
TRACEM - Towards a Standard Metamodel for

Execution Traces in Model-Driven Reverse Engineering

Claudia Pereira1, Liliana Martinez1, Liliana Favre1,2

1 Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina
2 Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina

{cpereira, lmartine, lfavre}@exa.unicen.edu.ar

Abstract. Reverse engineering is a crucial stage in the software modernization

process. The current techniques available in existing CASE tools provide forward

engineering and limited facilities for reverse engineering, dynamic analysis in

particular. The Architecture-Driven Modernization initiative has defined

standards to support the modernization process in the model-driven engineering

(MDE) context. Standardization increases interoperability between different

tools enabling a new generation of solutions to benefit the whole industry and

encourage collaboration among complementary vendors. In this paper, we

present TRACEM, a metamodel to represent trace information under a standard

representation. This metamodel complements a MDE framework for software

modernization that aims to integrate static and dynamic analysis techniques

during the reverse engineering process. This paper includes a case study that

exemplifies how dynamic information combined with static information allows

improving the whole reverse engineering process.

Keywords: Architecture-Driven Modernization, Metamodeling, Transformation,

Static analysis, Dynamic analysis, Legacy System, Reverse Engineering

1 Introduction

Reverse engineering techniques allow supporting an integral part of software

modernization, specifically, the process of analyzing available software artifacts in

order to extract information and provide high-level views on the underlying system.

Nowadays, many companies are facing the problem of having to modernize or replace

their legacy software systems which have involved the investment of money, time and

other resources through the ages. Many of them are still business-critical and there is a

high risk in replacing them. The growing demand for modernization of software is due

to the great advance in mobile technologies and the emergence of the paradigms of

Cloud Computing, Pervasive Computing and the Internet of Things. Regarding the

systematic modernization process, novel technical frameworks for information

integration, tool interoperability and reuse have emerged. Specifically, Model-Driven

Engineering (MDE) is a software engineering discipline which emphasizes the use of

models and model transformations to raise the abstraction level and the automation

degree in software development. Productivity and some aspects of software quality

such as maintainability or interoperability are goals of MDE [1].

272

In the MDE context, the most recent OMG contributions to modernization are in line

with the Architecture-Driven Modernization (ADM) proposal. It is defined as "the

process of understanding and evolving existing software assets for the purpose of

software improvement, modifications, interoperability, refactoring, restructuring,

reuse, porting, migration, translation, integration, service-oriented architecture

deployment" [2]. The OMG ADM Task Force is developing a set of standards

(metamodels) to facilitate interoperability between modernization tools, such as KDM

(Knowledge Discovery Metamodel) [3] and ASTM (Abstract Syntax Tree Metamodel)

[4]. ADM has emerged complementing OMG standards such as MDA [5], which

manages the software evolution from abstract models to implementations. The essence

of MDA is the Meta Object Facility Metamodel (MOF) [6] which allows different kinds

of artifacts from multiple technologies to be used together in an interoperable way.

Metamodeling is an essential technique in MDA and its benefits are well known. The

precise standard language definition that is processable by machines may be used to

check if models are valid instances. On the other hand, a metamodel defined with the

core of UML [7] class diagrams is an accessible language, easy to understand and

maintain, therefore it contributes to an easy adaptation allowing language evolution.

Based on the level of the meta-metamodel, tools that allow exchanging formats may be

developed to manipulate models, regardless of the modeling language used [1].

OMG standards related to ADM allow obtaining models from code that represent

static information. Despite the increasing attention to dynamic analysis techniques in

reverse engineering, there is no standard for representing information at runtime. A

standard for this purpose could be used by tools for visualization and analysis of

execution traces, which would facilitate interoperability and data exchange. In previous

works, we have shown how to reverse engineering models from code through static

analysis, including class, use cases, behavioral and state diagrams [8][9][10]. In this

paper, we present TRACEM, a trace metamodel that is the foundation for dynamic

analysis in the ADM context. This metamodel allows representing the trace information

under a standard representation that supports extensibility, interoperability, abstraction

and expressiveness. Moreover, the proposed metamodel along with the specific ASTM

aim at automatic instrumentation of the source code. An execution trace model is

obtained each time the program runs. Then, by running the program with a significant

set of test cases, we obtain a set of trace models that will be analyzed to obtain relevant

dynamic information. The ultimate goal is to integrate dynamic and static analysis

techniques combining the strengths of both approaches in the reverse engineering

process within an MDE framework.

