109.4(4)
C(10)-F(1)	1.309(6)	C(9)-C(8)-C(4)	122.9(4)
C(10)-F(2)	1.327(6)	C(9)-C(8)-O(1)	116.2(4)
C(11)-N	1.515(6)	C(4)-C(8)-O(1)	121.0(4)
N-O(3)	1.206(5)	C(1)-C(9)-C(8)	117.8(5)
N-O(4)	1.215(5)	F(3)-C(10)-F(1)	108.1(5)

F(3)-C(10)-F(2)	107.0(5)
F(1)-C(10)-F(2)	107.3(5)
F(3)-C(10)-C(7)	112.6(4)
F(1)-C(10)-C(7)	111.9(4)
F(2)-C(10)-C(7)	109.7(4)
C(6)-C(11)-N	111.8(4)
O(3)-N-O(4)	123.6(5)
O(3)-N-C(11)	120.0(4)
O(4)-N-C(11)	116.4(4)
C(7)-O(1)-C(8)	118.9(4)

	=============	
C(1)- $C(9)$	1 368(4)	
C(1)-C(2)	1.394(5)	
C(2)-C(3)	1.368(4)	
C(3)-C(4)	1.000(4)	
C(4)-C(8)	1.303(3)	
C(4) = C(5)	1.000(0)	
C(5) O(2)	1.733(3)	
C(5) - C(2)	1.231(3)	
C(6)-C(7)	1 3/8(3)	
C(0)-C(11)	1.540(3)	
C(0) = C(11)	1.300(3)	
C(7)- $C(10)$	1.545(3)	
C(8)-O(1)	1 369(3)	
C(8)- $C(9)$	1.394(3)	
C(10)-F(3B)	1 248(6)	
C(10)-F(2A)	1 283(6)	
C(10)-F(3C)	1 266(9)	
C(10)-F(1D)	1 291(6)	
C(10)-F(1A)	1 302(6)	
C(10)-F(2D)	1.324(6)	
C(10)-F(1B)	1.333(7)	
C(10)-F(2C)	1.354(9)	
C(10)-F(2B)	1.423(6)	
C(10)-F(3A)	1.425(6)	
C(10)-F(1C)	1.418(8)	
C(10)-F(3D)	1.434(6)	
C(11)-O(3)	1.407(3)	
C(9)-C(1)-C(2)	121.0(2)	
C(3)-C(2)-C(1)	120.4(3)	
C(2)-C(3)-C(4)	120.1(3)	
C(8)-C(4)-C(3)	118.4(2)	
C(8)-C(4)-C(5)	119.4(2)	
C(3)-C(4)-C(5)	122.2(2)	
O(2)-C(5)-C(4)	123.2(2)	
O(2)-C(5)-C(6)	120.3(2)	
C(4)-C(5)-C(6)	116.5(2)	
C(7)-C(6)-C(5)	118.3(2)	
C(7)-C(6)-C(11)	125.5(2)	
C(5)-C(6)-C(11)	116.1(2)	
C(6)-C(7)-O(1)	125.1(2)	
C(6)-C(7)-C(10)	126.3(2)	
O(1)-C(7)-C(10)	108.5(2)	
O(1)-C(8)-C(4)	121.5(2)	
O(1)-O(8)-O(9)	116.9(2)	
C(4) - C(8) - C(9)	121.6(2)	
U(1)-U(9)-U(8)	118.5(3)	
F(2A)-C(1U)-F(1A)	110.7(5)	
F(1D)-G(10)-F(2D)	109.0(5)	
F(3B)-C(10)-F(1B)	110.7(6)	
F(3C)-C(10)-F(2C)	109.3(8)	
F(3B)-C(10)-F(2B)	106.2(5)	

 Table S4. Bond lengths [Å] and angles [°] in 3.

F(1B)-C(10)-F(2B)	104.7(5)
F(2A)-C(10)-F(3A)	107.8(5)
F(1A)-C(10)-F(3A)	105.1(4)
F(3C)-C(10)-F(1C)	101.9(7)
F(2C)-C(10)-F(1C)	101.8(7)
F(1D)-C(10)-F(3D)	106.8(6)
F(2D)-C(10)-F(3D)	103.1(5)
O(3)-C(11)-C(6)	111.0(2)
C(7)-O(1)-C(8)	119.1(2)

Table S5. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for **1**. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

Atom	x	У	Z	U(eq)	
C(1)	5226(4)	6169(1)	8591(3)	64(1)	
C(2)	3615(4)	6326(1)	8910(3)	67(1)	
C(3)	2143(3)	5873(1)	8502(3)	60(1)	
C(4)	2257(3)	5238(1)	7751(3)	48(1)	
C(5)	704(3)	4742(1)	7263(3)	53(1)	
C(6)	1100(3)	4088(1)	6608(3)	48(1)	
C(7)	2753(3)	4006(1)	6410(3)	47(1)	
C(8)	3891(3)	5093(1)	7463(3)	47(1)	
C(9)	5393(3)	5545(1)	7868(3)	58(1)	
C(10)	3332(3)	3363(1)	5738(3)	59(1)	
C(11)	-448(3)	3553(1)	6147(3)	56(1)	
C(12)	-484(3)	3255(1)	7838(3)	57(1)	
N	-511(3)	3017(1)	9142(3)	80(1)	
O(1)	4127(2)	4477(1)	6757(2)	52(1)	
O(2)	-824(2)	4850(1)	7380(3)	77(1)	
F(1)	2186(2)	3229(1)	3984(2)	82(1)	
F(2)	3248(2)	2839(1)	6750(2)	86(1)	
F(3)	5102(2)	3391(1)	5828(3)	92(1)	

Table S6. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for **2**.

Atom	х	У	Z	U(eq)	
C(1)	3626(7)	3907(3)	4883(8)	81(2)	
C(2)	3967(8)	3753(3)	3275(9)	85(2)	
C(3)	3535(6)	4199(3)	1866(7)	75(1)	
C(4)	2740(6)	4815(2)	2004(6)	64(1)	
C(5)	2233(6)	5300(3)	509(6)	66(1)	
C(6)	1536(6)	5937(2)	953(6)́	61(1)	

C(7)	1317(6)	6016(2)	2565(6)	63(1)	
C(8)	2414(6)	4949(2)	3624(6)	61(1)	
C(9)	2849(7)	4507(3)	5079(6)	72(1)	
C(10)	587(8)	6640(2)	3189(7)	74(1)	
C(11)	1107(7)	6461(3)	-503(7)	70(1)	
N	2875(6)	6831(2)	-441(5)	69(1)	
O(1)	1660(4)	5552(2)	3882(4)	67(1)	
O(2)	2360(6)	5194(2)	-1001(5)	87(1)	
O(3)	4399(5)	6670(2)	648(5)	85(1)	
O(4)	2652(7)	7282(2)	-1536(6)	108(2)	
F(1)	-1160(5)	6775(2)	2139(6)	118(2)	
F(2)	1647(6)	7153(2)	3093(7)	121(2)	
F(3)	656(7)	6604(2)	4878(5)	118(2)	

Table	S7 .	Atomic	coordinates	(x	10 ⁴)	and	equivalent	isotropic	displacemen
parame	eters	(Å ² x 10	³) for 3 .						

