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Abstract

Let (X, f) be a dynamical system with X a compact metric space. Let Xr be the product of

r−copies of X, r ≥ 1, and Φ : Xr → R. The multifractal decomposition for V−statistics for Φ, f

is defined as

EΦ,f (α) =

{
x : lim

n→∞
1

nr
∑

0≤i1,...,ir≤n−1
Φ
(
f i1 (x) , ..., f ir (x)

)
= α

}
. The set of points x ∈ X, for

which the limit does not exist is called the irregular part, or historic set, of the spectrum.

In this article we analyze the irregular part of the V−statistics for systems satisfying a weak

form of the known Bowen specification property, called the non-uniform specification property.

This concept was introduced by P. Varandas and allows to work in a nonuniformly hyperbolic

context.
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I.

II. INTRODUCTION

The multiple ergodic averages appeared as a dynamical version of the Szemeredi theo-

rem in combinatorial number theory. This analogy was pointed out by Furstenberg[8] who

studied ergodic averages in a measure-preserving probability space (X,B, µ, f) of the form

1

N −M

N−1∑
n=M

µ
(
A ∩ fnA ∩ ... ∩ fknA

)
, (1)

where A ∈ B and j ∈ N. Furstenberg established that if µ (A) > 0 then

lim inf
N→∞

1

N −M
N−1∑
n=M

µ (A ∩ fnA ∩ ... ∩ f jnA) > 0. This relevant result serves to prove by

arguments from Ergodic Theory the Szemeredi theorem, which states that if S is a set of

integers with positive upper density then S contains arithmetic progressions of arbitrary

length.

The multifractal analysis of V statistics treated by Fan, Schmeling and Wu[5] was mo-

tivated by the problems on convergence of multiple ergodic averages. Let us consider a

topological dynamical system (X, f) , with X a compact metric space and f a continuous

map. Let Xr = X × ...×X be the product of r−copies of X with r ≥ 1, if Φ : Xr → R is

a continuous map, then let

VΦ (n, x) =
1

nr

∑
1≤i1,...,ir≤n

Φ
(
f i1 (x) , ..., f ir (x)

)
. (2)

These averages are called the V−statistics of order r with kernel Φ. For the idea of

V statistics from a Statistical point of view and its relationship with the Ustatistics see

section 2 of[5].

Ergodic limits of the form

lim
n→∞

1

n

n−1∑
i=0

Φ
(
f i1 (x) , ..., f ir (x)

)
,

were studied among others by Furstenberg[8], Bergelson[1] and Bourgain[2].

The multifractal decomposition for the spectra of V−statistics is

2



EΦ (α) =
{
x : lim

n→∞
VΦ (n, x) = α

}
.

Fan, Schemeling andWu[5] have obtained the following variational principle for dynamical

systems with the specification property.:

htop(EΦ (α)) = sup

{
hµ (f) :

∫
Φdµ⊗r = α

}
, (3)

where htop is the topological entropy for non-compacts nor invariant sets and hµ (f) is the

measure-theoretic entropy of µ. Here µ⊗r means µ × ... × µ, r−times. This generalizes the
variational principle established by Takens and Verbitski for r = 1[11].

The irregular part of the spectrum, or historic set, is the set of points x for which

lim
n→∞

VΦ (n, x) does not exist. We denote this set by E∞Φ , so that the space X can be

decomposed as

X =
⋃
α∈R

EΦ (α) ∪ E∞Φ .

In a recent paper [9]we have studied the irregular part of the multifractal decomposition of

V−statistics, in order to determine its dimension. We proved that for topological dynamical
systems with the property of specification, if the irregular part of the spectrum of multiple

ergodic averages, or V−statistics is non-empty then it has the same topological entropy as
the whole space X.

The objective of the present article is to extend the above result for systems satisfying a

weak form of the specification property, known as non-uniform specification condition. This

notion was introduced by P. Varandas[14] and is satisfied, for instance, by non-uniformly

quadratic maps and for the so called Viana maps, which are a robust class of multidimen-

sional non-uniformly hyperbolic functions[14]. The result to be proved is

Theorem 1.1: Let (X, f) be a dynamical system with the property of non-uniform

specification. Let Φ ∈ C (Xr) , r ≥ 1, and let E∞Φ (α) be the irregular part of the spectrum

of multiple ergodic averages VΦ (n, x) . Then EΦ (α) is empty or htop(E∞Φ (α)) = htop (X) .

For the proof of the result in [9], we used the variational principle for systems with the

specification property of Fan, Schemeling and Wu. The key point for the demonstration of

this variational principle is the saturadness of. This means that
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htop (G (µ)) = hµ (f) , (4)

where by G (µ) is denoted the set of µ−generic points. Bowen [3] proved the inequality

htop (G (µ)) ≤ hµ (f) ,

while in [7] was proved the opposite inequality, i.e. the saturadness of dynamical systems

with specification. Thus to extend our result of [9] to systems with the non-uniform specifi-

cation property we must prove that such systems are saturated. Once proved this, following

[7], we obtain

Theorem 1.2: Let (X, f) be a dynamical system with the property of non-uniform

specification. Let Φ ∈ C (Xr) , r ≥ 1, then

htop(EΦ (α)) = sup

{
hµ (f) :

∫
Φdµ⊗r = α

}
.

With the theorem 1.2 and the saturadness, following similar lines than in [9] we obtain

theorem 1.1.

Remark: The case r = 1 was proved in [15]. In that article the proof is not based on the

saturadness, unlike herein.

III. PRELIMINARIES

Firstly let us recall the Bowen definition of topological entropy of sets: Let f : X → X,

with X a compact metric space, for n ≥ 1 the dynamical metric, or Bowen metric, is

dn (x, y) = max {d (f i (x) , f i (y)) : i = 0, 1, ..., n− 1}. We denote by Bn,ε (x) the ball of

centre x and radius ε in the metric dn. Let Z ⊂ X and let C (n, ε, Z) be the collection of

finite or countable coverings of the set Z by balls Bm,ε (x) with m ≥ n. Let

M (Z, s, n, ε) = inf
B∈C(n,ε,Z)

∑
Bm,ε(x)∈B

exp (−sm) ,

and set

M (Z, s, ε) = lim
n→∞

M (Z, s, n, ε) .

