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Abstract. BIG DATA systems represent a huge challenge for software 

engineering validations tasks since they have been classified as “non 

testable”. Metamorphic Relationships (MR) have been proposed as a 

technique to overcome this problem. These relationships establish inter- 

actions between data that can be used to validate the expected behavior 

of the system. However, the process of exploring and defining MRs is a 

very arduous one, and an expressive and flexible specification language 

is needed to denote them. In this work we show how the Feather Weight 

Visual Scenarios (FVS) framework can be seen as an appealing tool to 

specify MRs. We exploit FVS features to model complex MR interactions 

and analysis, allowing the possibility to perform non trivial operations 

between MRs such as refinement and consistency checking. FVS is shown 

in action by introducing a proof of concept example focused on a machine 

learning system over biology cell images. 
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1 Introduction 

The term Software Engineering was coined in 1968 during the so-called “Soft- 

ware Crisis”. It was born as a response to crucial aspects that were threatening 

the computing community such as the repetitive failures and delays of soft- 

ware projects. In a few words, Software Engineering constitutes a toolbox of 

methods, techniques and processes to build and develop quality software. Since 

its creation, this Software Engineering’s toolbox evolved to cope with different 

paradigms and challenges that arose in the computing field. 

Undoubtedly, one of the most relevant domain nowadays relates to BIG 

DATA, machine learning and data science systems. These kinds of systems fea- 

ture distinctive characteristics that urge Software Engineering to evolve in order 

to guarantee the quality of the developed systems [5, 13, 7,18, 12, 20,14]. Some 

of these characteristics are new software architectures, new protocols of commu- 

nications, new software interactions, stronger performance and availability con- 

cerns and volatile, unstructured, diverse and heterogeneous data, just to name 
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a few. In this Software Engineering evolution the phase of formal verification 

and validation is probably the one that needs more attention and contributions. 

According to [13,9], only two of nearly one hundred analyzed approaches ad- 

dressing new software engineering methods for big data were related to formal 

validation. For example, work in [5,7] introduces a parallel and distributed tool 

to perform model checking in big data systems. In this sense, one of the most 

pinpointed items to be addressed for formal validation in BIG DATA is that 

these kinds of systems have been defined as “non testeable’ software [18, 9] be- 

cause the lack of a proper testing oracle to check their behavior. The problem 

can be stated as: How the new version of the system, which now includes the an- 

alyzed information, can be tested? How can the new system be checked against 

its expected behavior? How can the expected behavior be specified? How can 

the software engineer verify if the system is producing the expected outputs? 

One solution to tackle this particular item is known as metamorphic testing 

[8,19]. This technique is based on building relationships, called metamorphic 

relationships (MRs), between the data in the original system and the data in 

the newer version of the system. For example, for a system focusing on sentiment 

analysis one can build for every word two MRs: one for its synonyms and another 

for its antonyms. Under this MRs, the new system can be validated as follows: 

for every word in the original system the newer version must give a similar 

response for words in the synonyms list and the opposite response for words 

in the antonyms list. However, how to specify and define the MR’s for every 

system is an extremely arduous and error-prone task. Some approaches say that 

defining a lot of MRs solves the problem. Nevertheless, others conclude that 

defining too many MRs could have a negative impact in the validation phase, 

since they increase the efforts needed to accomplish this task [9]. 

Employing expressive and flexible specification languages might be useful to 

properly explore, understand and define MRs. In particular, in this work we ex- 

plore the FVS (Feather Weight Visual Scenarios) specification framework (2, 4, 

3] as a mechanism to specify MRs for BIG DATA systems. FVS is a very simple 

yet powerful and expressive graphical language to denote the expected behavior 

of a system. The behavior can be specified using branching or linear properties, 

and refinement between specifications is also available. FVS specification can be 

synthesized providing a controller for the system under analysis. When synthe- 

sizing behavior, the controller is automatically built upon the expected behavior 

of the system and the environment it interacts with. Usually, the controller takes 

the form of an automaton which decides which actions to take based on the re- 

ceived information (mostly provided by external sensors). The controller is built 

using game theory concepts, obtaining a winning strategy that takes the system 

to an accepting state no matter which actions the environment chooses [10, 6]. 
Finally, FVS can be combined with parallel model checkers to cope with BIG 

DATA systems performance requirements. In summary, in this work we propose 

the following contributions for FVS as a formal language to specify MRs: 

— MRs can be graphically denoted 

— FVS expressive power is strong enough to build all the necessary MRs. 
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— The possibility to synthesize behavior and obtain a controller can be used 

to check consistency between all the MRs. 

