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Abstract

Let (X, f) be a dynamical system with X a compact metric space. Let X" be the product of
r—copies of X, r > 1, and ® : X" — R. The multifractal decomposition for V —statistics for &, f
is defined as

Ep f(a) =qa: lim iT > ® (f* (x),..., f" (x)) =« p . The set of points z € X, for

N0 N 0<iy .. ir<n—1
which the limit does not exist is called the irreqular part, or historic set, of the spectrum.

In this article we analyze the irregular part of the V —statistics for systems satisfying a weak
form of the known Bowen specification property, called the non-uniform specification property.
This concept was introduced by P. Varandas and allows to work in a nonuniformly hyperbolic
context.
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II. INTRODUCTION

The multiple ergodic averages appeared as a dynamical version of the Szemeredi theo-
rem in combinatorial number theory. This analogy was pointed out by Furstenberg[8] who

studied ergodic averages in a measure-preserving probability space (X, B, i1, f) of the form

N-1

N_lMZM(Amf"Am...mf’“”A), (1)
n=M

where A € B and j € N. Furstenberg established that if pu(A) > 0 then
N-1

li]{[n inf i S u(AnfrAn..n fi"A) > 0. This relevant result serves to prove by
0 - n=M

arguments from Ergodic Theory the Szemeredi theorem, which states that if S is a set of

integers with positive upper density then S contains arithmetic progressions of arbitrary
length.

The multifractal analysis of Vstatistics treated by Fan, Schmeling and Wu[5] was mo-
tivated by the problems on convergence of multiple ergodic averages. Let us consider a
topological dynamical system (X, f), with X a compact metric space and f a continuous
map. Let X" = X x ... x X be the product of r—copies of X with r > 1,if & : X" — R is

a continuous map, then let

Valma)= — 3 ®(f (@), f (). )

1<iy, . ir<n

These averages are called the V —statistics of order r with kernel ®. For the idea of
Vstatistics from a Statistical point of view and its relationship with the Ustatistics see

section 2 of[5].

Ergodic limits of the form

n—1
lim 3@ (4 (@) o (@),
=0

were studied among others by Furstenberg[8], Bergelson[1] and Bourgain|2].

The multifractal decomposition for the spectra of V' —statistics is
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Es () = {x : nli_)rgo‘@ (n,z) = oz}.

Fan, Schemeling and Wu[5] have obtained the following variational principle for dynamical

systems with the specification property:.:

b (@) =sup {1, (1) [ @™ = o}, 3)

where hy,, is the topological entropy for non-compacts nor invariant sets and h, (f) is the

®" means p X ... X p, r—times. This generalizes the

measure-theoretic entropy of u. Here
variational principle established by Takens and Verbitski for r = 1[11].

The irregular part of the spectrum, or historic set, is the set of points x for which
nh—{{olo Ve (n,z) does not exist. We denote this set by EZ, so that the space X can be

decomposed as

X=|]JEs () UEY.

In a recent paper [9lwe have studied the irregular part of the multifractal decomposition of
V —statistics, in order to determine its dimension. We proved that for topological dynamical
systems with the property of specification, if the irregular part of the spectrum of multiple
ergodic averages, or V —statistics is non-empty then it has the same topological entropy as
the whole space X.

The objective of the present article is to extend the above result for systems satisfying a
weak form of the specification property, known as non-uniform specification condition. This
notion was introduced by P. Varandas[14] and is satisfied, for instance, by non-uniformly
quadratic maps and for the so called Viana maps, which are a robust class of multidimen-
sional non-uniformly hyperbolic functions[14]. The result to be proved is

Theorem 1.1: Let (X, f) be a dynamical system with the property of non-uniform
specification. Let ® € C'(X"), r > 1, and let £ () be the irregular part of the spectrum
of multiple ergodic averages Vg (n,x) . Then Eg (o) is empty or hyy(Eg (@) = hiop (X) -

For the proof of the result in [9], we used the variational principle for systems with the
specification property of Fan, Schemeling and Wu. The key point for the demonstration of

this variational principle is the saturadness of. This means that



hiop (G (1)) = huu (f) (4)

where by G () is denoted the set of u—generic points. Bowen [3] proved the inequality

Ptop (G (n) < hy, (f),

while in [7] was proved the opposite inequality, i.e. the saturadness of dynamical systems
with specification. Thus to extend our result of [9] to systems with the non-uniform specifi-
cation property we must prove that such systems are saturated. Once proved this, following
[7], we obtain

Theorem 1.2: Let (X, f) be a dynamical system with the property of non-uniform
specification. Let ® € C'(X"), r > 1, then

bup(Bs (@) =sup {1 (7) 5 [ @ =a .

