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A B S T R A C T   

Diatoms respond to toxicants in lotic systems, and they are commonly considered to be sensitive indicators in 
environmental safety assessment. In addition to the structural characteristics of the algal populations, recent 
studies have shown that endpoints such as nuclear anomalies or diatom motility measures can be affected quickly 
by environmental changes. We sought to determine if cell density, cell size, nuclear anomalies and motility of the 
diatom Nitzschia palea were useful indicators of sediment quality from agricultural streams. For this purpose, we 
exposed cultures of the diatom to elutriates from sediments of a stream that flows through an intensive agri-
cultural area, and measured the responses of the populations for 7 days in laboratory tests. The bioassays showed 
that motility measures in Nitzschia palea and the condition of their nuclear membranes rapidly reflected the 
effects of sediment quality after only 48 h of exposure; mean cell density and length were affected by day 7. The 
sediment elutriates affected cell movements by shortening the total path length and decreasing cell velocity; they 
also increased the number of cells with nuclear membrane breakage. Our results from these bioassays show that 
diatom motility measurements and the condition of the nuclei might be indicators that respond faster to impacts 
than the traditional structural parameters, such as cell density, specific composition of the assemblage or di-
versity metrics of the algal communities more often used in biomonitoring.   

1. Introduction 

Agriculture is an important source of pollutants in fluvial systems, 
and affects concentrations of nutrients, total suspended sediments and 
pesticides (Townsend and Riley, 1999; Cuffney et al., 2000; Schulz, 
2004). The transport, fate and ecological effects of pesticides used in 
agriculture are linked to their physicochemical properties such as 
volatility, water solubility, sorption, and persistence, together with 
environmental conditions and application techniques (Loewy, 2011). 
Pesticides can enter surface waters by several routes and often partition 
into bottom sediments even when used in accordance with appropriate 
agricultural practices. Runoff is one of the main sources of diffuse 
pesticide pollution in surface water bodies (Jergentz et al., 2005); it can 
mobilize pesticides into the soluble phase, and it can mobilize pesticides 
sorbed on suspended particulate matter from soil (Kronvang et al., 
2004). Over time, those suspended particles settle to the bottom of water 
bodies. Consequently, bottom sediments constitute an important sink for 
these compounds (Burton and Landrum, 2003), accumulating various 
potential toxicants, which can lead to integrated responses in the 

biological communities. 
Benthic organisms associated with the sediment of water bodies 

constitute an essential link in aquatic food webs and are intermediates 
between the primary producers, detritus, and top consumers. Thus, 
adverse biologic effects manifesting in benthic organisms can under-
mine the biological quality of the benthic sediments to other organisms 
(Wenning and Ingersoll, 2002). Four (4) physical phases of sediment, 
each of which reflects a different type of exposure to toxic conditions, 
can be used to assess pollution: (i) a sediment’s interstitial (pore) water 
(Ingersoll et al., 1995), (ii) the elutriate (i.e., water-extractable) fraction 
of the sediment (Burton et al., 1995), (iii) the whole sediment, and (iv) 
organic extracts from the sediment (True and Heyward, 1990). In 
planktonic environments, microalgae are notably sensitive to various 
pollutants compared to other organisms (Stauber and Florence, 1990; 
Servos, 1999; Radix et al., 2000). Yet, tests involving microalgae directly 
exposed to sediments are uncommon in the literature, and few experi-
ments involving sediment quality tests with microalgae have been 
conducted on sediments (Munawar and Munawar, 1987; Wong and 
Couture, 1986; Matthiesen et al., 1998; Cohn and Mc Guire, 2000). 
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Lotic systems running through the Pampean plain in Argentina are 
affected mainly by agriculture and livestock, industrial activities and 
urbanization, which concentrates over 65% of the country’s total pop-
ulation (INDEC, 2012). Either directly or indirectly, streams and rivers 
receive inputs of pollutants from different sources (Gómez et al., 2003; 
Rodrigues Capítulo et al., 2010; Licursi et al., 2016). Water quality 
deterioration is caused mostly by inputs of nutrients, metals, pathogenic 
agents, pesticides, and herbicides; habitat degradation also is caused by 
dredging and channelization (Gómez and Licursi, 2001). In these envi-
ronments, sediments can accumulate toxic substances that enter the 
water bodies (Ronco et al., 2008; Mac Loughlin et al., 2017; Sansiñena 
et al., 2018). These pollutants can be resuspended and redistributed by 
physical or biological processes, or by human activities such as 
dredging. 

