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Control-Oriented Model With Intra-Patient
Variations for an Artificial Pancreas
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Abstract—In this work, a low-order model designed for
glucose regulation in Type 1 Diabetes Mellitus (T1DM) is
obtained from the UVA/Padova metabolic simulator. It cap-
tures not only the nonlinear behavior of the glucose-insulin
system, but also intra-patient variations related to daily
insulin sensitivity (SI) changes. To overcome the large
inter-subject variability, the model can also be personal-
ized based on a priori patient information. The structure is
amenable for linear parameter varying (LPV) controller de-
sign, and represents the dynamics from the subcutaneous
insulin input to the subcutaneous glucose output. The effi-
cacy of this model is evaluated in comparison with a previ-
ous control-oriented model which in turn is an improvement
of previous models. Both models are compared in terms
of their open- and closed-loop differences with respect to
the UVA/Padova model. The proposed model outperforms
previous T1DM control-oriented models, which could po-
tentially lead to more robust and reliable controllers for
glycemia regulation.

Index Terms—Intra-patient variations, LPV model, type 1
diabetes, control-oriented model, artificial pancreas.
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I. INTRODUCTION

TYPE 1 Diabetes Mellitus (T1DM) is a chronic disease
characterized by an absolute insulin deficit, and therefore,

patients rely on exogenous insulin dosage to achieve glucose
regulations and avoid complications such as hypo- or hyper-
glycemia and their long-time adverse effects.

The Artificial Pancreas (AP) is a system conceived to au-
tomate the exogenous insulin supply by usually connecting a
Continuous Glucose Monitoring (CGM) sensor with a subcu-
taneous insulin pump through a control algorithm. The core of
the AP is the control algorithm, which estimates the amount of
insulin to be administered to the patient. The main challenge to
achieve good Blood Glucose (BG) control is that each patient
can be characterized by nonlinear dynamics with time-varying
parameters and responses that change not only from one person
to another (inter-subject variability), but also from day to day for
the same person (intra-subject variability). Therefore, the control
algorithm must be designed with robustness and time-varying
properties to make closed-loop control reliable and safe [1]–[3].

Inter-patient variations are mostly related to differences in
Insulin Sensitivity (SI), requirements and absorption/action
times [1], [4]. These variations are larger than in healthy individ-
uals [5] and preclude the possibility of obtaining a unique control
algorithm that works for everyone. In consequence, most recent
research efforts are focused on model personalization [1], [2],
[6]–[14]. To avoid model identification, these approaches use
patient-specific clinical variables like Total Daily Insulin (TDI),
Insulin-to-Carbohydrate Ratio (CR) or body weight to individ-
ualize the controller’s gain. Model Predictive Control (MPC)
algorithms are individualized by using patient-specific model
parameters or personalizing the MPC cost function weights [15],
[16]. Adaptive algorithms (like run-to-run control) that adjust
and individualize controller parameters have also been pro-
posed [17]–[25]. It is worth remarking that in the aforemen-
tioned control-oriented models no intra-patient variability was
embedded into the model structure.

Intra-subject variability is an additional important challenge
for the AP. Subject’s insulin requirements to control glycemia
vary across the daytime [26], attributed to circadian changes
in Glucose Tolerance (GT), i.e., the relative amount of glucose
taken up by peripheral tissue [27], and SI [28], which corre-
sponds to the ability of insulin to stimulate glucose utilization
and inhibit its production [29], regulating how sensitive is the
body to the effects of insulin. This subject-specific variability is
influenced by many factors like meals, stress, sleep architecture,
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physical activity, rhythms of counterregulatory hormones, and
quality of BG control [3], [8], [30]–[32]. Given that such factors
ultimately may be reflected on the patient’s SI, intra-patient
variability can be described by suitable modeling of circadian SI
variation [26]–[28], [31]. In this regard, intra-patient variations
were included in the UVA/Padova metabolic simulator [33]–[35]
by associating each in-silico subject with one of seven possible
variability classes, assigned to a specific time-varying SI pro-
file [5], [36]. These profiles were created by modulating Vmx,
which governs the insulin-dependent glucose utilization, and
kp3, which regulates the insulin action on the liver, as time-
varying parameters. Similar approches were followed in [22],
[37], where sinusoidal deviations of 20% amplitude over the
nominal values related to insulin sensitivity and absorption were
added for controller testing. In this way, the observedSI variation
of ±30% is included [28], but there is no consensus yet on how
to model these variations.