With the theorem 1.2 and the saturadness, following similar lines than in [9] we obtain

theorem 1.1.

Remark: The case r = 1 was proved in [15]. In that article the proof is not based on the

saturadness, unlike herein.

III. PRELIMINARIES

Firstly let us recall the Bowen definition of topological entropy of sets: Let f: X — X
with X a compact metric space, for n > 1 the dynamical metric, or Bowen metric, is
dn (z,y) = max{d(f'(x),f" (y)):i=0,1,...,n—1}. We denote by B, . (z) the ball of
centre x and radius ¢ in the metric d,,. Let Z C X and let C (n,e, Z) be the collection of

finite or countable coverings of the set Z by balls By, . () with m > n. Let

M (Z,s,n,e) = BECi(I}fe,Z)B ;EB exp (—sm) ,

and set

M (Z,s,e) = lim M (Z,s,n,e).

n—oo

4



There is an unique number s such that M (Z, s, e) jumps from +oo to 0. Let
H(Z,e)=5=sup{s: M (Z,s,c) =400} =inf{s: M (Z,s,e) =0},

and

hiop (Z) = lim H(Z, £). (5)

e—0
The number hy,, (Z) is the topological entropy of Z.
A dynamical system (X, f) has the non-uniform specification property if the following
condition holds, for § > 0,0 < e < d, n € N, x € X, there exists an integer M (z,n,¢) such
that

1
lim lim sup —M (x,n,e) =0,

e—0n—oo n
and such that is verified, given xy,zs,...,7x € X, ny,n9,....,np € N, if M; > M (x;,n;,¢€)
then there is a point z € X such that

dp, (21,2) <&

and

i—1
Z(ner]‘)
dn, | f771 (2),2; | <e.

By M(X) we denote the space of measures in X, and by M;,,(X, f) the space of
f—invariant measures on X. The space M(X) can be endowed with a metric D compati-
ble with the metric in X, in the sense that D(¢,,d,) = d(z,y), where § is the point mass

measure. More precisely the metric considered in M (X)) will be

Y

D) =3 S pudie — [ inde
= 1©nll o0
where {p,} is a dense set in C'(X). We denote by Bpg (1) the ball of center p and radius R
in the above metric. The topology induced by this metric is the weak x— topology, and if
X is compact then M(X) is compact in the weak topology. The weak convergence is the
convergence in the metric which induces the weak topology.

The so called empirical measures on X associated to the dynamical system (X, f) are



1 n—1

Here § is the point mass measure. We denote the weak limits of the sequence{&, (x)} by
V(z). Since X is compact, V(x) # @. If p is a measure on X then a point x € X is
pu—generic if V(z) = {pu}, by G (u) is denoted the set of p—generic points.

Following [7] the set of generic points can be characterized in the following way. Let
{pi} be a sequence of numbers with ipi = 1 and let {s;} be a sequence in ¢>. The
sequence {s; = sy}, converges to o :Z:(lai) € (> in the weak x— topology if and only if
limy, o0 [Sni — ;] = 0. Let {¢1,¥2,...} a dense subset in unit ball of C/X), for a fixed
B € Miny(X, f), let @ = (a1, a9, ...), with o = [ @;dp- Thus

G )= { 1S G ) i | = o}
i=1
Lemma 2.1([16],[14]): For any p € M;,(X,f) , 0 <0 < 1,0 < v < 1, there is a
k k

measure v such that v = ) \;v;, where each v; is ergodic and )| A; = 1, and such that
j=1 j=1

0) b (f) 2 hyu (F) = -
W) > pi | [ widp — [ idv| < 8, where {¢;} and {p;} are sequences like above.
i=1

Let N > 1 and
{ sz ©i /Soidyj

n—1
where S, (¢; (z)) = > @i (f*(x)). By the Birkhoff ergodic theorem we have that
k=0

h_)m sz ©i / ©idvy,

and for sufficiently large N holds vi (Y;(N)) >1—n.