Whole-sediment toxicity assays can be used to assess pollutant 
bioavailability (Hintzen et al., 2009) and allow for the evaluation of the 
interactive effects resulting from complex mixtures of chemicals in 
sediments (Peluso et al., 2013a, 2013b). Macroinvertebrates are 
frequently used for this purpose, particularly amphipods (US EPA, 
2000), such as Hyalella curvispina (Ronco et al., 2008), although this 
species does not occur in areas impacted by agricultural activity in the 
Pampean plains (Solis et al., 2016). Diatoms also have been commonly 
used as indicators of various environmental characteristics, especially 
salinity, pH, and nutrients (Blinn, 1993; Smol and Storermer, 2010), but 
also for toxic substances (Napolitano et al., 1994; Cattaneo et al., 2008; 
Morin et al., 2012). While traditional bioassay tests typically measure 
growth or survival rates of one or several species depending on the 
dosage and length of exposure to contaminants, recent studies are 
attempting to find more sensitive endpoints to investigate mechanisms 
of toxicity, such as estimating gene expression (Moisset et al., 2015), 
enzyme activity (Crespo et al., 2013), nuclear anomalies (Debenest 
et al., 2008) or diatom motility (Coquillé et al., 2015). 

The aim of our study was to determine if cell density, cell size, nu-
clear anomalies and motility of the diatom Nitzschia palea could be used 
to characterize sediment quality indicators for sediments from agricul-
tural streams. We hypothesized that sediment elutriates from rivers that 
run through the agricultural Pampean zone would negatively affect both 
the structural parameters of the population (cell densities and sizes) and 
the motility of diatoms (mean velocity and acceleration), and perhaps 
even increase the proportion of nuclear abnormalities. 

2. Materials and methods 

2.1. Study area and diatom culture 

We collected sediments for the bioassays from the middle reach of 
the Carnaval stream, where it runs through a soybean field to which 
pesticides are commonly applied (34◦55′2.24′′S, 58◦ 6′30.53′′W). The 
Carnaval stream and its tributaries constitute a 100 km2 peri-urban 
basin near the city of La Plata (Buenos Aires, Argentina). In the upper 
and middle part of the basin, the main land-use activities are horticul-
ture, floriculture and extensive agriculture, primarily soybeans, maize 
and wheat. Five (5) 1 kg composite samples of sediment comprised of 
several subsamples of the top 5 cm of depth were collected in glass jars, 
and kept in the dark at 4 ◦C for the bioassays. 

2.2. Diatom cultures 

We used a monoculture of Nitzschia palea for the laboratory experi-
ments. The diatoms were isolated initially from water samples collected 
from a site at the Martin stream (34◦ 55′ 21.7452′′ S, 58◦ 4′ 58.7316′′ W), 
identified (Krammer and Lange-Bertalot, 1988) and cultivated until a 
density of 1 × 104 cell m/L in a diluted culture medium (1:2) following 
Guillard and Lorenzen (1972). 

2.3. Physical-chemical parameters 

We measured physical-chemical parameters in the field at the time of 
sediment collection and during the bioassay in the experiment. We 
measured conductivity (μS/cm), temperature (◦C), turbidity (NTU) and 
dissolved oxygen (DO, mg/L) with an Horiba U10 multiparametric 
system. To confirm that nutrient concentrations were within measurable 
levels throughout the experiment, we analyzed nutrients from the 
experimental units at the beginning and end of the bioassay from three 
(3) experimental units. Water was filtered through GF/C Whatman fil-
ters and the samples were kept frozen until their analysis using standard 
protocols (US EPA, 2012). 