Although SI variations have been generally considered to
test glucose controllers through extensive simulations, better
closed-loop performance may be obtained if these variations
were included in the controller synthesis stage. Several ap-
proaches have been considered in this matter. In [1], [9], the
in-silico subjects of the UVA/Padova simulator are sorted in four
groups according to the average value of their daily CR profile
(related to each subject’s SI), with a personalized Linear Time
Invariant (LTI) model associated with each group. This model is
then used as a one-step ahead prediction model to synthesize a
customized MPC. However, since LTI models are used, there is a
significant loss of information regarding the patient’s dynamics,
considering its time-varying characteristics.

On a different approach, adaptive control systems consider
intra-patient variations by embedding the model in the controller
and adjusting controller parameters as experimental data reflects
a time-variation in the model dynamics. Other adaptive control
systems update the parameters of the model recursively as new
data are collected from the system, and use the latest model in
the controller [21], [24], or run-to-run control strategies to adapt
basal insulin patterns [20], [23], [25], insulin boluses [7], [18],
[19], [22], [38], or MPC cost functions [2]. Of these, the works
of [18], [19] considered subject’sSI for assessing the controller’s
gain, but this SI was determined using only some outputs, and
therefore, does not characterize the insulin sensitivity of the
virtual patient in the traditional sense [19]. On [23], [25] the
algorithm is able to adjust intra- and inter-day SI variations, by
updating CR and basal insulin patterns according to perfomance
indexes computed at the end of each day.

Another approach to cope with intra-patient variability is to
compute tight-solution bounds on prediction models. In [32],
[39], parametric variations over a glucose-insulin model are
used to compute a solution envelope that is used as a prediction
model in control structures like MPC. Instead, in [40], a Linear
Parameter Varying (LPV) model set was obtained to cover both,
SI variations and dynamic uncertainties, for each patient. From
a control design viewpoint, to “cover” intra-patient variations
with bounded uncertainty is more conservative than to explicitly
include them in the model. The latter embeds these time-varying
dynamics in the controller, which could in theory [41], [42], lead
to better performance.

SI parametric variations embedded in the patient’s model are
considered in [43], where the Medtronic Virtual Patient (MVP)
model is identified for ten different subjects based on closed-loop
glucose-insulin data and the oral minimal model [44]. Intra-day
variations inSI related parameters were structured to change dur-
ing three time-windows inside a 24-hour time period, assuming
one value during the first and last time-windows and a different
value during the second one. SI variations were identified in
six of the ten subjects of the study, presenting different starting
times and segment duration among them.

Note that these approaches consider a specific SI variation
profile [43] or average daily SI value [1], [4]. Considering that
for some subjects parameters can present substantial differences
over time, these models would not be able to follow or include
such changes. Real-time parametric identification can help im-
prove closed-loop performance. However, the ability of real-
time identification algorithms to track time-varying parameters
needs to be carefully assessed before their implementation for
controller design.

A good control-oriented model should have a structure that
allows a well-known, reliable, and numerically robust control
synthesis technique to produce a controller that can be im-
plemented in real-time. Considering the time-varying charac-
teristics of the glucose regulation problem, LPV models are
good candidates, and can result in LPV or switched LPV (or
LTI) control strategies, that can yield better performance for the
AP, as presented in [14], [45], [46]. In this regard, in [14], we
presented a third-order LPV model that reflects the time-varying
and non-linear nature of the glucose regulation problem by
an average (over all subjects) structure, including a parameter
dependent on the glucose level, which is measured in real-time.

Therefore, this work focuses on developing a model that
reflects time-varying SI variations within the model, while
maintaining a simple structure that allows reliable and robust
control synthesis techniques to be used. For this, an extension
of [14] that includes SI variations is developed, by introducing a
second time-varying parameter to its low-order LPV structure.
The model now includes intra- and inter-patient variations, and
still preserves the possibility of personalizing it based on the
1800-rule, through a procedure that can be carried out in real
patients in a non-invasive way.

The paper is organized as follows. In Section II the baseline
LPV model [14] is described. Section III presents the procedure
to obtain the LPV model with intra-patient variations. Section IV
presents the open- and closed- loop evaluation of the model
efficiency. Finally, conclusions are discussed in Section V.