< 0, forn>N},

=0, v, —a.e

Let a = (ay,an,...) € £ and © = {1, pa,...} be a dense subset in unit ball of C'(X).
Set
Ag (@) = lim lim lim sup logN (cv,0,€,n), (6)

e—05—0n—oo

where N (a, 0, €,n) is the minimal number balls Bn,6 () needed to cover the set

Xo (a,6,n) = { sz|5 @i ( —Oéi|<5;042(04i)€£m}
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IV. CONSTRUCTION OF A FRACTAL SET AND PROOF OF SATURAD-

NESS

The next step is the construction of a fractal set I, such that /' C G (u). For the
construction is followed [7], [11],[? | or [4], Let {nx} be a sequence of positive integers and

{N} be an increasing sequence of integers with N, — oo and

Nl -1 Ng > 9nitmaxzes; M(z,n1,e/4)+n3+maxyes, M(z,n3,6/16)
) = .

Let {Sk} be a sequence of finite subsets of X, and {n,} be a sequence of positive integers.
Let € > 0 and assume that d,, (x,y) > be, for anyx # y € Sk. Sequences of sets { Dy} and
{Lx} are constructed in the following way: Set Dy = Sy, let z1,...,xy, € Sk, € > 0, by the

non-uniform specification property, there exists a y = y(z1, ..., zy, ) such that

dnk (l‘j, faj (y)) < 5/2k7

with
aj=(—1) <nk —i—me}gXM (x,nk,s/QkH))
TESK
Let

D, = {y =y(x1,...,xn,) : (21,...,2n,) € S,]CV]“} , (7)

and
ty = an, +ni = Ngng + Np_1 X maSXM (x,nk,g/QkH) ) (8)

TESK

The sequence {/;} is recursively defined as ¢; = ny, and

Uy =l + m%XM (:L‘,fk,€/2k+1) + Thy1-

TESK

Finally is introduced the sequence {L;} by Ly = Dy, if ¢ € Ly, y € Dy,1 then, by the

non-uniform specification property, there is a 7 = z (z,y) such that

dy, (7,%) < g/2"2 (9)



and

dtk_H <f£k+max9‘6[‘k M(x,[k,s/2k+1) (E) 7y> ‘ (10)

Thus Ly.1 ={Z(z,y) : 2 € Ly, y € Dyy1} if © € Ly, y € Diy1 and yy,y2 € Dy q then
do, (Z(z,11),Z (2,92)) < €/2% and dy, ., (Z(x,11),%Z (x,42)) > 2e. So that each Ly is
(¢x, 2¢) —separated.
The sequence { N} verifies

N, > 2 Z Nin;+(Ni—1) maxyes, M(x,”i:5/2i+1)+maxzt€Li M(x,f¢,E/2i+3)+maXacesk+1 M(xynk+175/2k+2)
k i=

A fractal set F' = F ({ny},{Nr},e,{Sk}) is defined as

F= ﬁ F,
k=1

with F, = |J By, (z,e/2871).
rELy
For each n € N and x € L;, let j be the unique number such that

O+ (m%XM (:C, N g/2k+1) + nkH) <n<lp+(j+1) <m%XM (w, nk,g/gkﬂ) + nk“) .
TESE TESK
(11)

It can defined a sequences of measures concentrated on Fj by

with vy = Y 6§, and Ay = cardLy = MlNl...M,iV’“, where My, = cardSy. Let B = B, /2 (x)
x€Ly

such that BNF # &, so

MNk+1_j
i (B) S k+1 ~ _ 1 '
MlNlM/inMkffl cardLy, X Mj

Let p be the w*—limit of the sequence{y}, then by the distribution mass principle

k
hiop(F) = Jim inf — (Z N;log M; + jlog Mk+1) . (12)
Proposition 3.1: The fractal F' is contained in the set of genereric points G () .
Proof: Let © = {¢1,02,...} and  recall that G (u) =
{x lim,, 00 Z i ‘S oi (2)) — [ idp | =0, where {p;} is a sequence of numbers



with > p; = 1. Let var (¢;,¢) = sup{|¢; () — ¢ (y)| : d(x,y) < e}, if d,, (z,y) < € then

>_wi(F@) =3 v (Fw)

< nvar (p;, €) .