2.4. Sediment elutriates 

Sediment elutriates were prepared using a modified version of the 
protocol by Pica Granados et al. (2013). In a protocol (Parodi et al., 
2015) samples are settled for a short period before centrifugation to 
ensure maximum extraction of possible toxicants. 

Briefly, each 1 kg sediment sample was homogenized by mixing 
thoroughly and an elutriate was obtained by shaking 200 g of sediment 
in 800 mL of culture medium (diluted 1:4) at 220 rpm on a shaker for 24 
h. After allowing particulates to settle briefly, the liquid phase was 
separated and centrifuged in 50 mL tubes for 15 min at 2000 rpm. The 
liquid was then filtered through GF/C Whatman filters. Elutriates were 
maintained at 4 ◦C in the dark until used in the experiments, on the same 
date of extraction. 

2.5. Experimental design 

Bioassays followed the protocol by Parodi et al. (2015), and were 
conducted in glass jars (200 mL) in a temperature-and-light controlled 
room (25 ◦C). 50 jars were randomly assigned to a “Control” or an 
“Elutriate” treatment (25 per treatment). Jars in the Control contained 
90 mL of sterile culture medium (Guillard and Lorenzen, 1972) and 10 
mL of the diatom culture. Glass jars in the Elutriate group contained 90 
mL of elutriates obtained from the sediment samples and 10 mL of the 
diatom culture. Each of these experimental units were sampled at each 
sampling time: at starting time (T0), and after 24 h (T1), 48 h (T2), 72 h 
(T3) and after 168 h of exposure (one week, T4). 

A negative control used culture medium without diatoms to measure 
degradation of pesticides in the elutriates due to the culture medium. 

2.6. Analyses of pesticides and metals 

Samples of the elutriates and the sediments were analyzed for 
organochloride and organophosphate pesticides associated with agri-
culture (full list in Supplementary Information Table 1). Samples were 
analyzed by GC-ECD/GC-MS following the protocol by USEPA #8081A- 
ECD and USEPA 9270-GCMS. Zn, Cu, Cr and Cd were analyzed in the 
elutriates and in stream-water samples by atomic absorption spectros-
copy, following the protocol by USEPA #3005A and Levei et al. (2010). 

2.7. Diatom cell density and length 

At each sampling time, we harvested five (5) replicates of the control 
and of the elutriate samples. 5-mL subsamples from each replicate were 
separated in Falcon tubes and fixed with 1% formalin; these subsamples 
were used to measure diatom density, cell length and analyze nuclei. 
Diatom density and cell length were measured in a 1-mL Neubauer 
chamber (Lund et al., 1958), a grided chamber divided in nine 1 mm2 

squares, with the center square divided in 25 sections, at 200x using an 
Olympus BX-51 light microscope. 
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2.8. Diatom motility 

From each sample, a 1-mL subsample was put into in a Sedgewick- 
Rafter chamber, placed in an Olympus BX-51 microscope at 200X with 
an Olympus QColor5 camera for filming. For each replicate, videos from 
ten (10) random fields were filmed for 1 min, and the movement of 
diatoms in the field was tracked using Tracker, an open-modeling tool 
built on the Open Source Physics (OSP) Java framework (https://ph 
yslets.org/tracker). Diatom velocity was measured in μm/sec, 
maximum acceleration in μm/sec2 and path length (length of the path 
travelled by the diatom during the video) in μm. 

2.9. Nuclear alterations 

To check for nuclear alterations, samples were fixed and stained with 
2% (v/v) Hoechst 33,342 (CAS No. 23491–52-3, Sigma Chemical Co.) 
solution. Nuclear alterations were counted under 600X magnification 
with an epifluorescence microscope (Olympus B×50) with a specific 
filter for DAPI [4, 6-diamidino-2-phenylindole] (U-MWU2, Ex. filter, BP 
330–385; Em. filter, BA 420; dichromatic filter, DM 400). At least 400 
cells from each sample were counted to determine the proportion of cells 
with abnormal nuclear locations, with nuclear fragmentation, or with 
disruptions of the nuclear membrane. For this evaluation, we first 
considered the different nuclear locations resulting from normal 
movements during the cell cycle, as reported by Round et al. (2007) for 
different diatoms, in order to establish the possible normal positions of 
the nucleus. 