This paper is organized as follows. Section 2 describes a framework for reverse

engineering in the MDE context. Section 3 details the TRACEM metamodel. In Section

4, we analyze the impact of dynamic analysis through an example. Section 5 discusses

related work. Finally, Section 6 presents conclusions and future work.

2 Reverse Engineering into the MDE Framework

The combination of static and dynamic analysis can enrich the reverse engineering

process. Ernst [11] provides a comparison of static and dynamic analysis from the point

273

of view of their synergy and duality. He argues that static analysis is conservative and

sound. Conservatism means reporting weak properties that are guaranteed to be true,

preserving soundness, but not strong enough to be useful. Soundness guarantees that

static analysis provides an accurate description of behavior, no matter on what input or

in what execution environment the program is run. Dynamic analysis is precise given

that it examines the actual runtime behavior of the program, however the results of

executions may not generalize to other executions. Also, Ernst argues that whereas the

main challenge of static analysis is choosing a good abstract interpretation, the main

challenge of performing good dynamic analysis is selecting a representative set of test

cases. Static or dynamic analyses can enhance one another by providing information

that would otherwise be unavailable.

We propose a framework to reverse engineering models that blends the strengths of

static and dynamic analysis (Fig. 1). This framework is based on the MDE principles:

all artifacts involved can be viewed as models and the process can be viewed as a

sequence of model-to-model transformations where the extracted information is

represented in a standard way. Each model can be reused, refactored, modified or

extended for reverse engineering purposes or for other purposes. Metamodels are

defined via MOF and the transformations are specified between source and target

metamodels. Then, MOF metamodels “control” the consistency of these

transformations.

Fig. 1. MDE Modernization Process

274

In previous works, we present a process to reverse engineering models from code

through static analysis, including class diagrams, use cases diagrams, behavioral

diagrams and state diagrams [8][9][10]. In the framework, as shown in Figure 1, the

first step of the static analysis is to obtain the code model, an abstract syntax tree model

instance of the SASTM (Specific ASTM) by using a model injector. Next, an instance

of the GASTM (Generic ASTM) is generated from the previous model by a model-to-

model transformation. Finally, high-level UML models are obtained by means of a

chain of model-to-model transformations, using a KDM model as an intermediate

representation of the software system. In the first step of the process, an injector and

transformations to obtain the GASTM model must be implemented for each

programming language, whereas the sequence of transformations involved in the

following steps is independent of the legacy code language .

In this paper we present TRACEM, a trace metamodel that is the foundation for

dynamic analysis (see dotted circle in Fig.1). This metamodel allows us to obtain and

record trace information. Dynamic analysis provides information about the runtime

behavior of software systems, thus, it is a valuable tool for reverse engineering.

However, dynamic analysis requires the availability of a full, executable system, which

is run with some predefined input data and, on the other hand, it requires the code

instrumentation to detect and record relevant events during runtime for later off-line

analysis. To reverse engineering models from code, the first stage is to record trace

data such as a set of objects, a set of attributes for each object, a location and type for

each object, a set of messages, and time stamp for each event. This dynamic information

is obtained by instrumenting the source code, a process that inserts additional code

fragments into the source code under analysis. An execution trace model, instance of

TRACEM, is obtained each time the program runs. Then, by running the program with

a significant set of test cases, we obtain a set of trace models. These models will be

analyzed to obtain relevant dynamic information that combined with static information

allows improving the reverse engineering process. Then, the resulting models are the

starting point for the forward engineering process.

3 TRACEM Metamodel

TRACEM allows specifying the trace information under a standard representation

supporting extensibility and interoperability. TRACEM was implemented in the

Eclipse Modeling Framework [12] that is the core technology in Eclipse for MDE.