II. MATERIALS AND METHODS

The baseline control-oriented LPV model used in this work is
the one developed in [14], [46] that is based on the UVA/Padova
metabolic simulator [33]. It has a low-order structure akin to
the one presented in [6], where the input corresponds to the
subcutaneous insulin infusion (in pmol/min) and the output is
the glucose concentration deviation (in mg/dl):

G(s) = k
s+ z

(s+ p1)(s+ p2)(s+ p3)
e−15s. (1)
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An average model was first identified at a glucose concentra-
tion g = 235 mg/dl, where the 1800-rule is rendered correct for
the nonlinear model [14], [46]. Then, its domain of validity was
extended by allowing parameter p1 to vary with g in order to fit
the average Bandwith (BW) of the linearized models at different
glucose values, keeping all other parameters fixed (z = 0.1501,
p2 = 0.0138 and p3 = 0.0143). Pole p1(g) was approximated
by the following piecewise-polynomial function:

p1(g) = qi g
3 + ri g

2 + si g + ti

with i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if g ≥ 300

2 if 110 ≥ g < 300

3 if 65 ≥ g < 110

4 if 59 ≥ g < 65

5 if g < 59

(2)

and with coefficient values given in Table I.
In this way, a simple manner of replicating changes in the

model’s gain according to the glucose value was obtained, since
the BW and Low-Frequency Gain (DC Gain) of the model are
related by the time-varying parameter p1.

The median glucose-dependent model (1) can then be tuned
to a specific subject by adjusting parameter k with his/her TDI
as follows. For each subject #j, the LPV model at 235 mg/dl is
excited with a 1 U insulin bolus and the value of kj is determined
so that the glucose drop matches the one predicted by the 1800-
rule (1800/TDIj). Here, it is worth remarking that parameter
kj is time-invariant, but specific to each subject.

A state-space representation of the personalized LPV model
(defined as LPVg model) is given by:

ẋ(t) = A(p1)x(t) +Bu(t− τ)

y(t) = Cx(t)
(3)

with τ = 15 min, u and y the insulin delivery and glucose
signals, and

A(p1) =

⎡
⎢⎣0 1 0

0 0 1

0 −p2p3 −(p2 + p3)

⎤
⎥⎦

+ p1

⎡
⎢⎣ 0 0 0

0 0 0

−p2p3 −(p2 + p3) −1

⎤
⎥⎦ ,

B =
h
0 0 1

iT
, C = kj

h
z 1 0

i
.

(4)

Note that the LPVg model is affine in parameter p1, which
is an advantageous characteristic for the design of LPV con-
trollers [47]. Moreover, LPVg was compared to the UVA/Padova
simulator in terms of the Root Mean Square Error (RMSE) and
the ν-gap metric [48], [49], achieving better performance than
control-oriented models presented previously in this field [3],
[6], [45]. It is worth noting that this model was used for

TABLE I
PARAMETER VALUES OF p1(g) FROM (2)

controller-design in a recent clinical trial, achieving promising
results [50], [51].

III. PROPOSED LPV MODEL

A. Inclusion of Intra-Patient Variations

In this section, an extension of model (4) that includes
intra-patient variability is developed — the LPVi model. The
proposed structure is identified from linearizations of the
UVA/Padova metabolic model around several operating points
defined by steady-state glucose concentrations achieved by only
accommodating the insulin infusion rate.

Glucose concentrations in the range [40, 400] mg/dl were con-
sidered to span the usual measurement range of CGM sensors,
within a non-uniform grid. Since an average structure was pur-
sued instead of specificSI values, an Insulin Sensitivity Variation
Factor (SI,VF) was defined as SI,VF = SI/SI,nom, where SI,nom
could be considered as its average daily or basal [52] value.
SI,VF was selected in the range [0.4, 1.7] over a uniform grid
with a step of 0.1, to cover the previously observed variations of
[40, 60]% around the nominal subject-specific SI [5], [22], [53].

For each subject, the operating points (gop, SIV F,op)were de-
fined over each pair (g, SIV F ) on the grid. The insulin infusion
rate was adjusted accordingly to achieve steady-state conditions
at the glucose level gop when parameters Vmx and kp3 were
modulated by SIV F,op. Then, as in [14], linearizations of the
UVA/Padova model were obtained for each in-silico adult of the
distribution version of the simulator.