2.10. Statistical analyses 

To explore the effects of sediments (“Treatment” factor, with two 
levels: Control and Elutriate) and time (“Time” factor, with five levels: 
T1, T2, T3, T4, T5) on the biological endpoints, we used two-way An-
alyses of Variance (ANOVA). If the interaction between the factors was 
significant, one way ANOVA were conducted to analyze differences in 
the effects of sediments on each date. 

Normality was previously checked by the Shapiro-Wilks test (Shapiro 
and Wilk, 1965) and homogeneity of variance by Cochrane’s test 
(Cochran, 1951). If the normality test was not significant, variables were 
transformed to log (x+1) (for cell density, length and motility) or arcsine 
square root (for percentage data). Partial η2 (Cohen, 2013) was 
computed as a measure of the effect size. 

3. Results 

3.1. Physical-chemical parameters 

Conductivity varied between 198 μS/cm and 283 μS/cm in the 
controls, and between 235 μS/cm and 369 μS/cm in the Elutriate 
treatment, yet we found no differences between treatments at any date 

(2-way ANOVA Treatment*Date p = 0.84, Table 1). 
Room temperature during the experiment was 21 ◦C (±2 ◦C), and 

although it increased significantly from T2 to T3, we found no signifi-
cant differences between treatments (Table 1). Dissolved oxygen varied 
during the day between 6.2 mg/L and 11.2 mg/L, also without differ-
ences between treatments (Table 1). pH was significantly higher in the 
control experimental units (8.98 ± 0.21) than in the Elutriate units 
(8.67 ± 0.11) throughout the experiment. 

N–NO3
- concentrations in the elutriates increased from 0.054 mg/L at 

the beginning of the experiment to 0.099 mg/L after 72 h of exposure, 
and further to 0.110 mg/L after a week. N–NO2

- also increased from 
0.062 mg/L at T0, to 0.106 mg/L after 7 h of exposure and further to 
0.150 mg/L after a week. N–NH4

+ remained below 0.001 mg/L 
throughout the experiment, and P-PO4

−3 decreased from 0.298 mg/L at 
T0, to 0.219 mg/L at T3 and increased again to 0.268 mg/L at T4. 

3.2. Pesticides and metals 

We detected Zn and Cu in both the sampled water and the elutriates 
used for the treatment experimental units. Mean concentration of Zn in 
the sediments was 1.87 mg/L, which was ten (10) times greater than that 
measured in the elutriates (0.16 mg/L). Mean concentration of Cu in the 
sediments was 0.49 mg/L, 40 times more than that measured in the 
elutriates (0.012 mg/L). Cr and Cd concentrations were below detection 
limits both in sediments and elutriates. 

The α and β isomers of endosulfan (CAS No. 115-29-7) were found in 
70:30 proportion in the sediments and in elutriates, along with endo-
sulfan sulfate. In the sediment, mean concentrations of endosulfan sul-
fate reached 0.5 mg kg−1 and 0.1 mg kg−1 for the α and β isomers 
respectively. In the elutriates, mean concentrations of endosulfan sulfate 
reached 1.6 μg/L and 0.2 μg/L for the α and β isomers respectively. Also 
in the elutriates, we measured a concentration of 0.18 μg/L of lindane 
(γ-BHC, CAS No. 58-89-9). The concentrations of endosulfan and lindane 
decreased throughout the experiment in all the experimental units, 
including the elutriate controls, and by the end of the experiment both of 
the chemicals were below the detection limits. 

3.3. Cell density and length 

Cell density increased 7-fold in the control samples, from T0 (85 ±
26 cells m/L) to T4 (657.6 ± 272.9 cells m/L), while in the elutriate 
samples we found no differences from T0 (146.2 ± 72.7 cell m/L) to T4 
(362.8 ± 307.1 cell m/L). By the end of the experiment, cell density was 
higher in the controls than in the elutriate samples (Table 2; Fig. 1). The 
effect-size of the elutriates on cell density was moderate (η2 = 0.20). 