Atom	x	у	z	U(eq)
C(1)	-4128(6)	3145(2)	7022(2)	70(1)
C(2)	-4230(6)	2927(2)	6034(2)	69(1)
C(3)	-2530(5)	2289(2)	5709(2)	60(1)
C(4)	-677(4)	1847(1)	6370(2)	48(1)
C(5)	1132(4)	1152(1)	6063(2)	49(1)
C(6)	2855(4)	716(1)	6837(2)	47(1)
C(7)	2711(4)	998(1)	7764(2)	50(1)
C(8)	-609(4)	2079(1)	7353(2)	49(1)
C(9)	-2334(5)	2730(2)	7686(2)	61(1)
C(10)	4165(5)	601(2)	8665(2)	62(1)
C(11)	4534(5)	-54(2)	6525(2)	60(1)
O(1)	1126(3)	1669(1)	8040(1)	55(1)
O(2)	1215(4)	917(1)	5207(1)	67(1)
O(3)	2827(5)	-794(1)	6388(1)	68(1)
F(1A)	4390(20)	1129(5)	9408(5)	70(2)
F(2A)	2957(15)	-108(6)	8895(7)	62(2)
F(3A)	6970(10)	396(6)	8461(4)	56(2)
F(1C)	2250(20)	537(11)	9408(7)	62(3)
F(2C)	5000(40)	-235(7)	8580(7)	75(3)
F(3C)	6130(30)	1040(9)	9085(8)	69(3)
F(1B)	3120(30)	882(7)	9487(5)	69(2)
F(2B)	3610(20)	-307(4)	8647(6)	55(2)
F(3B)	6766(13)	680(7)	8710(7)	57(2)
F(1D)	2453(15)	204(9)	9203(8)	68(2)
F(2D)	6350(20)	93(7)	8549(5)	70(2)
F(3D)	5350(20)	1308(4)	9235(5)	61(2)

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C(1)	68(1)	54(1)	65(1)	0(1)	22(1)	-12(1)	<u> </u>
C(2)	82(2)	50(1)	64(1)	-8(1)	24(1)	1(1)	
C(3)	62(1)	58(1)	60(1)	-5(1)	25(1)	6(1)	
C(4)	50(1)	46(1)	49(1)	3(1)	20(1)	5(1)	
C(5)	47(1)	59(1)	56(1)	1(1)	24(1)	6(1)	
C(6)	45(1)	50(1)	49(1)	1(1)	19(1)	-2(1)	
C(7)	45(1)	46(1)	51(1)	2(1)	21(1)	1(1)	
C(8)	49(1)	45(1)	49(1)	4(1)	20(1)	4(1)	
C(9)	54(1)	56(1)	64(1)	2(1)	25(1)	-3(1)	
C(10)	59(1)	51(1)	74(1)	-5(1)	34(1)	-3(1)	
C(11)	49(1)	60(1)	60(1)	-1(1)	25(1)	-5(1)	
C(12)	53(1)	49(1)	74(1)	3(1)	31(1)	1(1)	
N	91(2)	72(1)	91(2)	18(1)	51(1)	11(1)	
O(1)	48(1)	46(1)	67(1)	-2(1)	29(1)	-1(1)	
O(2)	58(1)	77(1)	108(1)	-14(1)	47(1)	3(1)	
F(1)	90(1)	84(1)	77(1)	-25(1)	39(1)	-1(1)	
F(2)	115(1)	47(1)	108(1)	11(1)	56(1)	9(1)	
F(3)	67(1) [´]	72(1)	153(2)	-24(1)	61(1)	2(1)	

Table S8. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **1**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2hk a^{*b^*U^{12}}$]. To be deposited.

Table 33. Anisoliopic displacement barameters ($A^- X = V^{\circ}$) for Z . To be deposit	displacement parameters ($Å^2 \times 10^3$) for 2 . To be deposited
--	--

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C(1)	72(3)	68(3)	82(3)	10(3)	3(2)	-5(2)	
C(2)	71(3)	64(3)	101(4)	-5(3)	7(3)	2(2)	
C(3)	63(3)	74(3)	77(3)	-13(2)	12(2)	0(2)	
C(4)	57(2)	62(3)	61(3)	-10(2)	6(2)	-8(2)	
C(5)	58(2)	77(3)	55(3)	-3(2)	10(2)	-8(2)	
C(6)	54(2)	63(2)	56(2)	-3(2)	9(2)	0(2)	
C(7)	63(2)	60(2)	57(2)	-5(2)	9(2)	-2(2)	
C(8)	58(2)	59(2)	57(3)	-6(2)	9(2)	-6(2)	
C(9)	69(3)	74(3)	63(3)	0(2)	12(2)	-6(2)	
C(10)	86(3)	69(3)	69(3)	-8(2)	30(2)	3(2)	
C(11)	63(3)	73(3)	67(3)	5(2)	15(2)	-1(2)	
N	75(2)	65(2)	62(2)	-1(2)	19(2)	0(2)	
O(1)	74(2)	63(2)	58(2)	-7(1)	18(1)	0(1)	
O(2)	103(3)	103(3)	56(2)	-4(2)	27(2)	6(2)	
O(3)	64(2)	96(3)	89(3)	6(2)	21(2)	-2(2)	
O(4)	119(4)	92(3)	97(3)	29(2)	19(2)	-14(2)	
F(1)	86(2)	129(3)	126(3)	-15(2)	23(2)	29(2)	
F(2)	136(3)	64(2)	178(4)	-15(2)	75(3)	-14(2)	
F(3)	183(4)	94(3)	90(2)	-13(2)	64(3)	18(3)	

Atom	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C(1)	63(2)	47(1)	101(2)	-4(1)	13(1)	5(1)	
C(2)	63(2)	56(1)	88(2)	11(1)	-2(1)	6(1)	
C(3)	59(1)	57(1)	62(1)	8(1)	-2(1)	0(1)	
C(4)	47(1)	45(1)	53(1)	2(1)	5(1)	-5(1)	
C(5)	49(1)	51(1)	47(1)	-2(1)	5(1)	-5(1)	
C(6)	44(1)	49(1)	49(1)	-1(1)	3(1)	-3(1)	
C(7)	48(1)	50(1)	52(1)	-3(1)	4(1)	-3(1)	
C(8)	48(1)	44(1)	56(1)	-2(1)	6(1)	-6(1)	
C(9)	63(1)	49(1)	71(2)	-11(1)	14(1)	-3(1)	
C(10)	66(1)	70(2)	51(1)	0(1)	-1(1)	1(1)	
C(11)	59(1)	61(1)	59(1)	-7(1)	1(1)	9(1)	
O(1)	62(1)	55(1)	47(1)	-7(1)	3(1)	2(1)	
O(2)	76(1)	78(1)	46(1)	-8(1)	1(1)	9(1)	
O(3)	90(1)	51(1)	62(1)	-1(1)	-10(1)	5(1)	

Table S10. Anisotropic displacement parameters ($Å^2 \times 10^3$) for **3**. To be deposited.

Table S11. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for **1**.

Atom	х	У	Z	U(eq)	
H(1)	6250(40)	6477(14)	8810(30)	70(7)	
H(2)	3520(40)	6740(14)	9390(30)	77(8)	
H(3)	970(40)	5945(13)	8740(30)	73(7)	
H(9)	6530(30)	5406(12)	7710(30)	60(6)	
H(11A)	-310(40)	3193(15)	5300(40)	83(8)	
H(11B)	-1660(40)	3780(12)	5520(30)	68(7)	

Table S12. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for **2**.

Atom	х	у	Z	U(eq)	
	20272601	594007			
п(т) Н(2)	44893346	3162102			
H(3)	37714093	79890			
H(9)	26254611	615586			
H(11A)	2046772	-33084			
H(11B)	5296259	-170984			

Atom	X	у	Z	U(eq)	
Н	1390(80)	-720(20)	5900(30)	102(12)	
H(1)	-5350(70)	3560(20)	7260(20)	85(9)	
H(2)	-5380(70)	3230(20)	5570(20)	77(9)	
H(3)	-2610(60)	2123(19)	5000(20)	71(8)	
H(9)	-2250(60)	2870(19)	8350(20)	66(8)	
H(11A)	6070(70)	-220(20)	7050(20)	76(8)	
H(11B)	5470(60)	92(18)	5900(20)	64(8)	

Table S13. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for **3**.