Fig. 1 shows the average variation of the BW and DC Gain
for LPVg and all in-silico adults linearized at different g and
SI,VF values. Note that both BW and DC Gain coincide exactly
at SI,VF = 1.

Given that the DC Gain of model (1) is kz
p1p2p3

, and that the
BW is independent of k, the LPVg model is expanded by making
parameter k dependent on g and SI,VF as depicted in Fig. 2.
Following this approach, variations of the model’s gain due to
SI changes (see Fig. 1) can be reproduced, without affecting the
previous BW fitting.

In this way, k is used to compensate both inter-patient varia-
tions through the 1800-rule and intra-patient variations by mak-
ing k change according to a suitable SI profile. The latter could
be a general profile (such as those in [22], [36], [37]) or a profile
obtained from clinical data using the pump/CGM index in [54],
or through an estimation based on real-time measurements. This
grants flexibility to the selected model structure, so it can be
used together with the SI profile that best suits subject-specific
circadian variations in SI, or even considering other factors that
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Fig. 1. BW (top) and DC Gain (bottom) of LPVg (smooth surface) for
all in-silico adults from the UVA/Padova simulator linearized at different
g and SI values (gridded surface). The red dotted line indicates the BW
at nominal SI.

Fig. 2. Average LPVi model structure.

influence SI such as physical exercise or stress [28], [30], [31],
[55]–[57].

In order to characterize the dependence of parameter k on g
and SI,VF, the definition of the DC Gain of model (1) is used.
Here, the observed values for the DC Gain of the linearized
models at each (g, SI,VF) pairs (defined as DCGNL(g, SI,VF)),
together with the constant parameters p2, p3 and p1(g) from (2),
are used to compute an average value for parameter k, defined
as kavg:

kavg(g, SI,VF) =
p2p3
z

p1(g)DCGNL(g, SI,VF) (5)

Then, the result was fitted using a piecewise polynomial function
as indicated in the Appendix, and presented in Fig. 3.

Note that as shown in Fig. 1, there is an abrupt change at
60 mg/dl. The reason for this discontinuity is that the insulin-
dependent glucose utilization in the UVA/Padova simulator is
associated with a risk function that increases when glucose
decreases below the subject’s basal glucose concentration and
saturates when glucose reaches 60 mg/dl. To avoid translating

Fig. 3. Parameter kavg for different values of g and SI,VF (grid-
ded surface) and piecewise polinomial function kavg(g,SI,VF) (smooth
surface).

this artifact discontinuity to the glucose output, a smooth surface
was fitted instead.

In this way, the state-space representation of the average LPVi

model is similar to (4), but now with the output matrix:

C = kavg(g, SI,VF)
h
z 1 0

i
. (6)

B. Model Personalization

In Section III, it was shown how k can be used to tackle
intra-patient variability. In this Section, k is further tuned to
reduce inter-patient uncertainty. This model personalization is
carried out in a similar way as the one described in [14], i.e., by
adjusting model’s k using the 1800-rule.

In this case, a suitable gain k? is computed as the gain that
makes the LPVi model achieve the same glucose drop as the
one predicted by the 1800-rule when excited with a 1 U insulin
bolus at g = 235 mg/dl and SI,VF = 1. This point was selected
since it was the one at which the 1800-rule was satisfied on
average for all the in-silico adults [14]. A simple Proportional-
Integral (PI) control loop, which modified k of the LPVi model
until the model’s glucose drop matched the one predicted by the
1800-rule, was used to obtain k? for each adult.

Considering that for each subject the DC gain of the
model at g = 235 mg/dl and SI,VF = 1 should be k?,
a subject-specific scaling factor kj is computed as kj =
k?/kavg(235, 1), where kavg(235, 1) = −1.822× 10−5. Then,
a parameter ks(g, SI,VF) is defined as ks = kjkavg , with kj
given in Table II and kavg the same fitted-surface of 3. Model
personalization is thus achieved by replacing kavg in (6) with
parameter ks(g, SI,VF). Note that this corresponds to a vertical
shifting of the fitted kavg surface.

Variations of ks(g, SI,VF) for the average in-silico subject,
and the most and least sensitive subjects are presented in Fig. 4.
Note that the most sensitive subject (Adult #009), whose TDI is
the lowest, is associated with the highest scaling factor kj , and
therefore, higher values of ks (in module).