Diatom length remained similar throughout the experiment in the 
controls at 22.4 ± 0.37 μm, but in the elutriate samples, cell length 
diminished at T4 (from 22.6 ± 0.61 μm at T0-T3 to 20.6 ± 0.7 μm at T4). 
At the last sampling date, mean cell length was lower in the elutriate 
samples than in the control samples(Table 2; Fig. 1). The effect-size of 

Table 1 
Mean (±SD) of the main physical-chemical parameters measured in the control and elutriate samples during the experiment (n = 5 per time per treatment), and 2-way 
ANOVA results (Factors Treatment and Date, and * their interaction). Significant differences are shown in bold font, as are the effect size measure (Partial μ2).   

Control Treatment  Treatment (df=1) Date (df=4) Treatment * Date (df=4) 

Conductivity μS/cm 253.6 (±30.3) 248.7 (±12.7) F 1.28 0.81 0.34 
p-value 0.27 0.53 0.84 
Partial μ2 0.06 0.14 0.06 

Temperature ◦C 22.24 (±0.7) 22.4 (±0.5) F 0.76 12.76 1.03 
p-value 0.39 <0.01 0.41 
Partial μ2 0.04 0.72 0.17 

pH 8.9 (±0.2) 8.4 (±0.1) F 206.73 15.82 5.81 
p-value <0.01 <0.01 0.30 
Partial μ2 0.91 0.76 0.54 

Dissolved Oxygen mg/L 8.2 (±1.3) 7.9 (±1.3) F 1.61 38.87 0.68 
p-value 0.22 <0.01 0.61 
Partial μ2 0.07 0.88 0.12  

M.M. Nicolosi Gelis et al.                                                                                                                                                                                                                     

https://physlets.org/tracker
https://physlets.org/tracker


Ecotoxicology and Environmental Safety 205 (2020) 111322

4

the elutriates on cell length was moderate (η2 = 0.44). 

3.4. Diatom motility 

All N. palea motility metrics (mean velocity, acceleration and path 
length) were lower in the elutriate samples starting from T2 until the end 
of the experiment if compared to the controls (Table 2; Fig. 2). 

Mean velocity ranged from 1.4 (±0.29) μm/sec in the elutriate 
samples, but increased from 1.0 (±0.2) μm/sec to 3.5 (±0.6) μm/sec in 
the controls from T0 to T4 (Fig. 2). Mean acceleration followed a similar 
pattern of increase in velocity of the controls, increasing from 2.9 (±0.5) 
μm/sec2 at T0 to 8.2 (±1.4) μm/sec2 at T4. In the elutriate samples, 

mean acceleration did not vary much (3.7 ± 0.83) μm/sec2. 
Mean path length also remained similar throughout the experiment 

in the elutriate samples (49.7 ± 10.67 μm) while in the controls it 
increased from 33.2 (±7.0) μm at T0 to 104.9 (±9.8) μm at T4. 

The effect-size in the motility metrics were all moderate (0.25 > η2 <

0.75), and the strongest one was measured for acceleration (η2 = 0.42). 

3.5. Diatom nuclear abnormalities 

Most cells of N.palea in both treatments had their nucleus in normal 
conditions. However the abnormal fraction was lower in the elutriate 
samples (87.6 ± 6.1%), compared to the control samples (95.7 ± 4.4%). 

The proportion of cells with nuclear-membrane breakage was > 3x 
higher in the elutriate treatment units (8.9 ± 4.5%) than in the control 
samples (2.8 ± 2.3%). The differences between treatments was signifi-
cant from T1 to T4 (Fig. 3, Table 2). Although the proportion of cells 
with a misplaced nucleus was low throughout the experiment, it was 
significantly higher in the elutriate samples (0.6 ± 0.8%) than it was in 
the controls (0.1 ± 0.1%) over all dates. The proportion of fragmented 
nuclei was also very low in all samples; mean values were higher in the 
elutriates (0.7 ± 1.1%) than in the controls (0.2 ± 0.4%), but significant 
differences were found between treatments or dates with this variable. 