Table S14. Lattice energies (kJ mol⁻¹) partitioned into coulombic (E_{coul}), polarization (E_{pol}), dispersion (E_{disp}) and repulsion (E_{rep}) components for **1–3**, **5** and **6**.

Compound	\pmb{E}_{coul}	E_{pol}	\pmb{E}_{disp}	\pmb{E}_{rep}	E _{TOT}
1	-44.6	-14.3	-95.2	55.2	-98.8
2	-39.5	-11.8	-95.5	51.0	-95.8
3	-61.2	-22.1	-97.1	81.0	-99.5
5	-31.3	-10.6	-97.7	57.0	-82.6
6	-33.0	-10.1	-101.6	53.2	-91.5

Rings i-j ^a	Rc♭	<i>R</i> 1v ^c	R2v ^d	СС ^е	βf	γ ^g	symmetry
Compound 1							
Cg(1)Cg(2)	3.7337(5)	3.4907(5)	3.5016(5)	2.00	20.3	20.8	1-x, -y, 1-z
Cg(2)Cg(1)	3.7337(5)	3.5016(5)	3.4907(5)	2.00	20.8	20.3	1-x, -y, 1-z
Cg(2)Cg(2)	3.8974(5)	3.5104(5)	3.5104(5)	2.03	28.3	27.0	1-x, -y, 1-z
Compound 2							
Cg(2)Cg(2)	3.9190(3)	3.4756(3)	3.4756(3)	0.00	27.5	27.5	-x, -y, 1-z
Cg(1)Cg(2)	3.9893(3)	3.4453(3)	3.4750(3)	2.00	29.4	30.3	-x, -y, 1-z
Cg(2)Cg(1)	3.9893(3)	3.4750(3)	3.4453(3)	2.00	30.3	29.4	-x, -y, 1-z
Compound 3							
Cg(1) ··Cg(2)	3.5995(2)	3.4739(2)	3.5090(2)	2.00	12.9	15.2	1+x, y, z
Cg(2)Cg(1)	3.5995(2)	3.5090(2)	3.4739(2)	2.00	15.2	12.9	-1+x, y, z
Compound 5							
Cg(1) ··Cg(1)	3.9083(3)	3.4565(3)	3.4565(3)	0.00	27.8	27.8	1-x, 1-y, 1-z
Cg(1)Cg(2)	3.5710(3)	3.4744(3)	3.4997(3)	2.00	11.5	13.4	1-x, 1-y, 1-z
Cg(2)Cg(1)	3.5710(3)	3.4997(3)	3.4744(3)	2.00	13.4	11.5	1-x, 1-y, 1-z
Compound 6							
Cg(1) ··Cg(1)	3.7050(2)	3.4551(2)	3.4551(2)	0.00	21.2	21.2	2-x, -y, 1-z
Cg(1)Cg(2)	3.7944(2)	3.5241(2)	3.5455(2)	2.00	20.9	21.8	2-x, -y, -z
Cg(1)Cg(2)	3.7869(2)	3.4742(2)	3.4928(2)	2.00	22.7	23.4	2-x, -y, 1-z
Cg(2) ··Cg(1)	3.7944(2)	3.5455(2)	3.5241(2)	2.00	21.8	20.9	2-x, -y, -z
Cg(2) ··Cg(1)	3.7869(2)	3.4928(2)	3.4742(2)	2.00	23.4	22.7	2-x, -y, 1-z
Cg(2) ··Cg(2)	3.7268(2)	3.5406(2)	3.5406(2)	0.00	18.2	18.2	2-x, -y, -z

Table S15. Geometrical parameters for the π -stacking moieties involved in the $\pi \cdots \pi$ interactions for compounds **1-3**, **5** and **6** (Å, °).

^aCg(1) and Cg(2) are the centroids of O1/C4-C8 and C1-C4/C8-C9 rings, respectively. ^b Centroid distance between ring i and ring j. ^c Vertical distance from ring centroid i to ring j. ^d Vertical distance from ring centroid j to ring i. ^e Dihedral angle between mean planes i and j. ^f Angle between the centroid vector Cg(i) \cdot Cg(j) and the normal to the plane (i). ^g Angle between the centroid vector Cg(i) \cdot Cg(j) and the plane (j).

Table	S16.	Hirshfeld	contact	surfaces	C _{XY} (%)*,	proportior	ו of	chemical	type	on	the
molecu	ılar su	rface Sx (%	%) and ra	andom cor	ntacts R _{XY}	(%) of the	main	intermole	cular	conta	acts
for con	npoun	ds 1-3, 5 a	nd 6 .								

Contact C _{XY}	1	2	3	5	6
С…Н	14.6	11.7	10.7	12.0	7.7
N···H	16.2	0.8	-	-	-
О∙∙∙Н	11.4	35.3	23.4	11.9	13.6
F···H	28.4	24.0	21.0	39.9	28.1
Br∙∙∙H	-	-	-	-	13.2
С…С	6.1	4.8	6.9	6.9	9.9
С…О	4.8	5.2	1.6	7.0	3.1
Surface Sx					
Н	40.2	38.2	47.1	48.8	41.2
С	17.6	13.7	15.5	16.8	15.6
Ν	10.5	0.7	-	-	-
0	10.0	22.5	14.2	11.2	10.0
F	21.8	21.2	21.7	23.0	21.9
Br	-	-	-	-	11.4
Random contac	cts R _{XY}				
С…н	14.1	10.4	14.5	16.5	12.9
N···H	8.4	0.5	-	-	-
О∙∙∙Н	8.0	17.2	13.4	10.9	8.2
F···H	17.5	16.2	20.4	22.4	18.0
Br∙∙∙H	-	-	-	-	9.4
С…С	3.1	1.9	2.4	2.9	2.4
С…О	3.5	6.1	4.4	3.8	3.1

*Data obtained from CrystalExplorer3.0, including reciprocal contacts.

Interaction	1	2	3	5	6
С…Н	1.03	1.13	0.74	0.73	0.60
N···H	1.93	/	-	-	-
О∙∙∙Н	1.43	2.05	1.75	1.09	1.66
F···H	1.62	1.48	1.03	1.78	1.56
Br∙∙∙H	-	-	-	-	1.40
С…С	1.98	2.58	2.89	2.41	4.07
С…О	1.38	0.85	0.23	1.85	1.00

Table S17. Enrichment ratios E_{XY} of the main intermolecular contacts for compounds 1–3, 5 and 6.

 E_{XY} values for random contacts R_{XY} lower than 0.7% were not calculated.