Figures 2 and 3 partially show this metamodel. The abstract syntax of TRACEM is

described by UML class diagram (Fig. 2) augmented with OCL restrictions [13] (Fig.

3). Although the figures show a part of the metamodel, specifically the part focused on

the representation of interactions between objects in terms of method calls, it can be

extended from the abstract metaclass Trace to represent other types of relationships

such as inter-process and system-level relationships. The main metaclasses are:

● ExecutionTrace, subclass of Trace metaclass, represents a particular execution of a

program on a specific test case. Each instance has a name, start and end time, and

owns objects and a sequence of statements discovered during the program execution.

275

Fig. 2. TRACEM metamodel: Abstract syntax

Fig. 3. TRACEM metamodel: OCL restrictions

-- the returned object of a method call corresponds to the object returned by its return sentence
context MethodCall::returnedObject:Object
derived: returnedObject = subtrace.statements->collect (s| s.oclIsTypeOf(return).returnedObject)
context Assignment -- restrictions on the right and left parts of an assignment
inv: right.OclIsKindOf(location) or right.OclIsKindOf(MethodCall) or
 right.OclIsKindOf(Constructor) and left.allocatedObject =

 if right.oclIsTypeOf(Location) then right.allocatedObject
 else if right.oclIsTypeOf(MethodCall) then right.returnedObject
 else if right.oclIsTypeOf(Constructor) then right.createdObject endif endif endif

context Compound -- compound only has local variables as locations
inv: statements->select(s | s.oclIsKindOf(Location))-> forAll (l| l.oclIsTypeOf (localVariable))
context MethodCall -- relationship between formal and actual parameter
inv: actualParameters->forAll (ap| self.subtrace.statements->
 collect(oclIsTypeOf(FormalParameter)) ->exists(fp| fp.allocatedObjet = ap)

276

● Location is an abstract metaclass that represents a storage that holds an object.

Program locations are either local variables, class attributes or method parameters.

A Location instance has a name and an allocated object which may be changed

during program execution.

● ExecutionSentence is an abstraction which specifies instructions carried out during

the program execution such as MethodCall, Assignment and Constructor.

● Object represents objects created during the program execution. An instance has an

identifier, a creation and destruction time and owns attributes and objects. It can be

stored in different locations throughout the program execution.

4 Recovering Execution Traces from Code: an Example

Dynamic analysis is exemplified in terms of the same case study used in Tonella and

Potrich [14], the Java program eLib that supports the main library functions (Fig. 4). It

contains an archive of documents of different kinds, books, journals, and technical

reports. Each of them has specific functionality. Each document can be uniquely

identified and library users can request documents for loan. To borrow a document,

both user and document must be verified by the Library. As regards the loan

management, users can borrow documents up to a maximum number; while books are

available for loan to any user, journals can be borrowed only by internal users, and

technical reports can be consulted but not borrowed.

 Fig. 4. Source code of the eLib Program

Tonella and Potrich describe a reverse engineering approach at model level of object-

oriented code based on classical compiler techniques and abstract interpretation to

obtain UML diagrams from Java code, particularly class, object, interaction, state and

277

package diagrams. This case study was used in previous works to show the extensions

proposed with respect to the approach of Tonella and Potrich [8][9][10]. To highlight

the contributions of dynamic analysis, we use the same example.

Dynamic analysis produces a set of execution trace instances, one for each test case.

Fig. 5 partially shows an instance of trace metamodel obtained from the execution of

the method borrowDocument resulting in a successful loan of the book1 (instance of

Book) to the internalUser1 (instance of InternalUser). Each time an object is created, it

is identified by the class name concatenated with a numeric value.

Fig. 5. Trace model: A successful loan

278

4.1. Dynamic Information Impact

The execution traces provide information that allows complementing the models

obtained through static analysis in the aforementioned previous works.

As regards the UML behavioral diagram, it is possible to identify:

● the current object that invokes the method (caller) and the one that receives the

message (target).