4



There is an unique number s such that M (Z, s, ε) jumps from +∞ to 0. Let

H(Z, ε) = s = sup {s : M (Z, s, ε) = +∞} = inf {s : M (Z, s, ε) = 0} ,

and

htop (Z) = lim
ε→0

H(Z, ε). (5)

The number htop (Z) is the topological entropy of Z.

A dynamical system (X, f) has the non-uniform specification property if the following

condition holds, for δ > 0, 0 < ε < δ, n ∈ N, x ∈ X, there exists an integer M (x, n, ε) such

that

lim
ε→0

lim
n→∞

sup
1

n
M (x, n, ε) = 0,

and such that is verified, given x1, x2, ..., xk ∈ X, n1, n2, ..., nk ∈ N, if Mi ≥ M (xi, ni, ε)

then there is a point z ∈ X such that

dn1 (x1, z) < ε

and

dni

f
i−1∑
j=1

(nj+Mj)

(z), xi

 < ε.

By M(X) we denote the space of measures in X, and by Minv(X, f) the space of

f−invariant measures on X. The space M(X) can be endowed with a metric D compati-

ble with the metric in X, in the sense that D(δx, δy) = d(x, y), where δ is the point mass

measure. More precisely the metric considered inM(X) will be

D (µ, ν) =

∞∑
n=1

∣∣∫ ϕndµ− ∫ ϕndν∣∣
2n ‖ϕn‖∞

,

where {ϕn} is a dense set in C(X). We denote by BR (µ) the ball of center µ and radius R

in the above metric. The topology induced by this metric is the weak ∗− topology, and if
X is compact thenM(X) is compact in the weak topology. The weak convergence is the

convergence in the metric which induces the weak topology.

The so called empirical measures on X associated to the dynamical system (X, f) are
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En (x) =
1

n

n−1∑
i=0

δf i(x).

Here δ is the point mass measure. We denote the weak limits of the sequence{En (x)} by
V (x). Since X is compact, V (x) 6= ∅. If µ is a measure on X then a point x ∈ X is

µ−generic if V (x) = {µ} , by G (µ) is denoted the set of µ−generic points.
Following [7] the set of generic points can be characterized in the following way. Let

{pi} be a sequence of numbers with
∞∑
i=1

pi = 1 and let {si} be a sequence in `∞. The

sequence {si = sn,i}i converges to α = (αi) ∈ `∞ in the weak ∗− topology if and only if
limn→∞ |sn,i − αi| = 0. Let {ϕ1, ϕ2, ...} a dense subset in unit ball of C/X), for a fixed

µ ∈Minv(X, f), let α = (α1, α2, ...), with αi =
∫
ϕidµ- Thus

G (µ) =

{
x : lim

n→∞

∞∑
i=1

pi |Sn (ϕi (x))− αi | = 0

}
Lemma 2.1([16],[14]): For any µ ∈ Minv(X, f) , 0 < δ < 1, 0 < γ < 1, there is a

measure ν such that ν =
k∑
j=1

λiνi, where each νj is ergodic and
k∑
j=1

λj = 1, and such that

i) hν (f) ≥ hµ (f)− γ.
ii)

∞∑
i=1

pi
∣∣∫ ϕidµ− ∫ ϕidν∣∣ < δ, where {ϕi} and {pi} are sequences like above.

Let N ≥ 1 and

Yj (N) =

{
x :

∞∑
i=1

pi

∣∣∣∣Sn (ϕi (x))−
∫
ϕidνj

∣∣∣∣ < δ, for n > N

}
,

where Sn (ϕi (x)) =
n−1∑
k=0

ϕi
(
fk(x

)
). By the Birkhoff ergodic theorem we have that

lim
n→∞

∞∑
i=1

pi

∣∣∣∣Sn (ϕi (x))−
∫
ϕidνk

∣∣∣∣ = 0, νk − a.e.,

and for suffi ciently large N holds νj (Yj (N)) > 1− γ.

Let α = (α1, α2, ...) ∈ `∞ and Θ = {ϕ1, ϕ2, ...} be a dense subset in unit ball of C(X).

Set

ΛΘ (α) = lim
ε→0

lim
δ→0

lim
n→∞

sup
1

n
logN (α, δ, ε, n) , (6)

where N (α, δ, ε, n) is the minimal number balls Bn,ε (x) needed to cover the set

XΘ (α, δ, n) =

{
x :

∞∑
i=1

pi |Sn (ϕi (x))− αi| < δ, α = (αi) ∈ `∞
}
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IV. CONSTRUCTION OF A FRACTAL SET AND PROOF OF SATURAD-

NESS

The next step is the construction of a fractal set F , such that F ⊂ G (µ). For the

construction is followed [7], [11],[? ] or [4], Let {nk} be a sequence of positive integers and
{Nk} be an increasing sequence of integers with Nk →∞ and

N1 = 1, N2 ≥ 2n1+maxx∈S1M(x,n1,ε/4)+n3+maxx∈S3M(x,n3,ε/16).