— In FVS complex relationships between MRs can be stated. Refinement be- 

tween two FVS specifications is well established, as well as analyzing when 

a MR imposes more restrictions over the system than other candidate MR. 

As a proof of concept example, we have analyzed a BIG DATA system in- 

troduced in [9]. This system proposes a machine learning service to categorize 

images of biology cells. Complex MRs are defined between images, taking into 

account features as size, volume and orientation. All of the MRs were defined 

using FVS, and we exploited FVS characteristics to understand the interactions 

between all the MRs. The rest of this work is structured as follows. Section 2 

briefly presents FVS and explains how a controller can be obtained. Section 3 

develops the proof of concept example and presents the obtained results. Sec- 

tion 4 analyzes some related and future work whereas Section5 enumerates the 

conclusions of this research. 

2 Feather weight Visual Scenarios 

In this section we will informally describe the standing features of FVS. The 

reader is referred to [2] for a formal characterization of the language. FVS is a 
graphical language based on scenarios. Scenarios are partial order of events, con- 

sisting of points, which are labeled with a logic formula expressing the possible 

events occurring at that point, and arrows connecting them. An arrow between 

two points indicates precedence. For instance, in Figure 1-(a) A-event precedes 

B-event. In Figure 1-b the scenario captures the very next B-event following an 

A-event, and not any other B-event. Events labeling an arrow are interpreted as 

forbidden events between both points. In Figure 1-c A-event precedes B-event 

such that C-event does not occur between them. Finally, FVS features aliasing 

between points. Scenario in 1-d indicates that a point labeled with A is also 

labeled with A A B. It is worth noticing that A-event is repeated on the labeling 

of the second point just because of FVS formal syntaxis. 

  

  

          

4 B A B A B A AandB 

, Not (C) 
o. ———> 0 $ >@ /_§»y@® o Pe 

(a) Precedence (b) Next (c) Restricting behavior (d) Aliasing points 
  

Fig. 1. Basic Elements in FVS 

We now introduce the concept of FVS rules, a core concept in the language. 

The intuition is that whenever a trace “matches” a given antecedent scenario, 

then it must also match at least one of the consequent ones. In other words, 
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rules take the form of an implication: an antecedent scenario and one or more 

consequent scenarios. Graphically, the antecedent is shown in black, and conse- 

quent ones in grey. Since a rule can feature more than one consequent, elements 

which do not belong to the antecedent scenario are numbered to identify the 

consequent they belong to. An example is shown in Figure 2. The rule describes 

a requirement for a cooler system. If the cooler is off and the temperature ex- 

ceeds a certain threshold then two things should happen afterwards: the cooler 

must be turned on and the observers must be notified. 

cooler On 

\, 

cooler Off . highTemperature 
Not coolerOn 

eo —_—__—__—_—_—_~ © 

notifvObservers 
1 

/ 

Fig. 2. An FVS rule example 

2.1 Behavioral Synthesis in FVS 

FVS specifications can be used to automatically obtain a controller employing 

a classical behavioral synthesis procedure. We now briefly explain how this is 

achieved while the complete description is available in [4]. Using the tableau 

algorithm detailed in [2] FVS scenarios are translated into Btichi automata. 

Then, if the obtained automata is deterministic, then we obtain a controller using 

a technique [15] based on the specification patterns [11] and the GR(1) subset of 
LTL. If the automaton is non deterministic, we can obtain a controller anyway. 

Employing an advanced tool for manipulating diverse kinds of automata named 

GOAL [21] we translate these automata into Deterministic Rabin automata. 
Since synthesis algorithms are also incorporated into the GOAL tool using Rabin 

automata as input, a controller can be obtained. 