● the current parameter linked to each formal parameter, that is, which object is

actually stored in each formal parameter for a particular trace. As an example, the

objects allocated in the formal parameters user and doc of the borrowDocument

method are the objects internalUser1 and book1 respectively (Fig. 5).

● the object flows, that is to say, how an object is passed from one location to another,

starting from where it is created. As an example, it is possible to realize that the

object book1 allocated in the formal parameter “doc” of the borrowDocument

method, is the same object as the one allocated in the formal parameter “d” of the

verifyData method, the actual parameter “doc” of the constructor that creates a new

Loan object called loan1, the class attribute “doc” of the loan1 object, the local

variable “doc” in the addLoan method that receives the message addLoan (Fig. 5).

● the kind of dependence relationship between use cases, include or extend. The

common traces reflect primary flow and allow detecting possible include

relationships between use cases whereas other traces may correspond to extend

relationships.

As regards the UML structural diagram, it is possible to identify:

● the current objects stored in the generic collections. Containers with weak types

(parameterized in abstract types or interfaces) complicate the reverse engineering

process. Relationships between classes, such as associations and dependencies, are

determined from the declared type for attributes, local variables, and parameters.

When containers are involved, the relations to retrieve must connect the given class

to the classes of the contained objects. If an attribute type is a generic container, the

relationship connects the given class to the class of the contained object, however

this information is not directly available in the source code, as a result, the

relationship is not depicted in a UML class diagram. Identifying the type of objects

that a collection actually stores allows obtaining more complete and accurate class

diagrams. As an example, from the trace models, the generic collection loans will

only contain objects of Loan type, thus, an association between Library and Loan

will be inferred.

● composition relationships by analyzing the lifetime of the referenced objects since

the metamodel allows recording the creation and destruction time of each object.

Within composition, the lifetime of the part is managed by the whole, in other words,

when the whole is destroyed, the part is destroyed along with it. As an example, by

analyzing the creation and destruction times of the library1 object and the objects of

type Loan added to the loans collection of Library, it is possible to infer that the

association between Library and Loan is indeed a composition.

Moreover, the execution traces provide information that allows detecting

functionality that may never be executed.

279

5 Related work

Many works have contributed to reverse engineering object-oriented code, dynamic

analysis techniques in particular. [14] and [15] perform dynamic analysis to

complement the static analysis from java code. Trace information obtained from the

program execution is represented with UML models. In the MDE context, [16] presents

the first steps towards extending MoDisco with capabilities for dynamic program

analysis. MoDisco injects the program structure into a model [17], the authors propose

to add execution trace information to the model during program execution. Unlike these

works, we propose to represent traces as a new domain in software engineering,

independent of any language and providing more expressiveness than those approaches

that use UML models to represent the dynamic analysis results.

Following, some works that propose the creation of a standard to represent execution

traces are presented. [18] presents a metamodel for representing trace information of

routine calls with the aim to develop a standard format for exchanging traces among

trace analysis tools. [19] and [20] describe model driven approaches in specific domains

that involve dynamic analysis. The former focuses on reverse engineering of

AUTOSAR-compliant models using dynamic analysis from trace recordings of a real-

time system in the automotive domain. [20] proposes a common metamodel for

representing High Performance Computing system traces. Unlike these related works,

we propose a MOF-compliant trace metamodel to represent execution traces. This

metamodel is the foundation for dynamic analysis within a framework in the MDE

context, based on ADM standards in particular.

6 Conclusions

This paper describes the basis for dynamic analysis in the reverse engineering process

integrating static analysis, dynamic analysis, and metamodeling in the ADM context.

The main contribution is the TRACEM metamodel, which describes concepts and

relationships existing in the information obtained from program execution. It allows

specifying the execution trace information under a standard representation. Thus, the

traces are considered first-class entities, which provide relevant dynamic information

that combined with static information allows improving the whole reverse engineering

process.

TRACEM together with the metamodels of the different programming languages

will allow the automatic instrumentation of code and from this, the injection of trace

models that act as decoupling from source technologies. However, there are no

available injectors or metamodels for different programming languages and it is

necessary to implement them.