4. Discussion 

The bioassays showed that the motility measures for Nitzschia palea 
and the condition of their nuclear membranes reflected the effects of 
sediment elutriates mostly after 48 h of exposure, while mean cell 
density and length were affected within seven (7) days. The sediment 
elutriates slowed cell movement by shortening the total path-length and 
decreasing cell velocity. The number of normal nuclear membranes for 
N. palea also was negatively affected by the elutriates, with the fraction 
of cells with nuclear membrane breakage increasing as exposure to the 
elutriates continued. 

Metals and pesticides analysis both in the sediments and in the elu-
triates revealed the presence of compounds normally associated with 
intensive agriculture, including α-endosulfan, β-endosulfan, sulfate 
endosulfan, lindane, Zn and Cu. Endosulfan and lindane concentrations 
surpassed the Argentine guideline levels for protecting aquatic life 
(≤0.007 μl/L, ≤0.02 μl/L respectively; SRHA, 2004, 2005). Low con-
centrations of metals such as Zn and Cu are essential for algal meta-
bolism (Tadros et al., 1990). However, at high concentrations, or when 
mixed at low concentrations, these metals can be toxic and can cause 
metabolic stress in microalgae (Rodríguez and Rivera, 1995). They can 
also inhibit algal growth and cause morphological changes (Sunda and 
Lewis, 1978; Rand and Petrocelli, 1985; Visviki and Rachlin, 1994; 
Romero et al., 2002; Gómez and Licursi, 2003). 

Table 2 
Main results of the 2-way ANOVA (Factors Treatment and Date, and * their 
interaction) conducted on the biological variables (n = 5 per time per treat-
ment). Significant differences are shown in bold font, as are the effect size 
measure (Partial μ2).    

Treatment 
(df=1) 

Date 
(df=4) 

Treatment * 
Date (df=4) 

Cell density (cell m/ 
L) 

F 0.72 8.78 2.45 
p-value 0.40 0.00 0.04 
Partial 
μ2 

0.02 0.47 0.20 

Cell length(μm) F 1.04 3.31 7.75 
p-value 0.32 0.02 0.00 
Partial 
μ2 

0.03 0.25 0.44 

Motility – Velocity 
(μm/sec) 

F 15.23 5.36 6.19 
p-value 0.00 0.00 0.00 
Partial 
μ2 

0.28 0.35 0.38 

Motility – 
Acceleration(μm/ 
sec2) 

F 9.58 4.48 7.08 
p-value 0.00 0.00 0.00 
Partial 
μ2 

0.19 0.31 0.42 

Motility - Path 
length(μm) 

F 6.72 4.23 4.16 
p-value 0.01 0.01 0.01 
Partial 
μ2 

0.14 0.30 0.29 

Nuclei (membrane 
breakage)(%) 

F 8.14 3.97 0.38 
p-value 0.01 0.01 0.83 
Partial 
μ2 

0.17 0.28 0.04 

Nuclei (misplaced) 
(%) 

F 5.29 1.97 0.77 
p-value 0.03 0.12 0.56 
Partial 
μ2 

0.12 0.16 0.07 

Nuclei (fragmented) 
(%) 

F 2.06 2.05 1.23 
p-value 0.16 0.11 0.31 
Partial 
μ2 

0.05 0.17 0.11  

Fig. 1. Mean variation (±SD) in cell density and cell size during the experiment in the control and elutriate samples. T0, T1, T2, T3 and T4 refer to days 0, 1, 2, 3, and 
7 of exposure respectively. 
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By the end of the experiments, both in the elutriate and in the control 
samples, the concentration of organochlorides were below the detection 
limit, suggesting a low persistence of the compounds in the elutriate 
samples. Several hypotheses have been proposed for this situation: the 
organochlorides may bioaccumulate within diatom cells, or the com-
pounds may naturally degrade over time, and/or the compounds may 
adsorb to the walls of the experimental units (Coquillé et al., 2015). 