IV. RESULTS AND DISCUSSION

A good simulation model, i.e., one that fits properly the
experimental data, is not necessarily a good candidate to design
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TABLE II
SCALING FACTOR kj FOR EACH IN-SILICO ADULT

Fig. 4. kavg (gray surface) and personalized ks for the average subject
(yellow surface), Adult #006 (blue surface) and Adult #009 (green
surface).

controllers [58]. Therefore, in this section, a comparison of both
LPVg and LPVi with respect to the UVA/Padova model is carried
out not only for simulation (open-loop) purposes, but also for
controller synthesis (closed-loop). No other models are consid-
ered here, since in [14] LPVg already showed lower closed- and
open-loop errors than previous control-oriented models [3], [6],
[45].

A. Open-Loop Comparison

Considering that SI varies mostly during the day, the simu-
lations are performed incorporating the time-varying profiles
determined in [36]. First, the class 1 profile is analyzed, by
maintaining the same SI value during the day, but changing
it’s nominal value in the simulator. For each of the 10 in-silico
subjects of the distribution version of the UVA/Padova simulator,
an insulin bolus of 1 U was applied at different operating points
to test the personalized LPVi and LPVg models in comparison
with the UVA/Padova nonlinear simulator. Next, the other six
profiles were considered.

1) Fixed SI Values (Class 1): Fig. 5 presents the time-
responses for Adult #009 (most sensitive subject) to a 1 U
insulin bolus for multiple SI,VF values at basal glucose con-
centrations of 120, 180, and 240 mg/dl. Parameters p1 and ks
variations for the LPVg and LPVi models are also depicted.
Note that a better fit is achieved with LPVi than with LPVg for
most SI,VF values. The reason is that only LPVi adjusts its gain
to reflect changes in SI. In addition, it is worth clarifying that
despite the LPVi model is an extension of the LPVg model, its

Fig. 5. Responses to a 1U insulin bolus starting from 120 mg/dl,
180 mg/dl and 240 mg/dl for Adult #009 at different SI,VF values
for models LPVg (dotted black line), LPVi (dashed lines) and the
UVA/Padova nonlinear model (solid lines). Top: Glucose drop. Middle:
Evolution of parameter p1. Bottom: Evolution of parameter ks.

behavior for nominal insulin sensitivity (SI,nom) is the same only
at 235 mg/dl as an operating point, i.e., the glucose concentration
at which they were both identified. For other glucose concen-
trations, the gain adjustment through variation of parameter
ks(g, SI,VF) generates the differences between both models.

The RMSE between the time-responses of each LPV (yp) and
the UVA/Padova model (y), for each subject at each operating
point on the (g,SI,VF) grid, was computed according to the
following equation:

RMSE =
kyp − yk2√

nt
(7)

where k · k2 represents the 2-norm, and nt the number of points.
In order to capture the complete glucose variation at each point,
nt = 1200 points with a sampling time of 1 minute, were se-
lected. In Fig. 6, median values of the RMSE for all 10 in-silico
adults at different g andSI,VF values are shown. Note that a lower
RMSE can be obtained with LPVi than with LPVg for most
glucose concentrations. Considering SI variations, for the least
sensitive case (SI,VF = 0.4), LPVi outperforms LPVg for the
whole glucose range. For SI,nom (SI,VF = 1), both LPV models
have approximately the same RMSE, except for glucose concen-
trations around 90–180 mg/dl, where the increased sensitivity of
the UVA/Padova model is further adjusted by the variation of the
ks parameter in LPVi . For a glucose concentration of 235 mg/dl,
similar errors are observed since, as discussed before, at this
point both models are equivalent. For the most sensitive case
(SI,VF = 1.7), LPVi has a similar RMSE as LPVg for g < 140
mg/dl, but at higher g values the difference in the DC Gain
between both models becomes larger and LPVi provides a better
fit.

2) Time-Varying SI Profiles (Classes 2–7): Fig. 7 and 9
present the time responses for Adult #009 to three insulin
boluses in the set {0.5, 1, 1.5}U, applied at 7, 14, and 21 hours,
respectively, for different profiles of SI variation with a glucose
operation point of 120 mg/dl. For these scenarios, the basal
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Fig. 6. Median RMSE between the time-responses of the personalized
LPVg (violet dashed lines) and LPVi (blue solid lines), as compared
with the UVA/Padova nonlinear model to an insulin bolus of 1 U for
different SI,VF values. Top: most resistant case (SI,VF = 0.4), middle:
nominal case (SI,VF = 1), bottom: most sensitive case (SI,VF = 1.7).
The vertical bars are limited by the 25th and 75th percentiles.

