GEOACTA, Vol. 13, n.2 (1986) pág. 167 a 178

OBTENCION DE PERFILES DE DENSIDAD ELECTRONICA A PARTIR DE IONOGRAMAS UTILIZANDO CUADRADOS MINIMOS NO LINEALES

C.E. Moyano*

Instituto de Investigaciones Aplicadas de Ciencias Espaciales, CRICYT , MENDOZA A.M. Osella* y S. Duhau*

Departamento de Física-Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

RESUMEN

Se presenta un método de reducción de perfiles de densidad electrónica en la ionósfera en el cual se propone apriori un modelo de perfil de la ionósfera desde donde ésta comienza hasta el máximo de la capa F_2 . Según este modelo, el perfil se representa mediante una familia de funciones que se eligen de manera de reproducir las características ya conocidas de los perfiles de densidad electrónica, tratando de minimizar el número de parámetros de los cuales éstas dependen. Hediante la evaluación numérica de las alturas virtuales a partir de este modelo y la optimización por cuadrados mínimos no lineales de los valores medidos en el ionograma y los calculados con el modelo, se obtiene un conjunto de parámetros óptimos. Este modelo, a diferencia de los otros, no impone restricciones sobre la monotonicidad de la función propuesta, incorporando naturalmente la posibilidad de la existencia de un valle entre las regiones E y F. Se presentan pruebas realizadas con un ionograma teórico.

ABSTRACT

A method for reducing electron density profiles is introduced, where an apriori model of the electron density in the region below the F_2 layer is proposed. According to this model, the profile is represented by a family of functions chosen as to reproduce with the least possible number of parameters the known features of the electron density profile. Through the numerical evaluation of the virtual heights obtained with this model and the non-linear least esquares optimization of the measured and calculated values, the best set of parameters is obtained. This method makes no restriction about the monotonicity of the proposed function as other methods do, thus including the possibility of the presence of a valley between the E and F region. Tests using a theoretical ionogram are presented.

* Niembro de la Carrera del Investigador del CONICET (Consejo Nacional de Investigaciones científicas y Técnicas).

1. INTRODUCCION

Es de interés, tanto para estudios de radiopropagación como para estudios de dinámica de las regiones ionosféricas, obtener un modelo que permita describir la densidad electrónica en función de la altura. Los perfiles de densidad electrónica pueden ser obtenidos principalmente mediante mediciones in-situ o ser inferidos a partir del análisis de las curvas de altura virtual en función de la frecuencia de sondeo (ionogramas), obtenidos por una red mundial de sondadores ionos féricos.

Este proceso de reducción de lonograma a densidad electrónica es complicado, no ha sido aún totalmente resuelto y sólo un pequeño porcentaje de los ionogramas obtenidos ha sido reducido .

Existen en la literatura diversos métodos para reducir ionogramas, por ejemplo los métodos de Jackson (1972) y de Titheridge y Lobb (1977). En ambos se supo ne, por razones de cálculo, que la densidad electrónica es una función monótona creciente de la altura. Sin embargo, mediciones in-situ (Jackson, 1971) muestran la existencia de un valle entre las regiones E y F, siendo éste pronunciado a horas alejadas del mediodía local y menos notorio durante las mismas.

Un procedimiento que permite tener en cuenta el efecto del valle fué implementado por Lobb y Titheridge (1977) quienes reemplazan el perfil verdadero por un "perfil monótono equivalente", que reproduce las mismas alturas reales.

En el presente trabajo se propone un método para determinar los parámetros de un modelo de perfil que, a diferencia de los métodos arriba mencionados, no incluye la hipótesis restrictiva sobre la monotonicidad de la función lo cual per mite tener en cuenta la presencia de un valle entre las regiones E y F.

2. OBTENCION DE PERFILES DE DENSIDAD ELECTRONICA

El sondador ionosférico emite puisos de radio que luego de ser reflejados en la ionósfera son recibidos por el mismo equipo.

Estos pulsos tienen una frecuencia de barrido entre 1 y 25 MHz y se presentan en un diagrama (lonograma) en el cual se grafican la "altura virtual" h (proporcional al retardo Δt entre el pulso emitido y el recibido por el sondador) y la frecuencia del pulso.

Esta altura virtual es la distancia que la luz recorrería en el vacío en el tiempo Δt y está relacionada con la altura real h_e a la cual una dada frecuencia

es reflejada, a través de la siguiente transformación integral (ver p. ej. Jackson 1977).

$$h' = \int_{0}^{h} \mu' (N(h), f, B(h), \phi(h)) dh$$
 (1)

donde f es la frecuencia de sondeo, B es el módulo del campo magnético terrestre, ϕ es el ángulo entre \vec{B} y la dirección de propagación, μ ' es el índice de refracción de grupo y N es la densidad electrónica, que se obtiene a partir de la fre cuencia de plasma, f_D, mediante la expresión:

$$N(h) = \frac{mf_p^2}{4\pi e^2}$$

donde m y e son la masa y carga, respectivamente, del electrón.