Let us suppose firstly that y € Dy, and estimate

t—1

> @i (Fy) -ty
§=0
where o = (ai = f gpidu)i . Let us consider the sets .S;, in the construction of the sets D; and

Ly, contained in the set Xg («, 0k, ng) = {x 2y i[O, (i (7)) — i < (5k}, with 0, — 0.
i=1
If y € Dy, then there are points x’;]_ € Sk, j=1,2,..., Ny such that

dn <$§j>f“m (y)) < e/2k,

Y

with
Ay = (m—1) <nk + max M (x,nk,€/2k)) .
€S
We have
nE—1 ng—1 .
> i (Fak)) - D (1) < mavar (/). (13)
=0
Since Sy C Xg (a, 5k, nk) holds
©; (fﬁam (y)) — ;| < ng (var (%75/2’“) + 5k) . (14)
j=0
Set
Ni—1 Np—2
0,t, — 1] = mgo [y G + Np — 1] U WLLJO [am + N, Ay + Ny gé%;ch (x,nk,g/Qk) —11.
Thus )
nk*
D i (J7Fm T (y) — meas| < max M (2, m, £/2%) [l + | 9ill] (15)
So that, by eq. (15)
trp—1 '
> e (T (y) — teas| < (16)
=0

Niny (var (¢i,e/25) +61) +2 (N, — 1) lgé%fM (z, n, e/2%) [l ill,

(17)



The next step in to get an estimation on Lj. Let
-1

.7 _ .
—gé%f{Z%f Ekaz},

so is valid Ry; < 0101, for any i. Let * € Ly, y € Dy11, 2 € Li11, by the construction the

sets
dy, (z,2) < g/2"
and
g (st M) (2) ) < ef2
Thus
Zk+171 l—1 l—1
Z Pi (f] (Z) — U] < ©i (f](z) - Vi (fJ (3;) +
fp—1 Lp+maxger, M(a;7gk75/2k+1)_1
ngl f] —ékaz Z @Z(f]( )_ maXM(LU €k7€/
i €Lk 11
J=Lk
lpp1—1 Lep1—1
Y v (f Jrmaxeeryy, M (x:fkvsﬂ’“”)”k(Z) - oi (F(y)|+
Jj=0 g
lrp1—1
‘ ei (f7(y) — teprou| < Lpoar (@2,6/2k+1) + Ry +2 max M (z, fk,€/2k+2) loilly + trsrvar (goz,a/2k
TElig41
7=0

Nip1mi41 (UCN’ (<Pu€/2k+1) + 5k+1) + 2 (Npg1 — 1) max M (913 £k75/2k+2) H%Ho

T€LK 11

. 4
. N; max,cr,, M (x,y, /27
Ry <2 g ¢ (UGT (ire/27) +0; + — = 7 @ b6/ %) leillo )
j

j=1
Since X is compact lin% var (¢;,€) = 0, also 6 — 0. We may choose the sequence{ny }with
E—>

M (z,0y.e/2k)

ng — 00 such that n, > 2M#%=eLly so we can express 7 ; bounded as

k
Rii < 4T,
j=1

where T}, — 0 as k — 00. So that
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Ry
C,

k
1
STHE;@TJ»

o0

k
and > p;Ry; < > 0;T;. Thus, for k enough large and since £}, > 2%~1 we have
j=1

i=1 a

9] k

> i }Z—’“JSTH%ZTJ. (18)

i—1 j=1

Therefore Y p; ;’ —0as k — oo.
i=1 k
Finally is done the estimation on F. Let x € F, n € N, n > /{;, there is an unique

number £ such that ¢, < n < l;,,. Besides there exist a number m such that n > ¢ +

j (max,es, M (@, mp,€/28) + nypq)
If x € F then there exists a point z € Ly, such that
oy, (1,2) < e/2".
If z € L1 then there exist © € Ly, y € D11 such that
dy, (z,2) < g/2".
For each z € L; ., there are points ¥ € Ly, y € Dy
dy, (T,2) < /2"

and

dtk+1 (fekeraX:veLk M(w,fk,s/2k+1) (Z) ’y) < 6/2k+1.