Let {Sk} be a sequence of finite subsets of X, and {nk} be a sequence of positive integers.
Let ε > 0 and assume that dnk (x, y) > 5ε, for anyx 6= y ∈ Sk. Sequences of sets {Dk} and
{Lk} are constructed in the following way: Set D1 = S1, let x1, ..., xNk ∈ Sk, ε > 0, by the

non-uniform specification property, there exists a y = y(x1, ..., xNk) such that

dnk (xj, f
aj (y)) < ε/2k,

with

aj = (j − 1)

(
nk + max

x∈Sk
M
(
x, nk, ε/2

k+1
))

Let

Dk =
{
y = y(x1, ..., xNk) : (x1, ..., xNk) ∈ S

Nk
k

}
, (7)

and

tk = aNk + nk = Nknk +Nk−1 ×max
x∈Sk

M
(
x, nk, ε/2

k+1
)
. (8)

The sequence {`k} is recursively defined as `1 = n1, and

`k+1 = `k + max
x∈Sk

M
(
x, `k, ε/2

k+1
)

+ tk+1.

Finally is introduced the sequence {Lk} by L1 = D1, if x ∈ Lk, y ∈ Dk+1 then, by the

non-uniform specification property, there is a z = z (x, y) such that

d`k (x, z) < ε/2k+2, (9)
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and

dtk+1

(
f `k+maxx∈Lk M(x,`k,ε/2k+1) (z) , y

)
. (10)

Thus Lk+1 = {z (x, y) : x ∈ Lk, y ∈ Dk+1} .if x ∈ Lk, y ∈ Dk+1 and y1, y2 ∈ Dk+1 then

d`k (z (x, y1) , z (x, y2)) < ε/2k and d`k+1 (z (x, y1) , z (x, y2)) > 2ε. So that each Lk is

(`k, 2ε)−separated.
The sequence {Nk} verifies

Nk ≥ 2

k−1∑
i=1

Nini+(Ni−1) maxx∈SiM(x,ni,ε/2i+1)+maxx∈LiM(x,`i,ε/2i+3)+maxx∈Sk+1M(x,nk+1,ε/2k+2)

A fractal set F = F ({nk} , {Nk} , ε, {Sk}) is defined as

F =
∞⋂
k=1

Fk,

with Fk =
⋃
x∈Lk

B`k

(
x, ε/2k−1

)
.

For each n ∈ N and x ∈ Lk, let j be the unique number such that

`k + j

(
max
x∈Sk

M
(
x, nk, ε/2

k+1
)

+ nk+1

)
≤ n < `k +(j + 1)

(
max
x∈Sk

M
(
x, nk, ε/2

k+1
)

+ nk+1

)
.

(11)

It can defined a sequences of measures concentrated on Fk by

µk =
1

Ak
νk,

with νk =
∑
x∈Lk

δx and Ak = cardLk = MN1
1 ...MNk

k , where Mk = cardSk. Let B = Bn,ε/2 (x)

such that B∩F 6= ∅, so

µk (B) ≤
M

Nk+1−j
k+1

MN1
1 ...MNk

k M
Nk+1
k+1

=
1

cardLk ×M j
k+1

.

Let µ be the w∗−limit of the sequence{µk} , then by the distribution mass principle

htop(F ) ≥ lim inf
n→∞

1

n

(
k∑
i=1

Ni logMi + j logMk+1

)
. (12)

Proposition 3.1: The fractal F is contained in the set of genereric points G (µ) .

Proof: Let Θ = {ϕ1, ϕ2, ...} and recall that G (µ) ={
x : limn→∞

∞∑
i=1

pi
∣∣Sn (ϕi (x))−

∫
ϕidµ

∣∣ = 0

}
, where {pi} is a sequence of numbers
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with
∞∑
i=1

pi = 1. Let var (ϕi, ε) = sup {|ϕi (x)− ϕi (y)| : d (x, y) < ε} , if dn (x, y) < ε then∣∣∣∣∣
n−1∑
j=0

ϕi
(
f j(x

)
)−

n−1∑
j=0

ϕi
(
f j(y

)
)

∣∣∣∣∣ ≤ nvar (ϕi, ε) .

Let us suppose firstly that y ∈ Dk, and estimate∣∣∣∣∣
tk−1∑
j=0

ϕi
(
f j(y

)
)− tkαi

∣∣∣∣∣ ,
where α =

(
αi =

∫
ϕidµ

)
i
. Let us consider the sets Sk in the construction of the sets Dk and

Lk contained in the set XΘ (α, δk, nk) =

{
x :

∞∑
i=1

pi |Snk (ϕi (x))− αi| < δk

}
, with δk → 0.

If y ∈ Dk then there are points xk`j ∈ Sk, j = 1, 2, ..., Nk such that

dnk

(
xk`j , f

am (y)
)
< ε/2k,

with

am = (m− 1)

(
nk + max

x∈Sk
M
(
x, nk, ε/2

k
))

.

We have ∣∣∣∣∣
nk−1∑
j=0

ϕi

(
f j(xk`j

)
)−

nk−1∑
j=0

ϕi
(
f j+am(y

)
)

∣∣∣∣∣ ≤ nkvar
(
ϕi, ε/2

k
)
. (13)

Since Sk ⊂ XΘ (α, δk, nk) holds∣∣∣∣∣
nk−1∑
j=0

ϕi
(
f j+am(y

)
)− αi

∣∣∣∣∣ ≤ nk
(
var

(
ϕi, ε/2

k
)

+ δk
)
. (14)

Set

[0, tk − 1] =

Nk−1⋃
m=0

[am, am +Nk − 1] ∪
Nk−2⋃
m=0

[
am + nk, am + nk max

x∈Sk
M
(
x, nk, ε/2

k
)
− 1

]
.

Thus ∣∣∣∣∣
nk−1∑
j=0

ϕi
(
f j+am+nk(y

)
− nkαi

∣∣∣∣∣ ≤ max
x∈Sk

M
(
x, nk, ε/2

k
)

[|αi|+ ‖ϕi‖0] (15)

So that, by eq. (15)∣∣∣∣∣
tk−1∑
j=0

ϕi
(
f j+am(y

)
)− tkαi

∣∣∣∣∣ ≤ (16)

Nknk
(
var

(
ϕi, ε/2

k
)

+ δk
)

+ 2 (Nk − 1) max
x∈Sk

M
(
x, nk, ε/2

k
)
‖ϕi‖0

(17)
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.