3 Proof of Concept Example: CMA System 

The system under analysis is based on the BIG DATA service implementation 

described in [9]. This service, called Cell Morphology Assay (CMA) was designed 
for modeling and analyzing 3D cell morphology and mining morphology patterns 

extracted from diffraction images of biology cells. Study of 3D morphology can 

provide rich information about cells that is essential for cell analysis and classi- 

fication [9]. Relying on different machine learning algorithms and big data tools 

images are analyzed and explored, and useful scientific information is obtained. 
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Validation of the system is carried out by defining a set of crucial metamor- 

phic relationships (MR) establishing a proper bond between the original image 

and the one obtained for validation purposes. These bounds will define whether 

the system is actually doing a good enough job classifying the biology cells im- 

ages. In this case, MRs were defined by domain experts users. In what follows, 

we describe the MR defined in [9] as FVS rules. Finally, a controller for the 
system is found. 

3.1 MRs for the CMA system specified in FVS 

The first MR says that if an artificial mitochondrion is added to a stack of original 

confocal image sections of a cell, then the newly added mitochondrion should be 

recognized in the new version. Similarly, if an artificial mitochondrion is removed 

from a stack of the original confocal image sections of a cell, then it must be 

excluded in the new version. For the FVS specification of this MR we define a set 

of events such as image(standing for the original image), newImage(standing for 
the new version of the image), artMitoAdded (standing for the addition of a new 
artificial mitochondrion), artMitoRemoved (a new artificial mitochondrion was 

removed), artMitoRecognized (standing for the recognition of the new artificial 

mitochondrion) and artMitoExcluded (standing for the exclusion of the new 
artificial mitochondrion). Figure 3 reflects this Inclusion/Exclusion MR. 

  
image atMitoAdded newlmage newlmage and artMitoRecognized 

e — 0 > 0 

image artMitoRemoved newlmage newlmage and artMitoExcluded 

o >. >0   

Fig. 3. Inclusion/Exclusion MR as FVS rules 

The second MR defines a relationship between size and volume of the images. 

In a few words, if the size of a mitochondrion in the original image sections is 

increased then the volume of mitochondria is expected to increase in the new 

version. The FVS rule for this MR is shown in Figure 4. 

The third MR relates lengths between images section. As explained in [9], 

there is a gap between image sections. This implies that a small mitochondrion 

may only appear in one section whereas a large one can appear in multiple 

sections. To specify this MR in FVS we assume that only two sections exist for 

each image. However, this approach can be easily extended to consider more 
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image mitoSizelncreased newlmage newlmage and mitoVoliumnelncreased 

0 > 0 >   

Fig. 4. FVS rule of the Size and Volume MR 

sections if necessary. The Lenght-MR is shown in Figure 5. Note that the rule 

at the bottom of Figure 5 features three consequents: the mitochondrion could 

be placed in both sections (consequent 1), only in section 1 (consequent 2) or 
only in section 2 (consequent 3). 

(section! and Not section2) or (Not section! and section2) 

mito small Sized l i 

section! and section2 

mito lar geSized Lal 

O0-——_ NotsmaillSized__+® 

section] and Not section2 
2 5 

Not section! and Section2 

? 

Fig. 5. FVS rule for the Length MR 

The fourth MR establishes immutability of the generated shapes. Roughly 

speaking, the 3D structure of the original one should not be changed in the new 

version of the image. Considering only two possible shapes, Figure 6 sketches this 

important MR. As in the previous MR, this specification can be easily extended 

to consider more than two shapes. 

mito and shapel newlmage 

Oo Not shape? newlmage and mito and shapel and Not shape2 
1 

Fig. 6. FVS rule for the immutability MR 
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The fifth MR focuses on location aspects. Mitochondria that are close to the 

nuclear should remain in a section near to the nuclear and similarly, mitochondria 

close to the cell boundary should also appear close to the cell boundary in the 

new image. Two FVS rules are added to specify this behavior. These are shown 

in Figure 7. 

mito and closeNuclear newlmage 

@ —__ Not closeBounday__+@® newlmage and mito and closeNuclear 

mito and closeBoundary newlmage 

@ —___Not closeNuclear__~+® newImage and mito aid closeBoimeédan ARA : 

Fig. 7. FVS rules addressing Location MR 

MR number six is a simple one. It says that when the size of the sphere in an 

image becomes larger, the brightness of the texture lines become slimmer. This 

is reflected in Figure 8. 