Mode	Expe	rimental	Calcula	ted ^[b]	Assignment ^[c]
·	IR ^[a]	Raman	Frequency	Intensity	ç
v_1	3102(w)	3078(34)	3207	4(265)	ν(C1-H) _{iph} ; ν(C2-H) _{iph} ; ν(C3-H) _{iph} ; ν(C9-H) _{iph}
ν_2	3091(vw)		3204	1(28)	ν(C1-H) _{iph} ; ν(C2-H) _{oph} ; ν(C3-H) _{oph} ; ν(C9-H) _{iph}
ν_3	3077(w)	3064(23)	3192	5(130)	ν(C1-H) _{iph} ; ν(C2-H) _{iph} ; ν(C3-H) _{oph} ; ν(C9-H) _{oph}
ν_4	3053(w)	3053(27)	3179	3(64)	ν(C1-H) _{iph} ; ν(C2-H) _{oph} ; ν(C3-H) _{iph} ; ν(C9-H) _{oph}
ν_5	3025(vw)	2997(23)	3116	3(57)	v _{as} (CH ₂)
ν_6	2997(w)	2938(32)	3063	10(110)	ν _s (CH ₂)
ν_7	2265(w)	2264(25)	2357	13(122)	ν (C-N)
ν_8	1654(m)	1652(100)	1709	295(78)	v(C5-O2)
ν_9	1612(w)	1612(27)	1674	88(105)	v(C6-C7)
v_{10}		1598(20)	1648	51(21)	ν(C8-C9) _{iph} ; ν(C2-C3) _{iph} ; ν(C6-C7) _{iph}
v_{11}		1579(29)	1614	13(35)	ν(C4-C8) _{iph} ; ν(C1-C2) _{iph} ; δ(C9-C1-H)
v_{12}		1486(15)	1504	4(1)	δ(C4-C3-H); δ(C1-C2-H); δ(C9-C8-H)
v_{13}	1473(w)	1478(17)	1494	117(4)	δ(C1-C2-H); δ(C9-C1-H); δ(C4-C8-C9)
v_{14}		1462(18)	1465	23(9)	δ (CH ₂)
v_{15}	1419(w)	1419(30)	1409	55(38)	δ(C6-C11-H11B); δ(C6-C7-C1); ν(C7-C10)
v_{16}	1386(vw)	1412(33)	1364	3(33)	δ (C4-C3-H); δ (C9-C8-H); ρ _{wag} (CH ₂)
v_{17}	1374(vw)	1396(16)	1349	18(4)	$ ho_{wag}$ (CH ₂)
v_{18}	1306(m)	1335(27)	1314	147(1)	δ(C2-C3-H); δ(C1-C2-H);δ(C9-C1-H); δ(C8-C9-H)
v_{19}	1288(vw)		1273	43(4)	$\rho_{tw}(CH_2)$
v_{20}	1263(m)		1248	183(7)	δ (C4-C3-H) _{oph} ; δ (C9-C8-H) _{iph} ; ν (C8-O1); ρ _{tw} (CH ₂)
v_{21}	1242(w)	1264(18)	1242	21(49)	δ(C3-C2-H); δ(C9-C1-H); δ(C8-O1); ν(C4-C5)
v_{22}	1227(m)	1202(12)	1185	239(2)	v _{as} (CF ₃); δ(C9-C1-H); δ(C3-C2-H)
v_{23}		1188(10)	1177	58(1)	δ(C3-C4-H); δ(C2-C1-H); δ(C3-C2-H); $ν_{as}$ (CF ₃)
v_{24}	1203(vs)	1181(9)	1171	193(1)	$ρ_{tw}$ (CH ₂); δ(C3-C2-H); ν _s (CF ₃)
v_{25}	1177(m)	1168(15)	1164	41(9)	ρ _{wag} (CH ₂); δ(C9-C8-H); δ(C9-C1-H); ν(C7-O1)
v_{26}	1159(vs)	1157(9)	1136	283(3)	v_{as} (CF ₃)
v_{27}	1144(m)	1146(9)	1127	13(3)	δ(C1-C2-H); δ(C1-C9-H); δ(C2-C1-H)
v_{28}	1025(w)	1025(25)	1048	5(27)	δ(C2-C3-H); δ(C1-C9-H); v(C1-C2)
v_{29}		1015(12)	1009	<1(<1)	γ(C3-C4-H); γ(C2-C1-H); γ(C3-C2-H)
v_{30}	995(w)	988(18)	998	27(8)	δ(C6-C7-O1); δ(C4-C5-O2); ρ r (CH ₂)
v_{31}	976(w)		986	1(<1)	γ(C4-C3-H); γ(C9-C8-H); γ(C9-C1-H)
v_{32}	955(w)	975(10)	971	39(5)	ρ _r (CH ₂)
v_{33}	931(w)	952(24)	939	9(5)	ν(C11-C12); γ(C6-C11-C12) _{op}
v_{34}			884	<1(<1)	γ(C4-C3-H); γ(C1-C2-H); γ(C9-C8-H)
v_{35}	887(vw)	840(24)	867	3(3)	ρ _r (CH ₂); δ(C1-C2-C3); ν(C8-O1)
v_{36}	840(w)		828	7(2)	ρ r (CH ₂); δ (CF ₃); δ(C9-C8-O1)
v_{37}	803(w)	801(6)	811	1(1)	γ(C4-C5-C6); γ(C9-C8-H); γ(C2-C1-H)
V ₃₈	772(m)	792(7)	777	71(<1)	γ(C4-C3-H); γ(C3-C2-H); γ(C2-C1-H)
V ₃₉	732(m)	732(28)	742	10(1)	γ(C11-C12-N) _{op} ; γ(C4-C3-C2) _{iph} ; γ(O1-C7-C6) _{oph}

Table S18. Experimental and calculated frequencies (cm⁻¹) and tentative fundamental vibration modes assignment of 3-cyanomethyl-2-trifluoromethylchromone (**1**).

v_{40}	717(w)	716(31)	722	13(13)	δ (CF ₃)
ν_{41}	709 ^{sh} (vw)	693(28)	704	3(7)	γ(C11-C12-N); γ(O1-C7-C6); γ(C2-C1-C9)
v_{42}	697(vw)	680(15)	691	5(<1)	γ(C7-C6-C5); γ(C8-O1-C7); γ(C1-C9-C8)
ν_{43}	678(w)	665(12)	654	11(2)	ρ r (CH ₂); δ(C6-C5-O2) _{oph} ; δ(C1-C2-C9) _{iph}
v_{44}	643(w)	593(23)	604	5(1)	γ(C11-C12-N) _{op} ; δ(C2-C3-C4) _{oph} ; δ (CF ₃)
v_{45}	594(w)	578(11)	581	1(2)	γ(C6-C11-CN); δ(C4-C8-O1)
v_{46}	546(vw)	544(10)	536	2(<1)	γ(C1-C2-C3); γ(C4-C9-C8)
v_{47}	535(vw)	528(27)	528	1(1)	δ (CF ₃); ρ _r (CH ₂)
v_{48}	528(vw)	517(32)	521	2(10)	δ(C3-C4-C5) _{iph} ; δ(C9-C8-O1) _{iph} ; δ(C5-C6-C7) _{oph}
v_{49}	515(w)		512	2(1)	δ (CF ₃); γ(C11-C12-N); γ(C9-C8-C4)
v_{50}	443(w)		448	2(<1)	γ(C2-C3-C4); γ(C1-C9-C8)
v_{51}		392(10)	392	6(4)	ρ _r (CH ₂); δ(C6-C5-O2)
v_{52}			385	8(1)	γ(C11-C12-N) _{ip} ; ρ _r (CH ₂)
v_{53}		370(8)	360	3(<1)	γ(C11-C12-N) _{ip} ; δ(C6-C5-O2)
v_{54}		354(22)	355	5(2)	γ(C6-C11-C-N)
v_{55}		312(10)	310	1(1)	ρ _r (CH ₂); ρ _r (CF ₃); γ(C8-O1-C7)
v_{56}		298(8)	308	1(1)	γ(C8-O1-C7); ρ _r (CH ₂); γ(C2-C1-C9)
v_{57}		282(5)	293	4(3)	γ(C7-C10-F3); ρ _r (CH ₂); τ(O2-C5-C4-C3)
v_{58}		268(9)	271	7(3)	γ(C11-C12-N)
v_{59}		238(21)	229	<1 (1)	τ(O1-C7-C10-F3); τ(C1-C9-C8-C4)
v_{60}		150(29)	159	4(<1)	ρ _r (CF ₃)
v_{61}			142	<1 (<1)	τ(C3-C4-C5-O2); τ(C2-C1-C9-C8)
v_{62}		96(24)	117	5(1)	τ(C6-CH2-CN); τ(C7-C6-C5-O2)
v_{63}		72(32)	70	<1 (3)	τ(O1-C7-C10-F2)
v_{64}			53	3(5)	τ(O2-C6-C11-C12)
v_{65}			46	2(3)	τ(C6-CH2-CN)
v_{66}			26	1(1)	τ(O1-C7-CF ₃); τ(C6-CH2-CN)

[a] vs, very strong; s, strong; m, medium; w, weak; vw, very weak; sh, shoulder. [b] 6-311++g(d,p) calculated IR frequencies (cm⁻¹) and intensities (km mol⁻¹) in parentheses. [c] v, δ , γ , τ , ρ_r , ρ_{wag} and ρ_{tw} represent stretching, in-plane deformation, out-of-plane deformation, torsion, rocking, wagging and twisting modes. Moreover, iph, ip, op and oph represent in phase, in plane, out plane and out of phase modes.