Thus we have dy, (T,2) < ¢/2*! and d,, (fgﬁma“xﬂ”e% M (2.85.2/2 ) (v) 7y> < g/2 L IE

m > 0 there are points xZH, e xZ'nH € Ski1, such that

gy (250 F0 (y) < /250

with
Ay = (m—1) (nkﬂ + max M (a:,nk+1,5/2k+1)> )
TESK+1
So that
Dt i1 (f ttmases, g M(wmn,e/2 am) () x’ZIl) <eg/2"2 (19)

11



Let us consider the interval [0, n — 1] partitioned as

[0, —1] =[0,4,1]U U {zk + (i —1) <nk+1 + max M (z, g, e/z’fﬂ)) N (nk+1 + max M (z, g, /2"
TESY TCOk

=1

{Ek +m (nkH + m%xM (a:,nk,s/Qk“)) n— 1} .
rESK

Thus

0,1

ngz fj _Ekaz

O—1 O—1

+ Z ©i (fj(l’) - —lpay
=0

kz_:%' (fj(x) - <

7=0 J=0

trvar (9, 2/2"%Y) + Ry

In each interval of the form |r;,r; + (i — 1) ( max M (a:, Nht1, 5/2k+1) + nk+1>} , using eq.
TESk+1
(20) and the fact that Ski1 C Xg (o, 041, nk11) it can be done the estimation

ri+ max M(:c Nkt1 5/2k+1)+nk+1—1

Z Pi (fj(x) — (maXM (x,nk,s/2k+1) +nk+1) a;| <. (20)

TESK

Qm%XM (3j Nk, 5/2k+1) ”9@”0 + ngrrvar (90“ E/Qk 2)
rESK

On the intervals [Ek +m (nkH + m%XM (x, Nk, 6/2k+1)) ,n— 1} we have
rESK

k+1

n—1
Z i (f(z) — (n — 4l —m (nkH + nax M (LL‘ Ngt1,€/2 +1)>) o, <

— M ok+1
s k+m(”k+1+3€1?gz (mmk,f-?/ ))

2 (n — U, —m (nkH + max M (x nk+1,6/2 ))) lleillg < 2 (nkH +£%%XM (x,nk+1’g/2k+1>) il -
k

TESK+1

Finally

< Rii + (0 + mngsr) var (i, E/Qk_2> +

Z Pi (f](-f) — na;

12



2 (nk—l—l + (m + 1) max M (%nka€/2k+1)> [pillo + Mmres10k41-

€S}

Recall that n > £, + 5 (maxmesk M (a:, Nk, €/2k+1) + nkﬂ) and £, > Ny, so

E pi|Sn (wi () — ai] < E Di g—]:var (¢ie/2"7%) +
i=1 i=1

Ng+1 + max M (x,nk+1,5/2k+1) max M (I,nk+1,€/2k+1)
2 TS 4 1 @il + Gt
Ny, N1 o "
The right hand tends to 0 as n — oo and k& — o0, so that
Jim > pi|Sn (i () — i | =0,
i=1
therefore x € G (u) .
[

Proposition 3.2: For systems with nonuniform specification and for a fixed p €

M (X, f), holds that
Ae (a) = by (f)-

Proof: Let
var (pi,e) = sup {|p; (x) — @i (y)] : d (z,y) < e},
since X is compact and ¢; € C'(X) we have lim var (i,€) = 0. It can be chosen € > 0,5 > 0
such that

Zpivar (piye) <e <.
i=1

with 0 < v < 1 given by lemma 2.1, and

1
lim sup —log N (o, d,¢6,n) < Ag () + €.
n

n—oo

Let R, (g, 0, 1) be the minimal number of balls B,, . () whose union has y—measure > 1—4.

By a theorem of Katok[? | if u is ergodic then holds

13



h, (f) =lim lim sup R, (¢,6, ) = lim lim inf R,, (&, 6, i) .

e—0n—oo e—0n—oo

Let us consider the measure v and its convex ergodic decomposition given by the lemma
k

21v=> A\, thus for any ¢ > 0 there is a ¢; = ¢, (v;,4¢e,7v) > 1, such that
j=1

R, (4e,7, v;) > exp [n(hy, (f) —7)], forn>4;, j=1,..,k.

Let Ny enough large such that n; := [A\jn| > max{ly,...,0;, N}, for n > ¢; and where N
is sush that v; (Y; (N)) > 1 —~. Let E;, j = 1,...,r, be a finite (n;,4c) —separated set in
Y; (N), by the non-uniform specification property given points x1, xs, ..., ,, x; € E;, there

isay=y(x,z,..,2,) such that

dnj (faj (y) 7xj) < g/Zk’

with a; = Ji (n; + maxyep, M (y,n;,e/28)) . By [7] hold these two facts

i)y = ylz(lml,xg, w0y Ty) € Xo (o, 50, m), with n = a + ng.

i) f y = y(a1,39,..,21), y = y(2,,2,,...,2,) correspond to different r—tuples
(@1, 22, ..., 2,), (@1, Ty, ..., x,) then d (y,y) > be.