Fig. 7. Responses to three 0.5 U insulin boluses starting at 120 mg/dl
for Adult #009 with different SI profiles for models LPVg (dotted vio-
let line), LPVi (solid blue lines) and the UVA/Padova nonlinear model
(dotted black lines).

Fig. 8. Responses to three 1 U insulin boluses starting at 120 mg/dl for
Adult #009 with different SI profiles for models LPVg (dotted violet line),
LPVi (solid blue lines) and the UVA/Padova nonlinear model (dotted
black lines).

Fig. 9. Responses to three 1.5 U insulin boluses starting at 120 mg/dl
for Adult #009 with different SI profiles for models LPVg (dotted vio-
let line), LPVi (solid blue lines) and the UVA/Padova nonlinear model
(dotted black lines).

Fig. 10. Median RMSE between the time-responses of the personal-
ized LPVg (dashed lines) and LPVi (solid lines), as compared with the
UVA/Padova nonlinear model to three insulin boluses of 0.5 U (blue),
1.0 U (green) and 1.5 U (violet) for different SI profiles. Vertical bars are
limited by the 25th and 75th percentiles.

insulin infusion rates were accommodated to maintain steady-
state conditions after SI changes, as performed in [59]. In these
cases, the LPVi model is able to reflect theSI variation regardless
of theSI profile or the applied bolus, better than the LPVg model.
In this way, the LPVi model obtains a more accurate repre-
sentation of the UVA/Padova model, adapted to the subject’s
individual SI profile. Additionally, the same scenario was tested
at glucose operating points in the set {90, 180, 240, 300} mg/dl,
obtaining the same results as for 120 mg/dl. These values were
selected in order to span the complete glycemic range with the
simulated glucose traces, bearing in mind that only insulin was
considered as input.

The average RMSE between the time-responses of both LPVi

and LPVg models and the UVA/Padova model is shown in
Fig. 10. Note that for all SI variation classes, a lower RMSE
was obtained with the LPVi model than with the LPVg model.
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Fig. 11. Median ν-gap (δν ) between the linearizations of the
UVA/Padova nonlinear model and models LPVg (violet dashed lines)
and LPVi (blue solid lines) for different SI,VF values. Top: most resistant
case (SI,VF = 0.4), middle: nominal case (SI,VF = 1), bottom: most
sensitive case (SI,VF = 1.7). The vertical bars are limited by the 25th
and 75th percentiles.

B. Closed-Loop Comparison

In this case, the ν-gap distance [48], [49] between each
personalized LPV model and the UVA/Padova model linearized
at different points of the (g, SI,VF) grid is computed. This metric
considers the distance (δν) between two models regarding their
achievable closed-loop performance, without having to design
the controllers for each loop.

For LTI models, given a controller K and a model P1, with
K and P1 transfer matrices, a performance measure/stability
margin for the (stable) closed-loop system (P1,K) is defined
in [48], [49] as:

bP1,K =


"
P1

I

#
(1−KP1)

−1
h
−K I

i
−1

∞
(8)

where k · k∞ indicates the H∞-norm. Here, larger values of
bP1,K correspond to better performance of the feedback sys-
tem comprising P1 and K. The difference between the per-
formances of the nominal model and a perturbed one P2 for
the same controller K can be quantified through the ν-gap,
i.e. δν(P1, P2), with bP2,K ≥ bP1,K − δν(P1, P2). This indi-
cates that the smaller δν(P1, P2) the closer their closed loop
perfomances. Considering that if P1 and P2 represent alter-
nate models of the same system (the UVA/Padova model and
the LPVg or LPVi for example), a small δν(P1, P2) indi-
cates that the differences between both models are negligible
from a feedback perspective. Note that for its computation
(see [48], [49]), only the plant models are required, and there-
fore their closed-loop performances can be compared without
having to design the controller and compare on a one-by-one
basis.

Fig. 11 presents the median ν-gap for all 10 adults for three
differentSI,VF values, obtaining lower values with LPVi, similar
to the analysis presented in Section IV-A.