Mode	Expe	rimental	Calculated ^[b]		Assignment ^[c]
	IR ^[a]	Raman	Frequency	Intensity	
v_1	3095(vw)	3078(15)	3208	4(266)	ν(C1-H) _{iph} ; ν(C2-H) _{iph} ; ν(C3-H) _{iph} ; ν(C9-H) _{iph}
ν_2	3079(vw)	3069(6)	3204	1(29)	ν(C1-H) _{iph} ; ν(C2-H) _{oph} ; ν(C3-H) _{oph} ; ν(C9-H) _{iph}
ν_3	3065(vw)	3054(6)	3192	5(133)	ν(C1-H) _{iph} ; ν(C2-H) _{iph} ; ν(C3-H) _{oph} ; ν(C9-H) _{oph}
v_4	3052(w)	3033(6)	3180	3(63)	ν(C1-H) _{iph} ; ν(C2-H) _{oph} ; ν(C3-H) _{iph} ; ν(C9-H) _{oph}
v_5		3026(5)	3177	2(42)	v_{as} (CH ₂)
ν_6	3032(w)	2970(8)	3107	10(89)	v_{s} (CH ₂)
ν_7	1659(vs)	1654(100)	1713	308(100)	v(C5-O2)
ν_8	1613(m)	1654 ^{sh} (70)	1675	103(129)	v(C6-C7)
v_9	1581 ^{sh} (w)	1611(7)	1648	39(17)	v(C8-C9) _{iph} ; v(C2-C3) _{iph}
v_{10}	1567(vs)		1632	358(4)	v_{as} (NO ₂); ρ_{wag} (CH ₂)
v_{11}	1543 ^{sh} (w)	1580(11)	1614	14(32)	δ(C2-C1-H) _{iph} ; δ(C3-C2-H) _{iph} ; δ(C9-C8-H) _{oph}
v_{12}	1480 ^{sh} (w)		1504	3(1)	δ(C3-C4-H) _{iph} ; δ(C9-C8-H) _{iph} ; δ(C9-C1-H) _{iph}
v_{13}	1470(m)	1480(5)	1494	113(5)	δ(C8-C9-H) _{iph} ; δ(C9-C1-H) _{iph} ; ν(C8-C1)
V ₁₄	1457(w)	1468(3)	1464	34(6)	δ (CH ₂)
V ₁₅	1422(m)		1418	159(13)	ν _s (NO ₂); ρ _{wag} (CH ₂); ν(C5-C6); ν(C7-C10)
v_{16}	1418 ^{sh} (w)	1421(12)	1405	48(24)	ρ_{wag} (CH ₂)
V ₁₇	1394(vw)	1375(10)	1362	2(44)	δ(C4-C3-H) _{iph} ; δ(C8-C9-H) _{iph} ;δ(C9-C1-H) _{oph}
V ₁₈	1387(vw)		1343	29(22)	ρ_{wag} (CH ₂)
v_{19}	1376(m)		1314	135(1)	δ(C4-C3-H) _{iph} ; δ(C8-C9-H) _{oph} ; ν(C7-C10)
v_{20}	1320(m)		1279	32(7)	ρ_{tw} (CH ₂)
v_{21}	1312 ^{sh} (m)		1247	168(4)	v _{as} (CF ₃); δ(C4-C3-H) _{iph} ; δ(C8-C9-H) _{iph}
v_{22}	1307(m)	1335(11)	1244	83(58)	δ(C2-C3-H) _{iph} ; δ(C9-C1-H) _{oph} ; δ(C6-C11-H)
V ₂₃	1263(m)	1245(5)	1198	93(4)	ρ _{wag} (CH ₂); δ(C3-C2-H) _{iph} ; δ(C9-C1-H) _{iph} ; ν(C6-C11)
v_{24}	1229(m)	1227(5)	1187	194(1)	v_{as} (CF ₃); ρ_{tw} (CH ₂)
v_{25}	1214(vs)	1211(4)	1179	160(2)	ν _s (CF ₃); ρ _{tw} (CH ₂); δ(C8-C9-H)
v_{26}	1192(w)	1191(3)	1171	28(8)	δ(C1-C2-H) _{iph} ; δ(C1-C9-H) _{iph} ; δ(C2-C1-H) _{oph} ; δ(C1-C2-H) _{oph}
V ₂₇	1160(vs)	1174(2)	1136	269(3)	v_{as} (CF ₃)
v_{28}	1148(m)	1156(4)	1128	32(5)	δ(C1-C2-H) _{iph} ; δ(C1-C9-H) _{iph} ; δ(C1-C2-H) _{oph}
V ₂₉	1030(w)	1028(9)	1049	6(22)	δ(C3-C4-H) _{iph} ; δ(C9-C8-H) _{oph}
v_{30}	1006(w)	1004(3)	1010	59(6)	$\rho_r(CH_2)$
v_{31}	1000(w)		1008	<1(<1)	γ(C4-C3-H); γ(C1-C2-H); γ(C9-C8-H)
v_{32}	978(w)	972(9)	988	18(13)	ρ _r (CH ₂); δ(C6-C5-O2); δ(C2-C3-C4)
v_{33}	974(w)		985	2(<1)	γ(C4-C3-H); γ(C1-C2-H)
v_{34}	865(w)	895(12)	899	17(33)	δ (NO ₂)
v_{35}			884	1(<1)	γ(C2-C3-C4); γ(C1-C9-C8)
v_{36}		864(3)	870	7(4)	ρ _r (CH ₂); δ(C1-C2-C3); δ(C6-C5-O2)
v_{37}	848(w)	848(4)	847	19(5)	γ(C6-C11-H); δ (CF ₃); δ(C6-C7-O1)
v_{38}	· · ·	807(2)	818	3(1)	γ(C4-C5-C6); γ(C2-C3-C4); δ (NO ₂)
V39	775(m)	775(1)	779	80(<1)	γ(C4-C5-H); γ(C3-C2-H); γ(C9-C1-H)
v_{40}	744(w)	743(1)	757	14(1)	γ(C2-C3-C4); γ(C5-C4-C8); δ(C6-C11-H)

Table S19. Experimental and calculated frequencies (cm⁻¹) and tentative fundamental vibration modes assignment of 3-nitromethyl-2-trifluoromethylchromone (**2**).