The next step in to get an estimation on Lk. Let

Rk,i = max
z∈Lk

{∣∣∣∣∣
`k−1∑
j=0

ϕi
(
f j(z

)
− `kαi

∣∣∣∣∣
}
,

so is valid R1,i ≤ `1δ1, for any i. Let x ∈ Lk, y ∈ Dk+1, z ∈ Lk+1, by the construction the

sets

d`k (x, z) < ε/2k+1,

and

dtk+1

(
f `k+maxx∈Lk M(x,`k,ε/2k+1) (z) , y

)
< ε/2k+1.

Thus∣∣∣∣∣
`k+1−1∑
j=0

ϕi
(
f j(z

)
− `k+1αi

∣∣∣∣∣ ≤
∣∣∣∣∣
`k−1∑
j=0

ϕi
(
f j(z

)
−

`k−1∑
j=0

ϕi
(
f j(x

)∣∣∣∣∣+∣∣∣∣∣
`k−1∑
j=0

ϕi
(
f j(x

)
− `kαi

∣∣∣∣∣+

∣∣∣∣∣∣∣
`k+maxx∈Lk M(x,`k,ε/2k+1)−1∑

j=`k

ϕi
(
f j(z

)
− max

x∈Lk+1
M
(
x, `k, ε/2

k+2
)∣∣∣∣∣∣∣+∣∣∣∣∣

`k+1−1∑
j=0

ϕi

(
f j+maxx∈Lk+1M(x,`k,ε/2k+2)+`k(z

)
−

`k+1−1∑
j=0

ϕi
(
f j(y

)∣∣∣∣∣+∣∣∣∣∣
`k+1−1∑
j=0

ϕi
(
f j(y

)
− tk+1αi

∣∣∣∣∣ ≤ `kvar
(
ϕi, ε/2

k+1
)

+Rk,i + 2 max
x∈Lk+1

M
(
x, `k, ε/2

k+2
)
‖ϕi‖0 + tk+1var

(
ϕi, ε/2

k+1
)

+

Nk+1nk+1

(
var

(
ϕi, ε/2

k+1
)

+ δk+1

)
+ 2 (Nk+1 − 1) max

x∈Lk+1
M
(
x, `k, ε/2

k+2
)
‖ϕi‖0 .

Rk,i ≤ 2

k∑
j=1

`j

(
var

(
ϕi, ε/2

j
)

+ δj +
Nj maxx∈Lj M (x, `k, ε/2

j)

`j
‖ϕi‖0 .

)
.

Since X is compact lim
ε→0

var (ϕi, ε) = 0, also δk → 0. We may choose the sequence{nk}with
nk →∞ such that nk ≥ 2maxx∈Lk M(x,`k,ε/2k) so we can express Rk,i bounded as

Rk,i ≤
k∑
j=1

`jTj,

where Tk → 0 as k →∞. So that
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Rk,i

`k
≤ Tk +

1

k

k∑
j=1

`jTj

and
∞∑
i=1

piRk,i ≤
k∑
j=1

`jTj. Thus, for k enough large and since `k ≥ 2`k−1 we have

∞∑
i=1

pi
Rk,i

`k
≤ Tk +

1

k

k∑
j=1

Tj. (18)

Therefore
∞∑
i=1

pi
Rk,i

`k
→ 0 as k →∞.

Finally is done the estimation on F. Let x ∈ F , n ∈ N, n > `1, there is an unique

number k such that `k < n < `k+1. Besides there exist a number m such that n ≥ `k +

j
(
maxx∈Sk M

(
x, nk, ε/2

k+1
)

+ nk+1

)
.

If x ∈ F then there exists a point z ∈ Lk+1 such that

d`k+1 (x, z) < ε/2k.

If z ∈ Lk+1 then there exist x ∈ Lk, y ∈ Dk+1 such that

d`k (x, z) < ε/2k+1.

For each z ∈ Lk+1 there are points x ∈ Lk, y ∈ Dk+1

d`k (x, z) < ε/2k+1

and

dtk+1

(
f `k+maxx∈Lk M(x,`k,ε/2k+1) (z) , y

)
< ε/2k+1.

Thus we have d`k (x, x) < ε/2k−1 and dtk+1

(
f `k+maxx∈Lk M(x,`k,ε/2k+1) (x) , y

)
< ε/2k−1. If

m > 0 there are points xk+1
`1

, ..., xk+1
`m
∈ Sk+1, such that

dnk+1
(
xk+1
`m

, fam (y)
)
< ε/2k+1

with

am = (m− 1)

(
nk+1 + max

x∈Sk+1
M
(
x, nk+1, ε/2

k+1
))

.

So that

dtnk+1

(
f `k+maxx∈Sk+1M(x,nk+1,ε/2k+1+am) (z) , xk+1

`m

)
< ε/2k−2. (19)
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Let us consider the interval [0, n− 1] partitioned as

[0, n− 1] = [0, `k−1] ∪
m⋃
i=1

[
`k + (i− 1)

(
nk+1 + max

x∈Sk
M
(
x, nk, ε/2

k+1
))

, `k + i

(
nk+1 + max

x∈Sk
M
(
x, nk, ε/2

k+1
)
− 1

))
∪[

`k +m

(
nk+1 + max

x∈Sk
M
(
x, nk, ε/2

k+1
))

, n− 1

]
.

Thus∣∣∣∣∣
`k−1∑
j=0

ϕi
(
f j(x

)
− `kαi

∣∣∣∣∣ ≤
∣∣∣∣∣
`k−1∑
j=0

ϕi
(
f j(x

)
−

`k−1∑
j=0

ϕi
(
f j(x

)∣∣∣∣∣+

∣∣∣∣∣
`k−1∑
j=0

ϕi
(
f j(x

)
− −`kαi

∣∣∣∣∣ ≤
`kvar

(
ϕi, ε/2

k+1
)

+Rk,i.