El Índice μ ' está relacionado con el índice de refracción, μ , por la siguien te expresión:

$$\mu' = \mu + f \frac{\partial \mu}{\partial f}$$
(2)

con µ dado por la ecuación de Appleton - Hartree:

$$\mu = \sqrt{\left\{1 - \left[2x\left(1 - x\right) - Y_{T}^{2} \pm \sqrt{\left(Y_{T}^{4} + 4\left(1 - x\right)^{2} Y_{L}^{2}\right)}\right]\right\}}$$
(3)

con

$$X = f_p^2 / f^2$$
 (3.1)

$$Y = f_{\rm H} / f \tag{3.2}$$

$$Y_{T} = Y \, \text{sen } \phi \tag{3.3}$$

$$Y = Y \cos \phi$$
(3.4)

donde f_H és la frecuencia del ciclotrón de los electrones y los signos +,- delante de la raíz indican el rayo ordinario y extraordinario, respectivamente.

Para resolver este problema la mayoría de los autores en general suponen que la altura es función monótona creciente de la densidad electrónica (ver por ej. Jackson 1971; Titheridge, 1977) con lo que la integral (2) queda expresada como: 170 OBTENCION DE PERFILES...

$$h'(f) = \int_{0}^{f} \mu' \frac{dh}{df_{p}} df_{p} + h(0)$$
 (4)

donde h (0) es la altura de la base de la ionósfera correspondiente a la frecuencla $f_p = 0$.

Existen básicamente dos métodos para determinar N(h): el de láminas y el po linomial (ver por ej. Rishbeth 1969). En el primero de ellos se reemplaza a intervalos discretos de frecuencia de plasma, suponiéndose que dh/df_p es constante en cada lámina; de esta manera se determina h(f_i).

En el método polinomial se supone que la función $h(f_N)$ puede ser representa do por un polinomio en potencias de f_N del cual se determinan los coeficientes ya sea en forma directa o por cuadrados mínimos (Titheridge y Lobb, 1977).

2.1. Descripción del método.

En los párrafos anteriores se describieron someramente los métodos habituales para obtener a partir de los pares de alturas virtuales y frecuencias de sondeo correspondiente ($h_i^t = f_i$), la densidad electrónica en la ionósfera, N(h).

En lo que sigue se presentà un método alternativo: se propone a priori un mo delo de perfil de densidad electrónica que incluye las capas de la ionósfera hasta el pico de la región F₂ y que consiste en familias de funciones analíticas que se eligen a partir de las características ya conocidas de esos perfiles, tratando de minimizar el número total de parámetros de los cuales éstas dependen.

Sea N(h, P), donde el vector P = (P_1, P_2, \dots, P_n) representa el conjunto de los n parámetros de la familia de funciones elegidas. Con esta función, conocidos B(h) y ϕ (h) y partiendo de un valor inicial de los parámetros P₁, se construye un ionograma mediante la evaluación numérica de la integral (1) de la cual se obtiene h_{ic}, altura virtual calculada para frecuencia de sondeo f₁ en función de la respectiva altura real h_{ri}

$$h_{ic}^{\prime} = \int_{0}^{h_{ri}} \mu^{\prime} (N(h), f_{i} = B(h), \phi(h)) dh$$
 (5)

Mediante la utilización de un método de optimización por cuadrados mínimos no lineales (Mc Cammon, 1969) se determina P_{optimo} , que es aquel que produce el

mejor ajuste entre el lonograma calculado y el medido.

La densidad electrónica en función de la altura es entonces N(h, P_{óptimo}).

2.2. Aplicación a un caso particular.

Herbert (1967) da una serie de valores de N(h) y sus respectivos ionogramas a fin de ser usados como pruebas de la exactitud de diferentes métodos de reducción de N(h). Para mostrar la validez del método, entre estos modelos se ha seleccionado uno analíticamente sencillo.

Este modelo queda descripto por dos perfiles parabólicos correspondientes a las regiones E y F y una región de transición (valle) de forma cosenoidal entre ellos.