v_{41}	724(w)	723(24)	724	19(10)	δ (CF ₃); γ(O1-C7-C6)
v_{42}			714	6(9)	γ(C2-C3-C4); γ(C1-C9-C8); γ(O1-C7-C10)
v_{43}	707(w)		695	6(1)	γ(O1-C7-C10); γ(C4-C5-C6); γ(C1-C2-C3)
v_{44}		706(13)	673	1(6)	γ(C11-N-O); γ(C8-C4-C5)
v_{45}	688(w)	686(3)	658	11(2)	$ρ_{wag}$ (NO ₂); γ(C6-C5-O2); γ(C2-C1-C9); $ρ_{tw}$ (CH ₂)
v_{46}	649(w)	647(3)	602	5(2)	γ(C1-C9-C8); γ(C2-C3-C4); δ (CF ₃)
v_{47}	595(w)	595(4)	577	5(1)	$ ho_r$ (CH ₂); $ ho_{wag}$ (NO ₂)
v_{48}	565(w)	556(3)	562	9(3)	γ(C8-O1-C7); γ(C11-N-O4); δ (CF ₃)
v_{49}	534(vw)	533(1)	536	2(<1)	γ(C1-C9-C8); γ(C1-C2-C3)
v_{50}	521(vw)	518(16)	522	4(8)	δ(C4-C5-C6); δ (CF ₃)
v_{51}			519	2(3)	δ (CF ₃); ρ _r (CH ₂); δ(C4-C5-O2)
v_{52}	515(w)		513	3(1)	δ (CF ₃)
v_{53}	445(w)	444(2)	450	2(<1)	γ(C1-C2-C3); γ(C3-C4-C8)
v_{54}		377(5)	380	7(2)	ρ _r (CH ₂); γ(C3-C4-C5)
v_{55}			375	3(1)	γ(C11-N-O3); ρ r (CH ₂)
v_{56}		363(4)	333	5(6)	ρ _r (NO ₂); τ(C5-C6-C11-H11B)
v_{57}			314	2(1)	ρ _r (CH ₂); τ(O1-C7-C10-F3)
v_{58}		336(6)	307	1(2)	ρ _r (CF ₃); ρ _r (CH ₂)
v_{59}		317(6)	293	5(2)	τ(C3-C4-C5-O2); ρ _r (CH ₂)
v_{60}		296(5)	280	5(3)	τ(C6-C7-C10-F2); τ(C2-C5-C6-C11); ρ r (CH ₂)
v_{61}		239(5)	228	<1 (1)	τ(Ο1-C6-C10-F1); τ(C4-C8-C9-C1)
v_{62}		166(9)	163	3(<1)	ρ _r (CF ₃); τ(C6-C11-N-O3)
v_{63}			144	<1 (1)	τ(C2-C3-C4-C5); τ(C4-C8-C9-C1)
v_{64}			116	3(<1)	τ(O2-C5-C6-C11); γ(C11-N-O3)
v_{65}			72	<1 (2)	τ(O1-C7-CF ₃); τ(O1-C8-C4-C3)
v_{66}			50	2(3)	τ(C5-C6-C11-N)
v_{67}			45	1(2)	τ(C6-C7-C10-F2)
v_{68}			36	1(2)	τ(C6-C11-NO ₂)
V ₆₉			16	<1(<1)	τ(O1-C7-CF ₃)

[a] vs, very strong; s, strong; m, medium; w, weak; vw, very weak; sh, shoulder. [b] 6-311++g(d,p) calculated IR frequencies (cm⁻¹) and intensities (km mol⁻¹) in parentheses. [c] v, δ , γ , τ , ρ_r , ρ_{wag} and ρ_{tw} represent stretching, in-plane deformation, out-of-plane deformation, torsion, rocking, wagging and twisting modes. Moreover, iph, ip and oph represent in phase, in plane and out of phase modes.

Mode	Expe	Experimental Calculate		ated ^[b]	Assianment ^[c]
	IR ^[a]	Raman	Frequency	Intensity	
v_1	3438(m)	3437(6)	3758	71(54)	ν (O-H)
ν_2	3082(vw)	3071(19)	3206	4(263)	ν(C1-H) _{iph} ; ν(C2-H) _{iph} ; ν(C3-H) _{iph} ; ν(C9-H) _{iph}
ν_3	3069 ^{sh} (vw)		3203	2(27)	ν(C1-H) _{iph} ; ν(C2-H) _{oph} ; ν(C3-H) _{oph} ; ν(C9-H) _{iph}
v_4	3049(vw)	3050(2)	3191	5(131)	ν(C1-H) _{iph} ; ν(C2-H) _{iph} ; ν(C3-H) _{oph} ; ν(C9-H) _{oph}
v_5	3026(vw)	3029(2)	3178	3(63)	ν(C1-H) _{iph} ; ν(C2-H) _{oph} ; ν(C3-H) _{iph} ; ν(C9-H) _{oph}
v_6	2948(vw)	2951(2)	3147	9(66)	$v_{as}(CH_2)$
v_7	2902(vw)	2903(2)	3002	31(142)	v _s (CH ₂)
ν_8	1646(vs)	1651(100)	1688	330(114)	v(C5-O2)
ν_9	1610(m)	1638 ^{sh} (10)	1666	47(88)	v(C6-C7)
v_{10}	1578(w)	1611(12)	1647	67(24)	v(C8-C9) _{iph} ; v(C2-C3) _{iph} ; v(C6-C7) _{oph}
v_{11}		1581(23)	1611	10(35)	v(C4-C8) _{iph} ; v(C1-C2) _{iph}
v_{12}			1503	4(<1)	δ(C4-C3-H); δ(C1-C2-H); δ(C9-C8-H)
v_{13}	1471(m)	1517(1)	1497	62(6)	$\delta(CH_2)$
v_{14}		1510(1)	1493	52(5)	δ(CH ₂); δ(C9-C1-H); δ(C8-C9-H)
V ₁₅	1410(m)	1503(1)	1442	49(7)	δ(C11-O3-H)
v_{16}	1385(m)	1473(9)	1418	128(18)	δ(Ο1-C7-C6); ν(C7-C10); δ(C11-O3-H)
V ₁₇	1355(w)	1417(7)	1373	5(7)	δ (C11-O3-H11B); ρ_{wag} (CH ₂)
v_{18}	1340(w)	1411 ^{sh} (12)	1363	4(39)	ν(C4-C8) _{iph} ; ν(C1-C9) _{iph} ; δ(C11-O3-H)
v_{19}	1308(m)	1383(3)	1314	117(2)	δ(C3-C4-H); δ(C9-C8-H)
v_{20}	1298 ^{sh} (m)	1347(10)	1271	110(8)	ρ _{tw} (CH ₂); γ(C11-O3-H); ν(C7-C10)
v_{21}	1258(m)		1246	86(5)	δ (C2-C3-H); δ (C8-C9-H); ν (C4-C5); ρ tw (CH ₂)
v_{22}		1342(20)	1243	71(44)	ν(C1-O1); δ(C9-C1-H); δ(C3-C2-H); δ(C3-C4-H)
v_{23}	1229(m)	1260(4)	1188	285(5)	δ(C3-C2-H); ρ tw (CH ₂); γ(C11-O3-H)
v_{24}			1180	34(1)	γ(C6-C11-H11A); δ(C3-C2-H); ν(C7-O1)
v_{25}		1240(11)	1167	82(4)	δ(C8-C9-H); δ(C2-C1-H); γ(C6-C11-H11A)
v_{26}	1203(m)	1229(11)	1157	161(9)	ν _{as} (CF ₃); ν(C7-O1); δ(C4-C3-H); δ(C9-C1-H)
V ₂₇	1151(vs)	1153(5)	1128	211(2)	$v_{as}(CF_3)$
v_{28}	1119 ^{sh} (m)	1141(2)	1126	81(2)	ν _{as} (CF ₃); δ(C3-C4-H); δ(C1-C9-H); δ(C3-C2-H)
V ₂₉	1036(m)	1036 ^{sh} (5)	1060	108(6)	v(C11-O3)
v_{30}	1027(m)	1026(22)	1046	12(33)	ν(C1-C2); δ(C3-C4-H); δ(C8-C9-H)
v_{31}			1008	<1(<1)	γ(C4-C3-H); γ(C3-C2-H); γ(C2-C1-H)
v_{32}	1001(m)	1006(1)	1004	36(1)	ρ _r (CH ₂)
V ₃₃			985	2(<1)	γ(C4-C3-H); γ(C3-C2-H); γ(C2-C1-H)
v_{34}	971(w)	972(6)	978	24(4)	γ(C4-C3-H); γ(C9-C1-H); γ(C8-C9-H)
v_{35}	873(vw)	862(3)	888	18(1)	ρ _r (CH ₂); δ(C4-C5-O2); δ(C2-C3-C4); γ(C11-O3-H)
v_{36}	863(w)		882	7(<1)	γ(C4-C3-H); γ(C8-C9-H); γ(C6-C11-H11B)
v_{37}	837(w)	839(3)	851	4(3)	ν _s (CF ₃); δ(C2-C3-C4); ν(C7-O1); δ(C6-C5-O2)
v_{38}	804(vw)	806(2)	799	5(1)	γ(C6-C5-O2); γ(C4-C6-C6) ; γ(C9-C1-H); γ(C8-C9-H)
v_{39}	768(m)		775	67(<1)	γ(O1-C8-C9); γ(C4-C3-H) ; γ(C3-C2-H); γ(C1-C2-H)
v_{40}	729(m)	769(5)	727	21(3)	δ _s (CF ₃); γ(O1-C8-C4)