In each interval of the form
[
ri, ri + (i− 1)

(
max
x∈Sk+1

M
(
x, nk+1, ε/2

k+1
)

+ nk+1

)]
, using eq.

(20) and the fact that Sk+1 ⊂ XΘ (α, δk+1, nk+1) it can be done the estimation

∣∣∣∣∣∣∣∣
ri+ max

x∈Sk+1
M(x,nk+1,ε/2k+1)+nk+1−1∑

j=ri

ϕi
(
f j(x

)
−
(

max
x∈Sk

M
(
x, nk, ε/2

k+1
)

+ nk+1

)
αi

∣∣∣∣∣∣∣∣ ≤ . (20)

2 max
x∈Sk

M
(
x, nk, ε/2

k+1
)
‖ϕi‖0 + nk+1var

(
ϕi, ε/2

k−2
)
.

On the intervals
[
`k +m

(
nk+1 + max

x∈Sk
M
(
x, nk, ε/2

k+1
))

, n− 1

]
we have

∣∣∣∣∣∣∣∣∣
n−1∑

s=`k+m

(
nk+1+ max

x∈Sk
M(x,nk,ε/2k+1)

)ϕi (f s(x)−
(
n− `k −m

(
nk+1 + max

x∈Sk+1
M
(
x, nk+1, ε/2

k+1
)))

αi

∣∣∣∣∣∣∣∣∣ ≤

2

(
n− `k −m

(
nk+1 + max

x∈Sk+1
M
(
x, nk+1, ε/2

k+1
)))

‖ϕi‖0 ≤ 2

(
nk+1 + max

x∈Sk
M
(
x, nk+1, ε/2

k+1
))
‖ϕi‖0 .

Finally ∣∣∣∣∣
n−1∑
j=0

ϕi
(
f j(x

)
− nαi

∣∣∣∣∣ ≤ Rk,i + (`k +mnk+1) var
(
ϕi, ε/2

k−2
)

+

12



2

(
nk+1 + (m+ 1) max

x∈Sk
M
(
x, nk, ε/2

k+1
))
‖ϕi‖0 +mnk+1δk+1.

Recall that n ≥ `k + j
(
maxx∈Sk M

(
x, nk, ε/2

k+1
)

+ nk+1

)
and `k > Nk, so

∞∑
i=1

pi |Sn (ϕi (x))− αi| ≤
∞∑
i=1

pi
Rk,i

`k
var

(
ϕi, ε/2

k−2
)

+

2

nk+1 + max
x∈Sk+1

M
(
x, nk+1, ε/2

k+1
)

Nk

+

max
x∈Sk+1

M
(
x, nk+1, ε/2

k+1
)

nk+1

 ‖ϕi‖0 + δk+1.

The right hand tends to 0 as n→∞ and k →∞, so that

lim
n→∞

∞∑
i=1

pi |Sn (ϕi (x))− αi | = 0,

therefore x ∈ G (µ) .

�

Proposition 3.2: For systems with nonuniform specification and for a fixed µ ∈
Minv(X, f), holds that

ΛΘ (α) ≥ hµ (f) .

Proof: Let

var (ϕi, ε) = sup {|ϕi (x)− ϕi (y)| : d (x, y) < ε} ,

since X is compact and ϕi ∈ C(X) we have lim
ε→0

var (ϕi, ε) = 0. It can be chosen ε > 0, δ > 0

such that
∞∑
i=1

pivar (ϕi, ε) < ε < γ.

with 0 < γ < 1 given by lemma 2.1, and

lim
n→∞

sup
1

n
logN (α, δ, ε, n) < ΛΘ (α) + ε.

Let Rn (ε, δ, µ) be the minimal number of balls Bn,ε (x) whose union has µ−measure ≥ 1−δ.
By a theorem of Katok[? ] if µ is ergodic then holds

13



hµ (f) = lim
ε→0

lim
n→∞

supRn (ε, δ, µ) = lim
ε→0

lim
n→∞

inf Rn (ε, δ, µ) .

Let us consider the measure ν and its convex ergodic decomposition given by the lemma

2.1 ν =
k∑
j=1

λjνj, thus for any ε > 0 there is a `j = `j (νi, 4ε, γ) ≥ 1, such that

Rn (4ε, γ, νi) ≥ exp
[
n
(
hνj (f)− γ

)]
, for n ≥ `j, j = 1, ..., k.

Let N0 enough large such that nj := [λjn] ≥ max {`1, ..., `k, N} , for n ≥ `j and where N

is sush that νj (Yj (N)) > 1 − γ. Let Ej, j = 1, ..., r, be a finite (nj, 4ε)−separated set in
Yj (N), by the non-uniform specification property given points x1, x2, ..., xr, xj ∈ Ej, there
is a y = y ( x1, x2, ..., xr) such that

dnj (faj (y) , xj) < ε/2k,

with aj =
j−1∑
i=1

(
ni + maxy∈EiM

(
y, ni, ε/2

k+1
))
. By [7] hold these two facts

i) y = y ( x1, x2, ..., xr) ∈ XΘ (α, 5δ, n̂), with n̂ = ak + nk.

ii) If y = y ( x1, x2, ..., xk) , y
¨ = y¨

(
x´1, x

´
2, ..., x

´
k

)
correspond to different r−tuples

( x1, x2, ..., xr) ,
(
x´1, x

´
2, ..., x

´
r

)
then d

(
y, y
)̈
> 5ε.

Thus is valid

N (α, 5δ, ε, n̂) ≥M1...Mk,

with Mj = cardEj.Since each Ej is (nj, 4ε)−separated set in Yj (N), then

Mj ≥ exp
[
nj
(
hνj (f)− γ

)]
.

and

N (α, 5δ, ε, n̂) ≥ exp

[
k∑
j=1

[λjn]
(
hνj (f)− γ

)]
.