Aquí se expresa la cantidad f_p^2 (proporcional a N) en función de la altura:

Región E
$$f_{P}^{2} = -\frac{f_{O}E^{2}(h-h_{m}E)^{2}}{(h_{O} - h_{m}E)^{2}} + f_{O}E^{2}$$
 $h_{O} \leq h \leq h_{m}E$

Valle
$$f_p^2 = \frac{f_e^2 + f_v^2}{2} + \frac{f_e^2 - f_v^2}{2} \cos \left| \frac{2\pi}{a_v} (h_m^2 - h) \right| \quad h_m^2 \leq h \leq h_m^2 + \frac{3}{4} a_v$$

Región F
$$f_P^2 = \frac{f_v^2}{(h_m E + \frac{3}{4} a_v - hF_2)^2} (h - hF_2)^2 + f_0F_2^2 h_m E + 3a_v \le h \le hF_2$$

donde h_o es la altura para la cual f_p = 0, f_oE es la frecuencia crítica de la ca pa, h_mE es la altura del máximo de la capa E, a_v es el ancho del valle, f_v es la frecuencia en el mínimo del valle, f_oF₂ es la frecuencia crítica de la capa F₂ y, finalmente, hF₂ es la altura del máximo de la capa F₂.

En la figura 1 se muestra un esquema de la familia de funciones usada y se indican los parámetros de los cuales ésta depende; nótese que f_0^E y $f_0^F_2$ son datos puesto que el ionograma permite obtenerlos directamente, mientras que hF_2 , h_0 , a_v y f_v son las incógnitas a determinar. En cuanto a h_m^E , se supone siempre igual a 110 km. Resulta entonces un modelo con cuatro parámetros. Para el cálculo numérico de la integral (la) se utilizó la regla del punto medio con extrapolación de Richardson, la cual permite dar cuenta del infinito en al integrando que se produce cuando la frecuencia de plasma es igual a la frecuen cia de sondeo.

Los cálculos se realizaron sólo para el rayo ordinario. Los valores de los parámetros que corresponden a la función de prueba se indican como 'Perfil Original" en la tabla 1. El gráfico de este perfil junto con el ionograma correspondiente se muestran en la figura 2. Se ha partido de distinto conjuntos de valo res de los parámetros de entrada que contemplan distinto casos, dentro de los valores extremos que los parámetros pueden tomar efectivamente en la ionósfera; éstos son:

> 70 km $\leq h_0 \leq 100$ km 0 $\leq f_v \leq f_0 E$ 0 $\leq a_v \leq 100$ km 200 km $\leq hF_2 \leq 500$ km

En la tabla 1 se presentan cinco casos representativos de conjunto, con dig tintos anchos y profundidades de valle y distintas alturas del máximo de la capa F_2 y de la altura de la base de la ionósfera h_o. En todos los casos hubo convergencia dentro del error numérico, a los valores indicados como "perfil Original" en la tabla 1. La figura 3 muestra tres de estos casos.

		TA	BLA J		
Parametros		ho	fv	۹v	hF ₂
Perfil Original		90	3	56	271.68
	[1	95	3.9	2	250
	2	75	3.5	80	350
Perfil de Partida	3	85	2	30	500
	4	95	3.9	2	500
	5	80	3.5	50	250

Tabla 1: Conjunto de valores de los parámetros que definen el perfil original y los perfiles de partida. El excelente acuerdo obtenido en el ejemplo teórico presentado indica que el método de solución del problema inverso presentado en este trabajo es factible de aplicación a ionogramas medidos en cuyo caso podría utilizarse la familia de funciones propuesta, por ejemplo, en el modelo de Dudeney (1978) o en cualquier otro que corresponde a las conducciones locales. Esto será motivo de un próximo trabajo.

<u>Agradecimientos</u>: Este trabajo fue parcialmente financiado por el CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas).

Bibliografía

Dudeney, J.R., 1978: An improved model of the variation of electron concentration with height in the ionosphere. J. Atm. Terr. Phys., 40, 195-203.

Jackson, J.E., 1971: The p'(f) to N(h) inversion problem in ionospheric sounding. Goddard Space Flight Center - Prepint. X-625-71-186.

Herbert, Th., 1967: Tables of virtual heights for models of monotonic and nonmonotonic lonospheric layers. Radio Sci., 2 (10), 1269-1277.

Lobb, R.J. y J.E. Titheridge, 1977: The valley problem in bottonside ionogram analysis. J. Atm. Terr. Phys., 39, 35-42.

Mc Cammon, R. B., 1969: Fortran IV program for nonlinear estimation. Kansas Geological Survey Computer Contribution $3\frac{1}{2}$, 1-20.

Rishbeth, H. y O.K. Garriot, 1969: Introduction to ionospheric physics. Academic Press, N.Y., 1969.

Titheridge, J.E. y R.J. Lobb: 1977: A least-squares polynomial analysis and its application to topside ionograms. Radlo Sci., 12 (3), 451-459.

Figura 1. Parámetros del modelo, h₀: altura de la base de la Ionósfera, f: frecuencia del mínimo del valle, a: ancho del valle, foE: frecuencia crítica de la capa E, hmE: altura del máximo de la capa E, foF2: frecuencia crítica de la capa F2, "hF2: altura del máximo de la capa F2.

176 OBTENCION DE PERFILES...

ł

Figura 3c. Perfil de partida 3.