Thus is valid

N («a, 58, €,n) > M... My,

with M; = cardE;.Since each Ej is (n;,4¢) —separated set in Y; (N), then

My = e [ (hy (1) = 7)]

and
k

N (a,58,€,7) > exp | > [\] (B, (f) =)

Jj=1

- A7)
Since > A\; =1 and — Aj, as n — 0o, we have
j=1 n

1
liminf =N (o, 50,€,1) > h, (f) — 37

n—oo M

and by (6)
Ae (@) = hy (f) = 4.

14
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Proposition 3.3: For dynamical systems with the non-uniform specification property
holds hyep (G (1)) = hy (f), for any f—invariant measure p.

Proof:  Let { Sk} be the sequence of finite sets and {n;}, { Ny }be the sequence of positive

integers as in the earlier constructions. Recall (c.f. eq 14) that

k
hiop(F) > hmlnf— (ZN log M; + mlog Mk+1>

n—oo N
=1

with M, = cardS; and m the unique number such that

l+m <maXM (x,nk,5/2k+1) + nkH) <n < l+(m+1) (maxM (x,nk,£/2k+1) + nk+1> )

€S €Sk

The sets Sy are(ny, be) —separated sets, for a fixed ¢ > 0, in Xg (v, 0, nx) , we can consider
My, = cardSy > exp [ng (Ao (a) — )], like in proposition 3.1. Thus, since F' C G (u) and
by proposition 3.1

hiop (G (1) 2 hiop(F) 2 Ao (a) = = hy, (f) — 57,

for arbitrary small v. The inequality hi, (G (1)) < hy, (f) was proved by Bowen[3].

V. PROOF OF THE THEOREMS 1.1 AND 1.2

The following result, appeared in [5], is very useful for the proof of the variational principle

(theorem 1.2) as well as for the study of the irregular part of the spectrum (theorem 1.1)

Lemma 4.1: For any ® € C(X") and for any & > 0 there is a map ® :X” — R of the

form

Zso ®..0¢",

with gogi) € C(X) and such that HCIJ - (IDH <e.
Also is needed
Lemma 4.2(Bowen[3]): For any ¢ > 0 holds

heop({z : I € V(x) with by, (f) <t}) <t
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In fact the proof of the theorem 1.2 is totally similar of that of the theorem 1.1 in [5].

Let us denote

M (a) = {M € Mipy(X) : /@duw - a} ,

Proof of the theorem 1.2: Let € > 0 and ® be the map of the lemma 4.1, so that

Valme) = ST 28 (4 @),

j=1 i=1

) n—-1 .
where S,, (goy) (a:)) =y gog-’) (f*(z) . Letz € Eg (), since X is compact thereisa pu € V(z)
k=0

and a sequence {ny } such that w*—limy_, &,, () = p, .where w*— means weak convergence.

Therefore
lim V; (ng, z) = /&Dd,u(@r.
We have
’/@du@” —al < ‘/@du@” — /&)duggr + ‘/?{;du@” — Vi (ng, )|+
and |V213 (ng, ) — Vo (nk,m)| + Vs (ng, ) — af,
where limy_o (V3 (ni, 2) — Vo (ng,z)) = 0 and limy_eo (Vo (g, 2) —) = 0. Thus

U Ddp®r — a’ < 2e, and, since ¢ is arbitrary, u € Mg (). Then we have that
E (o) C {x:3p € V(x) with h, (f) <sup{h,(f): p € Mg (a)}}. Hence by the Bowen

lemma

ol s () < sup {hu TS a} .

To prove the opposite inequality, let = € G (u), with u € Mg («), so that

lim V; (n,z) = /&)du@".
we have

lim Vg (n,z) — /@d,u@ <

lim Vg (n,2) — lim V3 (n,2)|+

n—oo n—oo
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< 2¢e.

lim V (n,z) — /&)du@" + ’/&)du@” — /@du@"

Thus lim Vg (n,z) = [ @du®" = a, since p € Mg (o). In this way is proved that G (1) C

Eg (o), from this and proposition 3.3 is obtained

hiop(Ee (@) 2 hiop(G (1) ) = hyu (f)

then taken sup over the measures pu € Mg () results

o B () > sup {hu )+ [ @ - a} .

Let

Go (o) = {x . there is {ng} such that w* — khi& En, () =€ Mg (a)} :

For ay # ay € R, we shall find a set G C G (1) N Go (a2) .