Since
k∑
j=1

λj = 1 and
[λjn]

n
→ λj, as n→∞, we have

lim inf
n̂→∞

1

n̂
N (α, 5δ, ε, n̂) ≥ hµ (f)− 3γ

and by (6)

ΛΘ (α) ≥ hµ (f)− 4γ.

14



�
Proposition 3.3: For dynamical systems with the non-uniform specification property

holds htop (G (µ)) = hµ (f) , for any f−invariant measure µ.
Proof: Let {Sk} be the sequence of finite sets and {nk} , {Nk}be the sequence of positive

integers as in the earlier constructions. Recall (c.f. eq 14) that

htop(F ) ≥ lim inf
n→∞

1

n

(
k∑
i=1

Ni logMi +m logMk+1

)
with Mj = cardSj and m the unique number such that

`k+m

(
max
x∈Sk

M
(
x, nk, ε/2

k+1
)

+ nk+1

)
≤ n < `k+(m+ 1)

(
max
x∈Sk

M
(
x, nk, ε/2

k+1
)

+ nk+1

)
.

The sets Sk are(nk, 5ε)−separated sets, for a fixed ε > 0, in XΘ (α, δk, nk) , we can consider

Mk = cardSk ≥ exp [nk (ΛΘ (α)− γ)] , like in proposition 3.1. Thus, since F ⊂ G (µ) and

by proposition 3.1

htop (G (µ)) ≥ htop(F ) ≥ ΛΘ (α)− γ ≥ hµ (f)− 5γ,

for arbitrary small γ. The inequality htop (G (µ)) ≤ hµ (f) was proved by Bowen[3].

�

V. PROOF OF THE THEOREMS 1.1 AND 1.2

The following result, appeared in [5], is very useful for the proof of the variational principle

(theorem 1.2) as well as for the study of the irregular part of the spectrum (theorem 1.1)

Lemma 4.1: For any Φ ∈ C(Xr) and for any ε > 0 there is a map Φ̃ :Xr → R of the

form

Φ̃ =
n∑
j=1

ϕ
(1)
j ⊗ ...⊗ ϕ

(r)
j ,

with ϕ(i)
j ∈ C(X) and such that

∥∥∥Φ− Φ̃
∥∥∥
∞
< ε.

Also is needed

Lemma 4.2(Bowen[3]): For any t ≥ 0 holds

htop({x : ∃µ ∈ V (x) with hµ (f) ≤ t}) ≤ t.

15



In fact the proof of the theorem 1.2 is totally similar of that of the theorem 1.1 in [5].

Let us denote

MΦ (α) =

{
µ ∈Minv(X) :

∫
Φdµ⊗r = α

}
,

Proof of the theorem 1.2: Let ε > 0 and Φ̃ be the map of the lemma 4.1, so that

VΦ̃ (n, x) =
n∑
j=1

r∏
i=1

1

n
Sn

(
ϕ

(i)
j (x)

)
,

where Sn
(
ϕ

(i)
j (x)

)
=

n−1∑
k=0

ϕ
(i)
j

(
fk(x

)
. Let x ∈ EΦ (α) , sinceX is compact there is a µ ∈ V (x)

and a sequence {nk} such that w∗−limk→∞ Enk (x) = µ, .where w∗−means weak convergence.
Therefore

lim
n→∞

VΦ̃ (nk, x) =

∫
Φ̃dµ⊗r.

We have

∣∣∣∣∫ Φdµ⊗r − α
∣∣∣∣ ≤ ∣∣∣∣∫ Φdµ⊗r −

∫
Φ̃dµ⊗r

∣∣∣∣+

∣∣∣∣∫ Φ̃dµ⊗r − VΦ̃ (nk, x)

∣∣∣∣+
and

∣∣VΦ̃ (nk, x)− VΦ (nk, x)
∣∣+ |VΦ (nk, x)− α| ,

where limk→∞
(
VΦ̃ (nk, x)− VΦ (nk, x)

)
= 0 and limk→∞ (VΦ (nk, x)− α) = 0. Thus∣∣∫ Φdµ⊗r − α

∣∣ < 2ε, and, since ε is arbitrary, µ ∈MΦ (α) . Then we have that

EΦ (α) ⊂ {x : ∃µ ∈ V (x) with hµ (f) ≤ sup {hµ (f) : µ ∈MΦ (α)}} . Hence by the Bowen
lemma

htop(EΦ (α)) ≤ sup

{
hµ (f) :

∫
Φdµ⊗r = α

}
.

To prove the opposite inequality, let x ∈ G (µ), with µ ∈MΦ (α) , so that

lim
n→∞

VΦ̃ (n, x) =

∫
Φ̃dµ⊗r.

we have ∣∣∣∣ lim
n→∞

VΦ (n, x)−
∫

Φdµ⊗r
∣∣∣∣ ≤ ∣∣∣ lim

n→∞
VΦ (n, x)− lim

n→∞
VΦ̃ (n, x)

∣∣∣+
16



∣∣∣∣ lim
n→∞

VΦ̃ (n, x)−
∫

Φ̃dµ⊗r
∣∣∣∣+

∣∣∣∣∫ Φ̃dµ⊗r −
∫

Φdµ⊗r
∣∣∣∣ < 2ε.

Thus lim
n→∞

VΦ (n, x) =
∫

Φdµ⊗r = α, since µ ∈ MΦ (α). In this way is proved that G (µ) ⊂
EΦ (α) , from this and proposition 3.3 is obtained

htop(EΦ (α)) ≥ htop(G (µ) ) ≥ hµ (f) ,

then taken sup over the measures µ ∈MΦ (α) results

htop(EΦ (α)) ≥ sup

{
hµ (f) :

∫
Φdµ⊗r = α

}
.