Table S20. Experimental and calculated frequencies (cm⁻¹) and tentative fundamental vibration modes assignment of 3-hydroxymethyl-2-trifluoromethylchromone (**3**).

v_{41}	717(w)	734(17)	718	10(11)	δ _s (CF ₃); γ(C5-C6-C7); γ(C4-C8-C9)
v_{42}	691(vw)	719(18)	694	5(8)	ν(C6-C11); γ(C5-C6-C7); γ(C2-C1-C9)
v_{43}	680(w)	693(17)	681	4(1)	γ(C5-C6-C7); δ(C7-C10-F2A); γ(C1-C9-C8)
v_{44}	643(w)	680(7)	650	9(<1)	δ(C9-C8-O1); δ(O2-C5-C6); ρ _r (CH ₂); γ(C7-C10-F1A)
v_{45}	601 ^{sh} (vw)	645(4)	600	3(2)	δ _s (CF ₃); δ(C1-C9-C8); δ(C1-C2-C3)
v_{46}	591(w)	594(5)	571	170(1)	γ (C11-O3-H)
v_{47}	555(w)	537 ^{sh} (7)	546	11(4)	γ (C6-C11-O3); τ(C6-C11-O3-H)
v_{48}	547 ^{sh} (vw)		537	3(1)	γ(C1-C2-C3); γ(C1-C9-C8); γ(C9-C8-O1)
v_{49}			526	1(1)	$\delta_{as}(CF_3)$
v_{50}	531(w)	520(29)	519	9(8)	δ(C5-C4-C8); γ (C11-O3-H)
v_{51}	506(w)	481 ^{sh} (1)	502	3(1)	δ _{as} (CF ₃); γ (C6-C11-O3)
v_{52}	435(vw)	437(3)	444	6(1)	γ(C1-C2-C3); γ(C4-C8-C9)
v_{53}		395(7)	382	1(4)	δ(C6-C5-O2); δ(O2-C7-C6)
v_{54}		375(1)	357	8(1)	ρ _r (CH ₂); δ(C6-C5-O2); δ(C7-C10-F1A)
v_{55}		329(6)	323	<1 (1)	γ(C8-O1-C7); γ(C1-C2-C3); ρ _r (CF ₃)
v_{56}			314	7(1)	δ(C6-C10-F1A); ρ r (CH ₂); δ(C4-C5-O2)
v_{57}		302(8)	295	1(3)	ρ _r (CH ₂)
v_{58}		263(3)	260	7(1)	ρ _r (CH ₂); γ(C6-C11-O3)
v_{59}		245(10)	235	1(<1)	τ(O1-C7-C10-F2A); τ(C7-C6-C11-H11B)
v_{60}		211(2)	191	2(<1)	γ(C6-C11-O3); τ(C5-C6-C11-O3)
v_{61}		176(3)	155	3(1)	$\rho_r(CF_3); \rho_r(CH_2)$
v_{62}		165(3)	144	1(<1)	τ(O2-C5-C4-C8); τ(C6-C7-C10-F2A)
v_{63}			90	2(1)	τ(C5-C6-C11-O3)
v_{64}			73	<1(3)	τ(C6-C7-C10-F2A)
v_{65}			69	2(1)	τ(C6-CH ₂ -OH)
v_{66}			29	<1 (1)	τ(C7-CF ₃)

[a] vs, very strong; s, strong; m, medium; w, weak; vw, very weak; sh, shoulder. [b] 6-311++g(d,p) calculated IR frequencies (cm⁻¹) and intensities (km mol⁻¹) in parentheses. [c] v, δ , γ , τ , ρ_r , ρ_{wag} and ρ_{tw} represent stretching, in-plane deformation, out-of-plane deformation, torsion, rocking, wagging and twisting modes. Moreover, iph, ip and oph represent in phase, in plane and out of phase modes.