Before proving the theorem 1.1 we give some lemmas.

Lemma 4.3: If a; # s then Gg (1) N Go (a2) C EP.

Proof: Let ¢ > 0 and @ be the map of the lemma 4.1. Let z € Gog (a1) N Go (az), so

there are sequences {ny}, {m} such that

p:w*—klimé'nk(x);uej\/l@(al)

v=w"—lim &, (z);v e Mqs (as),

k—o00

We have

X n-1
where S, (gog-l) (:L‘)) = kz—:o cpjz) (f*(x)). Therefore

17



lim V3 (ng, z) = /:I;du@'

k—o0

lim Vi (mg,x) = /E)du‘g’r.

k—o0

By the argument of approximation of lemma 4.1 we get in the same way of [5] that

lim Vg (ng, x) = /@du@’ =ap and lim Vg (my, x) = /<I>dy®r = g, with ag # as.

k—o00 k—o0

Then z € EF.

For p1,p2,....,pr € M(X) and positive numbers Ry, Ry, ..., Ry, let xy,29,...,25 €

X, ny,ng,...,n € N such that &, (x;) € Bg, (pj), j =1,2,..., k., for a given p1, p, ..., pr €
M(X) and Ry, Ry, ..., Rg. Let 61 > 0, €5 > 0,..., &, > 0, by the non-uniform specification
property if M; > M (z;,n;,e;), j=1,2,..., k, then there is a point z € X such that

uch that

dp, (x,,2) <&

and

Z(HJJFM)
dn, | f771 (2),2; | <e.

Let s; =n;+M;, j=1,2,..,k and S; = 51 + s2 + ... + 5.

i—1
Z(nﬁMj)
Lemma 4.4: Let z such that d,, | f/=! (2),z; | < ¢, then for any p € M(X)
holds
Lk
D(Es.(2).p) < 5= > 51 (Bi+ D (psp))
7j=1

18



where E =Rj+ej,7=12,. k.
Proof: We have

k
. () = 31 3058 (F97)
and
D, (1), 8, () < 3 (7 ) 557 2).
J =0

Therefore

D (s, (2),p) < Sik é [D(&s; (25) j En,, (fM571(2))) + D(Es, (z5), p;) + D(p;, p)] <

- z (R + ¢+ Dips,p).

Lemma 4.5: Let oy # s with Mg () # &, Mg (a2) # & then
hiop(Ga (1) N Go (a2)) = min {fop(Go (1)), hiop(Ga (a2))}

Proof: Since Gg (1) N Gg (a2) C Go (1) and G (1) N G (a2) C Go (a2), by the

monotonicity of the entropy we have

hiop(Ga (1) N G (a2)) < min {hep(Ga (1)), hiop(Ga (a2))}

. To prove the other inequality we shall find a set G C Gg (a1) N Gg (a2) with Ay, (G) >
min {heop(Ga (1)), hiop(Ge (2))} -

To construct G, let us choose sequences {n;}, {Rx}, {ex} with Ry \, 0 and ¢; \, 0
and, for a given sequence {p1, pa, ..., pr} C M(X), for ;& > e;.let us consider (ny, ) —sets

I'y C{z: &, (v) € Br, (pr)}, so that (by the Lemma 4.4)

v €y, 2€ By, -, (x) = &, (2) € Br,+e, (p1) -

Let us choose now a strictly increasing sequence { Ny} such that
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k
Skr1 < Ry, Z s;N;

j=1
and
k—1 k
Z Sij S Rk Z Sij.
j=1 Jj=1

We consider stretched sequences { s;} , { 5;} , { F;} such that if j = Ny + ... + N1 + ¢
with 1 < ¢ < N then n; = Ny, 5;- = ¢, and F;- =TI4.

Finally, we can define

DL

Gk =

J o <BS;,€;, (ffj)) ,

1 ,
J ijFj

with Sj = s) + sy + ..+ s; and

Any element of G' can be labelled by a sequence z; ..., with z; € I'j;. According to
Pfister and Sullivan [12] the following holds: Let x;, y; € I7j, x; # y;, if v € By, (75),
y € By, (y;) then max {d (f*(z), f*(y)) : k =0,...,n; — 1} > 2¢, with £ > &, /4.