�
Let

GΦ (α) =
{
x : there is {nk} such that w∗ − lim

k→∞
Enk (x) = µ ∈MΦ (α)

}
,

For α1 6= α2 ∈ R, we shall find a set G ⊂ GΦ (α1) ∩GΦ (α2) .

Before proving the theorem 1.1 we give some lemmas.

Lemma 4.3: If α1 6= α2 then GΦ (α1) ∩GΦ (α2) ⊂ E∞Φ .

Proof: Let ε > 0 and Φ̃ be the map of the lemma 4.1. Let x ∈ GΦ (α1) ∩ GΦ (α2), so

there are sequences {nk} , {mk} such that

µ = w∗ − lim
k→∞
Enk (x) ;µ ∈MΦ ( α1)

ν = w∗ − lim
k→∞
Emk

(x) ; ν ∈MΦ ( α2) ,

We have

VΦ̃ (n, x) =
∑
j

r∏
i=1

1

n
Sn

(
ϕ

(i)
j (x)

)
,

where Sn
(
ϕ

(i)
j (x)

)
=

n−1∑
k=0

ϕ
(i)
j

(
fk(x

)
). Therefore
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lim
k→∞

VΦ̃ (nk, x) =

∫
Φ̃dµ⊗r

lim
k→∞

VΦ̃ (mk, x) =

∫
Φ̃dν⊗r.

By the argument of approximation of lemma 4.1 we get in the same way of [5] that

lim
k→∞

VΦ (nk, x) =

∫
Φdµ⊗r = α1 and lim

k→∞
VΦ (mk, x) =

∫
Φdν⊗r = α2, with α1 6= α2.

Then x ∈ E∞Φ .
�

For ρ1, ρ2, ..., ρk ∈ M(X) and positive numbers R1, R2, ..., Rk, let x1, x2, ..., xk ∈
X, n1, n2, ..., nk ∈ N such that Enj (xj) ∈ BRj (ρj) , j = 1, 2, ..., k., for a given ρ1, ρ2, ..., ρk ∈
M(X) and R1, R2, ..., Rk. Let ε1 > 0, ε2 > 0, ..., εk > 0 , by the non-uniform specification

property if Mj ≥M (xj, nj, εj) , j = 1, 2, ..., k, then there is a point z ∈ X such that

uch that

dn1 (x1 , z) < ε

and

dni

f
i−1∑
j=1

(nj+Mj)

(z), xi

 < ε.

Let sj = nj +Mj, j = 1, 2, ..., k, and Sj = s1 + s2 + ...+ sj.

Lemma 4.4: Let z such that dni

f
i−1∑
j=1

(nj+Mj)

(z), xi

 < ε, then for any ρ ∈ M(X)

holds

D (ESk (z) , ρ) ≤ 1

Sk

k∑
j=1

sj
(
Rj +D (ρj, ρ)

)
,

18



where Rj = Rj + εj , j = 1, 2, ..., k.

Proof: We have

ESk (z) =
1

Mk

k∑
j=1

sjEsj
(
fSj−1(z)

)
,

and

D(Esj (xj) , Esj
(
fSj−1(z)

)
) ≤ 1

sj

nj−1∑
l=0

d
(
f l (xj) , f

−Sj−1−l (z)
)
.

Therefore

D (ESk (z) , ρ) ≤ 1

Sk

k∑
j=1

[
D(Esj (xj) ,j , Ensj

(
fMj−1(z)

)
) +D(Esj (xj) , ρj) +D(ρj, ρ)

]
≤

1

Mk

k∑
j=1

[Rj + εj +D(ρj, ρ)] .

�

.

Lemma 4.5: Let α1 6= α2 withMΦ (α1) 6= ∅,MΦ (α2) 6= ∅ then

htop(GΦ (α1) ∩GΦ (α2)) = min {htop(GΦ (α1)), htop(GΦ (α2))} .

Proof: Since GΦ (α1) ∩ GΦ (α2) ⊂ GΦ (α1) and GΦ (α1) ∩ GΦ (α2) ⊂ GΦ (α2) , by the

monotonicity of the entropy we have

htop(GΦ (α1) ∩GΦ (α2)) ≤ min {htop(GΦ (α1)), htop(GΦ (α2))}

. To prove the other inequality we shall find a set G ⊂ GΦ (α1) ∩ GΦ (α2) with htop(G) ≥
min {htop(GΦ (α1)), htop(GΦ (α2))} .
To construct G, let us choose sequences {nk} , {Rk} , {εk} with Rk ↘ 0 and εk ↘ 0

and, for a given sequence {ρ1, ρ2, ..., ρk} ⊂ M(X), for , ε > ε1.let us consider (nk, ε)−sets
Γk ⊂ {x : Enk (x) ∈ BRk (ρk)} , so that (by the Lemma 4.4)

x ∈ Γk, z ∈ Bsk,εk (x) =⇒ Esk (z) ∈ BRk+εk (ρk) .

Let us choose now a strictly increasing sequence {Nk} such that
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sk+1 ≤ Rk

k∑
j=1

sjNj

and
k−1∑
j=1

sjNj ≤ Rk

k∑
j=1

sjNj.

We consider stretched sequences
{
s
′
j

}
,
{
ε
′
j

}
,
{

Γ
′
j

}
such that if j = N1 + ... + Nk−1 + q

with 1 ≤ q ≤ Nk then n
′
j = nk, ε

′
j = εk and Γ

′
j = Γk.

Finally, we can define

Gk :=
k⋂
j=1

 ⋃
xj∈Γ

′
j

f−Sj−1
(
Bs
′
j ,ε
′
j
(xj)

) ,

with Sj = s
′
1 + s

′
2 + ...+ s

′
j and

G :=
⋂
k≥1

Gk.

Any element of G can be labelled by a sequence x1 x2..., with xj ∈ Γ́j. According to

Pfister and Sullivan [12] the following holds: Let xj, yj ∈ Γ́j, xj 6= yj, if x ∈ Bsj ,εj (xj) ,

y ∈ Bsj ,εj (yj) then max
{
d
(
fk(x), fk(y)

)
: k = 0, ..., nj − 1

}
> 2ε, with ε > ε1/4.