We foresee experimenting with different programming languages to implement

injector prototypes. Furthermore, we will investigate analysis techniques of execution

traces to understand and manipulate the models obtained from program executions.

280

References

1. Brambilla, M., Cabot, J., & Wimmer, M.: Model-Driven Software Engineering in Practice.

Morgan & Claypool Publishers, Second edition (2017)

2. ADM Architecture-Driven Modernization. http://www.omg.org/adm

3. KDM ADM: Knowledge Discovery Meta-Model Version 1.4 OMG Document Number:

formal/2016-09-01. http://www.omg.org/spec/KDM/1.4 (2016)

4. ASTM Abstract Syntax Tree Metamodel Version 1.0 OMG Document Number:

formal/2011-01-05. Standard document URL: http://www.omg.org/spec/ASTM (2011)

5. The Model-Driven Architecture (MDA). http://www.omg.org/mda/ UML OMG Unified

Modeling Language. Version 2.5.1, OMG Document Number: formal/2017-12-05.

http://www.omg.org/spec/UML/2.5.1/ (2017)

6. MOF OMG Meta Object Facility (MOF) Core Specification. Version 2.5.1, OMG Document

Number: formal/2019-10-01. https://www.omg.org/spec/MOF/2.5.1 (2019)

7. UML OMG Unified Modeling Language. Version 2.5.1, OMG Document Number:

formal/2017-12-05. http://www.omg.org/spec/UML/2.5.1/ (2017)

8. Favre, L., Martinez, L. & Pereira, C.: Reverse Engineering of Object-Oriented Code: An

ADM Approach. In: Handbook of Research on Innovations in Systems and Software

Engineering, pp. 386-410. IGI Global (2015)

9. Martinez, L., Pereira, C. & Favre, L.: Recovering Sequence Diagrams from Object-oriented

Code - An ADM Approach. Proc. of the 9th International Conference on Evaluation of Novel

Approaches to Software Engineering, ENASE 2014, pp. 188-195 (2014)

10. Pereira, C., Martinez, L., & Favre, L.: Recovering Use Case Diagrams from Object-Oriented

Code: an MDA-based Approach. International Journal of Software Engineering (IJSE),

vol. 5 (2) (2012)

11. Ernst, M.: Static and Dynamic Analysis: Synergy and duality. Proceedings of ICSE

Workshop on Dynamic Analysis. (WODA 2003), pp. 24-27 (2003)

12. EMF EMF. Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/

13. OCL Object Constraint Language Version 2.4, OMG Document Number: formal/2014-02-

03, Standard document URL: http://www.omg.org/spec/OCL/2.4 (2014)

14. Tonella, P., & Potrich, A.: Reverse Engineering of Object-Oriented Code. Monographs in

Computer Science. Heidelberg: Springer-Verlag (2005)

15. Systa, T.: Static and Dynamic Reverse Engineering Techniques for Java Software Systems.

Ph.D Thesis, University of Tampere, Report A-2000-4 (2000)

16. Béziers la Fosse, T., Tisi, M., & Mottu, JM.: Injecting Execution Traces into a Model-Driven

Framework for Program Analysis. In: Software Technologies: Applications and Foundations.

STAF 2017. LNCS, vol 10748. Springer, Cham (2018)

17. MoDisco Eclipse MoDisco project.https://www.eclipse.org/MoDisco/

18. Hamou-Lhadj, A., & Lethbridge, T.C.: A metamodel for the compact but lossless exchange

of execution traces. Softw Syst Model 11, pp. 77-98 (2012)

19. Sailer, A.: Reverse Engineering of Real-Time System Models from Event Trace Recordings.

University of Bamberg Press (2019)

20. Alawneh L., Hamou-Lhadj A. & Hassine J.: "Towards a common metamodel for traces of

high performance computing systems to enable software analysis tasks," IEEE 22nd

International Conference on Software Analysis, Evolution, and Reengineering (SANER),

2015, pp. 111-120 (2015)

281

	PAPERS - COMPLETO-v2 (2).pdf
	WIS - COMPLETO
	14157-CR 14351-TRACEM___cameraReady