largerSize newlmage 

AAA AAA newImage and slimmerBright 
. 1 

Fig. 8. Size and brightness MR in FVS 

Finally, MR number seven establishes that for a sphere shape scatterer the 

textual pattern should be the same at all orientations. We considered two kinds 

of scatterers: sphere and irregular ones. The FVS rules tackling this MR are 

shown in Figure 9. 

sphereShape newOrientation 

@ —__Not irregularShape_>® newOrientation and sphereShape 
i 

Fig. 9. Sphere shapes MR in FVS 

Once all the MR were defined in FVS we were able to obtain a controller 

as explained in Section 2.1. Since a controller was found we can establish that 
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there were no inconsistencies in the MRs specifications. A partial view of the 

controller automaton is shown in Figure 10. 

  

Fig. 10. A controller for the CMA System 

3.2 Case Study Analysis, Remarks and Observations 

It is relevant to point out that FVS was expressive enough to denote all the 

MRs defined in [9]. This reflects the richness of FVS’s expressive power since this 
case proof of concept example establishes weighty and meaningful interactions 

between the images which can be hard to express. In addition, interest analysis of 

the set of MR can be gathered by analyzing the FVS specification scheme. First of 

all, visual information relating two or more MR (such as logical subsumption) can 

be simply noted by visually inspecting the scenarios. For example, both rules in 

Figure 5 denote equivalent antecedent scenarios but the rule at the bottom holds 

a “stronger” consequent, since it features more constraints. In consequence, this 

latter rule can be seen as a specialization of the former one. Secondly, consistency 

and completeness of the MR set can be stated by the implicit result of whether 

a controller for the MR specification is found or not. The presence of a controller 

for the system implies that there were no inconsistencies in all the defined MRs. 

And finally, other interesting interactions between MRs such as the concept of 

refinement can also be achieved in the given FVS specification for the system. 
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A rule featuring multiple consequents as the one shown in the bottom rule of 

Figure 5 allows the application of the refinement operation between different 

MR, since a new version with fewer consequents represents a refinement of the 

original rule [4]. 

4 Related and Future Work 

Previous work in [3] can be seen as a foundation stone for the FVS framework, 

exhibiting its capabilities to synthesize behavior and to reason about linear an 

branching behavior together with the formal proofs of soundness and correctness 

of the approach. In this work we specifically apply FVS to model and verify 

metamorphic properties in an attempt to formally verify BIG DATA systems. 

Work in [9] proposes a very interesting iterative technique to define MRs. 

Once MRs are defined, more of them can be generated using the notion of re- 

finement between them. The approach was validated against the CMA machine 

learning system, which is able to categorize a huge amount of biology cells im- 

ages. We believe FVS graphical flavor could be added to this iterative process 

to gain power and control to properly define the necessary minimum set of MR 

for each system. Contrary to FVS, the possibility to check consistency between 

MRs is not available in this approach. 

Other approaches focused on metamorphic properties are [1, 8, 16]. These op- 

tions are mostly focused on implementation details such as the actual framework 

tool to deploy the tests. Our approach is addressing a previous phase which is 

the exploration and specification of MRs. 

Regarding future work, we would like to explore the interaction between FVS 

and other tools. For example, [1] extracts MR in runtime checking the different 

paths in the execution tree. In this context, FVS scenarios could be used as a 

monitor in the sense given by the model checking techniques. We also would 

like to investigate the possibility to automatically generate tests given the set 

of FVS rules defining the MR. This line of research involves the combination of 

FVS with automatic code and test generators like [17]. 

5 Conclusions 

In this work we studied FVS as a specification language to denote metamorphic 

properties. FVS’s flexible and expressive notation was able to denote complex 

MRs behavior. In addition, its formal semantics enables the possibility to per- 

form comparison and formal operations between different MRs such as refine- 

ment, or simply comparing which MR imposes more constraints in the expected 

behavior of the system. We believe these are crucial activities in order to prop- 

erly define the expected behavior of a BIG DATA system. The results obtained 

in the proof of concept example are promising enough to consolidate our tool in 

the formal validation field for BIG DATA systems. 
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