We see that G ⊂ GΦ (α1) ∩ GΦ (α2) . Let z ∈ G, and let µ0 ∈ MΦ (α1) , ν0 ∈ MΦ (α2) ,

it can be considered sequences[? ] {µk} , {νk} such that

D (µ0, µk) < Rk and D (ν0, νk) < Rk, then form the sequence

{ρk} = {µ1, µ1, ν1, ν1, µ2, µ2, ν2, ν2, ...} .

Let ρ ∈ {µ0, ν0} , and
∑j

l=1 slNl ≤ Sk ≤
∑j+1

l=1 slNl, thus

D (ESk (z) , ρ) ≤ 1

Sk

j−1∑
l=1

slNlD

Ej−1∑
l=1

slNl

(z) , ρ

+
sjNj

Sk
D
(
EsjNj(z), ρ

)
+

Sk −
∑j

l=1 slNlj

Sk
D
(
Esj+1Nj+1(z), ρ

)
. Therefore

D (ESk (z) , ρ) ≤ Rj +D
(
EsjNj(z), ρj

)
+D (ρj, ρ) +D

(
Esj+1Nj+1(z), ρ

)
+D (ρj+1, ρ) ≤
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2Rj+εj+D (ρj, ρ)+D (ρj+1, ρ) . Thus, choosing subsequences tk = 4k+1 and uk = 4k+3,

we get

µ0 = w∗ − lim
k→∞

EStk (z)

ν0 = w∗ − lim
k→∞

ESuk (z) ,

so that z ∈ GΦ (α1) ∩GΦ (α2) .

To complete the proof it must be proved that htop(G) ≥
min {htop(GΦ (α1)), htop(GΦ (α2))} , for this we follow [12]. Let s < h :=

min {htop(GΦ (α1)), htop(GΦ (α2))} , the set G is closed, and so it is compact, let us

consider a finite covering U by balls Bm,ε (x) having non-empty intersection with G. Now

M (G, s,N, ε) = inf
U∈C(n,ε,G)

∑
Bm,ε(x)∈U

exp (−sm) .

For any finite covering U of G, we can construct a covering U0 in the following way:

each ball Bm,ε (x) is replaced by a ball BMrr,ε (x) with Mr ≤ m ≤Mr+1. Thus

M (G, s,N, ε) = inf
U∈C(n,ε,G)

∑
Bm,ε(x)∈U

exp (−sm) ≥ inf
U∈C(N,ε,G)

∑
BMr,ε∈U0

exp (−sMr+1) .

Now we can consider a covering U0 in whichm = max {r : there is a ball BMr,ε (x) ∈ U0} .
We set

Wk :=
k∏
i=1

Γi, Wm =

m⋃
k=1

Wk.

Let xj, yj ∈ Γ́j, xj 6= yj, as we pointed out earlier, if x ∈ BŃj ,έj (xj) , y ∈ BŃj ,έj (yj)

then d
(
f l(x), f l(y)

)
> 2ε

for any l = 0, ..., Nj − 1, and with ε > ε1/4. Now for any x ∈ BMr,ε (z) ∩ G there is a,

uniquely determined z = z(x) ∈ Wr. A word w ∈ Wj, with j = 1, 2, ..., k, is a called a prefix

of a word w ∈ Wk if the first j−letters of w agree with the first j−letters of w.The number
of times that each w ∈ Wk is a prefix of a word in Wm is
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cardWm/cardWk, thus if W is a subset of Wm then

m∑
k=1

card (W ∩Wk)

card (Wk)
≥ card (Wm) .

If each word in Wm has a prefix contained in a W ⊂ Wm then

m∑
k=1

card (W ∩Wk)

card (Wk)
≥ 1,

and since U0 is a covering each point of Wm has a prefix associated to a ball in U0. By this

and because cardWk ≥ exp
(
hMr

)
, we obtain

∑
BMr,ε∈U0

exp (−sMr) ≥ 1.

Thus if r is taken such that k ≥ r then sMk+1 ≤ hMk, for N ≥ Mr, U ∈ G (N, ε,G) .

Therefore

∑
Bm,ε(x)∈U

exp (−sm) ≥ 1,

and so

M (G, s,N, ε) ≥ 1.

By this htop(G) ≥ h .

�

Proof of the theorem 1.1.: Let

Ψ = Ψr,Φ :M(X)→ R

Ψ (µ) =

∫
Φdµ⊗r

and let

h = htop(X) be the topological entropy of the whole space X. By the classical variational

principle and by the variational principle of [5]
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h = sup {hµ (f) : µ ∈Minv(X, f)} = sup
α∈Im(Ψ)

{hµ (f) : µ ∈MΦ (α) } =

sup
α∈Im(Ψ)

{htop(EΦ (α)) } .

We must show that htop(E∞Φ ) ≥ h. For any γ > 0, there is an α1 ∈ Im Ψ such that

htop(EΦ (α1)) > h− γ, let α2 ∈ Im Ψ and let µ1, µ2 ∈ M(X, f) with Ψ (µ1) = α1, Ψ (µ2) =

α2. The map λ 7−→ Ψ ((1− λ)µ1 + λµ2) is continuous.Recall that

htop(GΦ (α1)∩ GΦ ((1− λ)α1 + λα2)) = min {htop(GΦ (α1) , htop ( GΦ ((1− λ)α1 + λα2))} ,

then, by the continuity of Ψ as a function of λ, we have

htop(E
∞
Φ ) ≥ lim

λ→0
htop(GΦ (α1) ∩GΦ ((1− λ)α1 + λα2)) ≥

htop(GΦ (α1) ≥ htop(EΦ (α1)) > h− γ.

Since γ is arbitrary the result follows.

VI.
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