Mode	Expe	rimental	Calculated ^[b]		Assignment ^[c]
	IR ^[a]	Raman	Frequency	Intensity	
v_1	3328(w)	3329(16)	3606	7(90)	v _{as} (NH ₂)
ν_2		3222(16)	3522	<1 (199)	$v_{s}(NH_{2})$
v_3	3105(w)	3086(46)	3205	6(265)	ν(C1-H) _{iph} ; ν(C2-H) _{iph} ; ν(C3-H) _{iph} ; ν(C9-H) _{iph}
v_4	3091(w)	3067(12)	3202	2(27)	ν(C1-H) _{iph} ; ν(C2-H) _{oph} ; ν(C3-H) _{oph} ; ν(C9-H) _{iph}
v_5	3056(w)	3055(10)	3189	7(134)	ν(C1-H) _{iph} ; ν(C2-H) _{iph} ; ν(C3-H) _{oph} ; ν(C9-H) _{oph}
v_6	3031(vw)	2917(15)	3176	3(64)	ν(C1-H) _{iph} ; ν(C2-H) _{oph} ; ν(C3-H) _{iph} ; ν(C9-H) _{oph}
v_7	2920(w)	2877(19)	3100	2(53)	v_{as} (CH ₂)
ν_8	2845(w)	2841(18)	3022	44(110)	v _s (CH ₂)
v_9	1659(m)	1661(80)	1714	302(78)	v(C5-O2)
v_{10}	1612(w)	1652(100)	1671	50(110)	ν(C6-C7); δ(NH ₂); δ(C6-C11-H)
v_{11}	1581(w)	1641(56)	1655	46(15)	δ(NH ₂)
v_{12}		1612(38)	1648	47(18)	ν(C8-C9) _{iph} ; ν(C2-C3) _{iph} ; ν(C6-C7) _{oph}
v_{13}		1582(40)	1613	13(34)	ν(C4-C8) _{iph} ; ν(C1-C2) _{iph}
v_{14}		1521(6)	1503	9(4)	δ(CH ₂)
v_{15}		1505(7)	1501	12(6)	δ(CH ₂); δ(C4-C3-H); δ(C9-C1-H)
v_{16}	1467(m)	1494(6)	1493	107(4)	δ(C2-C3-H); δ(C8-C9-H); δ(C9-C1-H)
V ₁₇		1469(25)	1420	43(4)	$ ho_{wag}$ (CH ₂); $ ho_{tw}$ (NH ₂)
v_{18}		1408(36)	1409	62(22)	ρ _{wag} (CH ₂); δ(O1-C7-C6); ν(C7-C10); ν(C6-C7)
v_{19}	1407(w)	1341(43)	1362	1(37)	ν(C3-C2) _{iph} ; ν(C1-C9) _{iph} ; ν(C3-C4) _{oph} ; ν(C9-C8) _{oph}
v_{20}	1330(vw)	1324(18)	1333	22(3)	$ ho_{tw}$ (CH ₂); $ ho_{tw}$ (NH ₂)
ν_{21}	1304(m)	1310(15)	1313	121(1)	δ(C3-C4-H); δ(C3-C2-H); δ(C9-C1-H); δ(C8-C9-H)
v_{22}	1226(m)	1261(17)	1250	258(2)	$ρ_{tw}$ (NH ₂); $ρ_{tw}$ (CH ₂); ν(C7-C10); δ(C3-C4-H)
ν_{23}	1212(m)	1234(29)	1242	56(46)	δ(C3-C2-H); δ(C9-C1-H); ν(C4-C5); ν(C8-O1)
v_{24}	1199 ^{sh} (m)		1235	15(2)	ρ _{tw} (NH ₂); γ(C6-C11-H); ν(C4-C5); δ(C3-C4-H)
v_{25}	1183(m)	1173(15)	1191	76(6)	ν(C6-C11); ν(O1-C7); δ(C3-C2-H); δ(C9-C1-H)
v_{26}	1168(m)		1172	123(4)	$v_{as}(CF_3)$
v_{27}		1167(14)	1170	29(7)	δ(C8-C9-H); δ(C9-C1-H); δ(C1-C2-H)
v_{28}	1146 ^{sh} (m)		1142	210(2)	ρ _{tw} (NH ₂); ρ _{tw} (CH ₂); ν(C7-O1); δ(C4-C3-H)
v_{29}		1145(26)	1125	50(2)	δ(C9-C1-H); δ(C2-C3-H)
v_{30}	1138(vs)	1071(19)	1117	266(3)	$v_{as}(CF_3)$
ν_{31}	1115(m)	1041(17)	1057	19(4)	v(C11-N)
v_{32}	1070(w)	1026(33)	1044	2(42)	v(C1-C2); v(C2-C3); v(C1-C9)
v_{33}	1025(w)		1006	0(0)	γ(C4-C3-H); γ(C3-C2-H); γ(C2-C1-H)
v_{34}		1010(3)	983	1(1)	γ(C4-C3-H); γ(C8-C9-H); γ(C9-C1-H)
v_{35}	1001(w)	996(24)	983	17(3)	δ(C5-C6-C7); δ(O1-C7-C6); γ(C11-N-H)
v_{36}	999(w)	965(23)	980	34(1)	ρ _{tw} (NH ₂); ρ _r (CH ₂)
ν_{37}	977(w)		883	1(0)	γ(C4-C3-H); γ(C3-C2-H); γ(C8-C9-H)
ν_{38}	965(w)	861(20)	867	7(2)	ρ _r (CH ₂); δ(C1-C2-C3)
v_{39}	868(w)	832(22)	827	24(1)	γ(C11-N-H); ρ r (CH ₂)
v_{40}	809(w)	808(22)	816	11(3)	ρ _{wag} (NH ₂); ρ _r (CH ₂) ; δ(O2-C5-C6)

Table S21. Experimental and calculated frequencies (cm⁻¹) and tentative fundamentalvibration modes assignment of 3-aminomethyl-2-trifluoromethylchromone (4).

v_{41}	760(m)	777(20)	792	126(1)	$ ho_{wag}(NH_2)$
v_{42}		762(20)	774	30(0)	γ(C4-C3-H); γ(C3-C2-H); γ(C2-C1-H)
ν_{43}	739(w)		724	14(2)	ρ _{wag} (NH ₂); γ(C9-C8-O1); γ(C2-C3-C4)
v_{44}	729(w)	738(24)	719	11(13)	δ _s (CF ₃); δ(C8-O2-C7)
v_{45}	718(w)	716(54)	690	25(8)	ν(C6-C11); δ(C9-C1-C2); δ(C3-C4-C8); γ(C11-N-H)
v_{46}	688(w)	700(30)	678	3(1)	γ(C5-C6-C7); γ(C7-C10-F); γ(C1-C9-C8)
v_{47}	677(w)	688(22)	648	6(1)	δ(C3-C4-C5); δ(C9-C8-O1); ρ r (CH ₂)
v_{48}	645(w)	644(21)	600	4(2)	δ(C3-C4-C5); $δ$ (C2-C3-C4); $δ$ _{as} (CF ₃)
v_{49}	626(vw)	593(23)	556	10(2)	γ (C6-C11-N)
v_{50}	614(vw)	548(20)	537	4(1)	γ(C9-C8-O1); γ(C1-C2-C3)
v_{51}	594(w)	530(20)	524	1(5)	$\delta_{\sf as}({\sf CF}_3)$
v_{52}	511(vw)	518(44)	521	2(6)	δ _{as} (CF ₃); δ(C4-C5-O2); δ(C8-O1-C7)
v_{53}		478(23)	499	14(1)	$δ_{as}$ (CF ₃); γ (C8-O1-C7); γ (C11-N-H)
v_{54}	426(w)	440(16)	441	3(1)	γ(C1-C2-C3); γ(C4-C8-C9)
v_{55}		402(16)	396	0(3)	ν(O1-C7); ν(C6-C11); τ(C1-C9-C8-C4)
v_{56}		365(17)	361	8(1)	ρ _r (CH ₂); δ(C6-C5-O2); δ(C7-C10-F)
v_{57}			325	4(0)	ρ _r (CH ₂); γ (C7-C10-F); ρ _r (NH ₂)
v_{58}		313 ^{sh} (17)	320	1(1)	γ (C4-C8-O1); τ(H-C11-N-H); δ(C7-C10-F)
v_{59}		303(23)	300	4(4)	ρ _r (CH ₂); δ(C3-C4-C5); δ(C9-C8-O1)
v_{60}		271(16)	260	1(2)	ρ _r (CH ₂); ρ _r (NH ₂)
v_{61}		234(20)	237	0(1)	τ(O1-C7-C10-F); τ(C7-C6-C11-H)
v_{62}		205(15)	212	35(0)	$\rho_r(NH_2)$
v_{63}		170(36)	188	0(0)	γ (C6-C11-N); τ(C5-C4-C8-O1)
v_{64}		148(19)	153	1(0)	$ ho_{wag}(CF_3)$
v_{65}			132	1(1)	τ(C3-C4-C5-O2); τ(C6-C11-C5-N)
v_{66}			102	1(0)	τ(C6-C11-C5-N)
v_{67}			75	0(4)	τ(C6-C7-C10-F)
v_{68}			62	5(1)	τ(C6-CH ₂ -NH ₂)
v_{69}			26	0(1)	τ(O1-C7-CF ₃)

[a] vs, very strong; s, strong; m, medium; w, weak; vw, very weak; sh, shoulder. [b] 6-311++g(d,p) calculated IR frequencies (cm⁻¹) and intensities (km mol⁻¹) in parentheses. [c] v, δ , γ , τ , ρ_r , ρ_{wag} and ρ_{tw} represent stretching, in-plane deformation, out-of-plane deformation, torsion, rocking, wagging and twisting modes. Moreover, iph, ip and oph represent in phase, in plane and out of phase modes.