We see that G C Go (1) N Gg (a2). Let z € G, and let pp € Mo (a1), 1y € Mg (a2),

it can be considered sequences[? | {ux}, {vx} such that

D (po, k) < Re and D (vo, vx) < Ry, then form the sequence

{pk} = {Ml)l’bhylu V1, f2, H2, V2, V2, } :

Let p € {po, 0}, and >7_, s:N; < Sy, < 3077 sV, thus

1 J=1 5. N.
D (&g, (2),p) < =— > siNiD | £ z), + 22D (& n.(2),p) +
(s<>p)_5kl221zz Zsle()p S (Esn;(2),p)

=1

Se— 9, sV
Sk

D (gsk (Z) ’p> < Rj +D (gSij (Z)’ p]) +D (pjv :0) +D (55j+le+l(z)7 p) +D (pj+17p) <

(&,.18,21(2), p) . Therefore
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2Rj+¢e;+D (pj, p)+D (pj41, p) . Thus, choosing subsequences t;, = 4k+1 and uy, = 4k+3,

we get

o =w* — lim &g, ()

k—oo

v =w"— lim &g, (2),

k—oo

so that z € Go (a1) N Gg () .

To  complete the proof it must be proved that  hy(G) >
min {hop(Go (1)), hiop(Go (a2))}, for this we follow [12]. Let s < h =
min { Ao, (Go (1)), hiop(Goe (a2))}, the set G is closed, and so it is compact, let us

consider a finite covering U by balls B,, . (z) having non-empty intersection with G. Now

M (G,s,N,e) = UE(}(?L,fs,G)B ;Eu exp (—sm).

For any finite covering U of (G, we can construct a covering U, in the following way:

each ball By, (z) is replaced by a ball By, . (x) with M, <m < M, ;. Thus

M (G,s,N,e) = inf — > inf —sM,_1).
(G5, N.e) = _inf > exp( sm)z | inf > exp(—sM,p)
B'm,s($)eu BI\/IT,EEUO

Now we can consider a covering Uy in which m = max {r : there is a ball By, . (z) € Up} .

We set

Wy = ﬁr W, = O W
i=1 k=1
Let xj, y; € I, x; # y;, as we pointed out earlier, if € By, (z;), ¥ € By, (¥))
then d (f'(z), f'(y)) > 2
for any [ = 0,..., N; — 1, and with ¢ > ¢;/4. Now for any x € By, . (2) N G there is a,
uniquely determined z = z(z) € W,. A word w € W}, with j = 1,2, ..., k, is a called a prefix
of a word w € Wy, if the first j—letters of w agree with the first j—letters of w.The number

of times that each w € W), is a prefix of a word in W,,, is
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cardW,, /cardWy, thus if W is a subset of W,, then

m

card (W N Wy)
Z card (Wy)

> card (Wy,) .
k=1

If each word in W,, has a prefix contained in a W C W,, then

m

Z card (W N Wy) 51
card(Wy) = 7

and since U is a covering each point of W,, has a prefix associated to a ball in U,. By this

and because cardW > exp (EMT), we obtain

Z exp (—sM,) > 1.

B, e €Uo

Thus if 7 is taken such that k& > r then sM;, < hMj, for N > M,, U € G(N,e,G).

Therefore

Z exp (_Sm) > 17

B e (x)eU

and so

M (G,s,N,e) > 1.

By this h,(G) > h .

Proof of the theorem 1.1.: Let

\I/:\Ifr’q;. M(X) — R
W) = [ v

and let
h = hip(X) be the topological entropy of the whole space X. By the classical variational

principle and by the variational principle of [5]
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h=sup{h,(f):p € Miun,(X, f)} = sup {h,(f):p€Ms(a) } =

aclm(¥)

sup  {hop(Fa (av)) }.

a€lm(¥P)

We must show that hy,,(Eg) > h. For any v > 0, there is an a; € Im WV such that
hiop(Eo (1)) > h — 7, let ay € Im U and let pq, po € M(X, f) with ¥ (111) = a1, ¥ (o) =
az. The map A —— W ((1 — A) g + Ape) is continuous.Recall that

hiop(Ga (1) N Ga ((1 — X) a1 + Aag)) = min { hyp(Go (1) , hiop ( Go (1 — A) a1 + Aaw))},
then, by the continuity of ¥ as a function of A\, we have
hiop(Eg’) 2 1 higp(Ga (1) N Ga (1= A) a1 + Aag)) >

hiop(Ge (1) 2 hiop(Ew (a1)) > h = 7.

Since v is arbitrary the result follows.
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