TABLE III
PERCENTAGE OF CASES OF MODEL IMPROVEMENT IN TERMS OF THE RMSE
(%RMSE) AND ν-GAP (%ν-GAP). HRMSE OR Hν-GAP EQUAL TO ONE INDICATE
A SIGNIFICANT REDUCTION ON THE AVERAGE RMSE OR ν-GAP OBTAINED

WITH LPVi, CONSIDERING A 5% SIGNIFICANCE. TIME-VARYING SI,VF

VALUES CORRESPOND TO ALL SI,VF PROFILES THAT WERE CONSIDERED

C. Overall Comparison

The difference between the RMSE and ν-gap obtained with
both LPV models was computed for all (g,SI,VF) points con-
sidered in Section IV-A1, and all 10 in-silico adults, according
to:

δν,d = δν,LPVi
− δν,LPVg

(9)

RMSEd = RMSEi − RMSEg (10)

In this way, negative values of δν,d or RMSEd indicate points
where LPVi outperforms LPVg .

A two-sampled t-test was carried out for each in-silico adult,
to determine if the average RMSE obtained with LPVi is lower
than the one obtained with LPVg at all (g,SI,VF) points and for
all the time-varying SI profiles considered. The same analysis
was performed for the ν-gap to determine if including the SI
variation in the controller design stage could lead to a better
closed-loop performance. Test results for each adult and the
whole population (row ‘All’) are presented in Table III, along
with the percentage of (g,SI,VF) points in which an improvement
over LPVg is obtained, both in open- and closed-loop. According
to these results, both open-loop and closed-loop metrics show
an overall improvement using LPVi above 73.8%. It should be
taken into account that the comparison measures were computed
based on a simulated population and has an average significance.
A better and more personalized result could be obtained by using
clinical data from the SI variations for a particular subject.

To recap, the main result here is the computation of an LPV
structure, amenable to controller design. The procedure allows
to include both inter- and intra-patient variations maintaining
the time-varying characteristics of the system with a control-
oriented focus based on real-time measurements and clinical
data in a non-invasive way.

The model is able to accommodate variations in SI, which
are the main cause of this variability. Therefore, the next step
would be to couple the model with a SI estimator from real-time
measurements to include, for instance, exercise or stress influ-
ence on SI. Alternatively, this variability can be also represented
as uncertainty bounds through an invalidation procedure, as the
one carried out in [40], using field collected data.
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TABLE IV
PARAMETER VALUES FOR kavg(g,SI,VF) FROM (11)

V. CONCLUSION

In this work, a low-order control-oriented model that in-
cludes intra-patient variations and generalizes previous works
was proposed. This model depends on two parameters, p1(g)
and kavg(g, SI,VF), which in turn are functions of the glucose
concentration and insulin sensitivity factors. These parameters
can be computed in real-time and allow representing the non-
linear dynamics and the intra-patient variations. In addition, the
model can also be easily personalized to reduce the inter-patient
uncertainty by means of the well-known 1800-rule.

The use ofSI,VF allowed obtaining a general average structure
that is not dependent on a particular model that describes changes
in SI, i.e., it could be used in combination with any real-time SI
estimator (block SI,VF(t) on Fig. 2). In this way, other factors
influencing the subject’s SI like stress, exercise, meal size and
composition, etc., could be considered in real time to obtain
more robust and reliable controllers.

The proposed LPVi was compared to the LPVg model without
the intra-patient variations in terms of its open- and closed-loop
characteristics, by means of the RMSE and ν-gap, respectively.
The proposed LPVi showed better performance with smaller
errors, highlighting the advantages of including SI variations in
the model’s structure.

APPENDIX

AVERAGE PARAMETER-DEPENDENT GAIN

The piecewise polynomial function kavg(g, SI,VF) is fitted as
follows:

kavg(g, SI,VF)

= λ1,n + λ2,n g + λ3,n SI,VF + λ4,n g SI,VF

+ λ5,n g2 + λ6,n SI,VF
2 + λ8,n g SI,VF

2 + λ7,n g2 SI,VF

+ λ9,n g2 SI,VF
2 + λ10,n g3 + λ11,n SI,VF

3

+ λ12,n g3 SI,VF + λ13,n g SI,VF
3 + λ14,n g4

with n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if g ≥ 300

2 if 120 ≤ g < 300

3 if 45 ≤ g < 120

4 if g < 45

(11)
with parameters values presented in Table IV.
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