In our study, the exposure to sediment elutriates was associated with 
a reduction in N. palea density of after 7 days. Several factors may ac-
count for the variability in cell density when sediment assays are per-
formed. These can include particle-size composition, that causes a 
“shadow effect” (Moreno-Garrido et al., 2003, 2007), or the presence of 
toxicants in the sediments. Parodi et al. (2015) found that sediments 
containing high concentrations of metals and aromatic compounds, 
strongly inhibited growth in Nitzschia aff. kuetzingioides. 

When using diatoms, physiological or functional metrics are rarely 
incorporated in monitoring programs, although they do have the 
advantage of showing sublethal effects (Pandey et al., 2017). Diatom 
populations in growth phase are dominated by cellular division, which 

leads to reduction in cell size of the new cells (Round et al., 1990); only 
by sexual reproduction is the original cell size recovered. Therefore, a 
change in the cell size distribution towards smaller cell sizes may indi-
cate a predominance in asexual reproduction, and a distribution towards 
larger cell sizes would indicate a predominance in sexual reproduction 
(Coquillé et al., 2015). The reduction in cell size, in addition to being 
related to the asexual reproduction in diatoms, has also been reported as 
a response to toxic effects such as metals and pesticides (Pandey et al., 
2018). Since environmental stress leads to higher cell division rates, 
ultimately stress results in reduced frustule size (Pandey et al., 2017). 
This condition coincides with our results, where there is a decrease in 
cell length throughout the experiment in the samples containing sedi-
ment elutriates. 

Regarding cell motility, various environmental perturbations, both 
natural (Cohn and Disparti, 1994) and anthropogenic (Svensson et al., 
2014; Coquille et al., 2015), can affect live diatom motion. Our analyses 
of diatom motility as a physiological metric allowed us to detect the 
short-term effects (minutes to hours) of stressors in individual cells 
(Cohn and McGuire, 2000). In the assay presented here, diatom motility 
metrics responded negatively to the presence of sediment elutriates after 
48 h. These results are similar to those obtained by Cohn et al. (2003), 
who reported slower velocities when the diatoms are exposed to toxic 
elutriates. Motility variables also are a relevant marker for pollutants 
such as Zn and Cu (Pandey and Bergey, 2016), even in concentrations 
greater than those measured in our study. Further, various metals (Cu, 
Co, Hg, Ni, Zn and Fe) mixed with pesticides (DDT, captan, 2,4-D) 
inhibit the motility of Navicula grimmei y N. palea in laboratory condi-
tions (Gupta and Agrawal, 2007). 

The nuclear integrity (both nuclear position and integrity of the 
system of microtubules) affect valve development (Edgar and 
Pickett-Heaps, 1984). The nuclear alterations of N. palea in the bioassays 
presented here increased in the experimental units exposed to the 

Fig. 2. Mean (±SD) in N.palea motility variables (a-velocity, b-acceleration, c- 
path length) during the experiment in the control and elutriate samples. T0, T1, 
T2, T3 and T4 refer to days 0, 1, 2, 3, and 7 of exposure respectively. 

Fig. 3. Mean (±SD) in cells with abnormal nuclear conditions (a-membrane 
breakage, b-misplaced nucleus) during the experiment in the control and 
elutriate samples. T0, T1, T2, T3 and T4 refer to days 0, 1, 2, 3, and 7 of 
exposure respectively. 
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elutriates for 24 h. Our results agree with previous results that have 
shown that the proportion of nuclear anomalies increased when diatoms 
are exposed to herbicides (Debenest et al., 2008), hexavalent chromium 
(Licursi and Gómez, 2013) or urban effluents (Nicolosi Gelis et al., 
2020). 

Elutriates can be used to assess sediment quality but have at least two 
limitations. First, the proportion of sediment to water can differ from 
that experienced by diatoms cells in their natural environment. Second, 
cells in their natural environment can be exposed to interactions be-
tween soluble and insoluble toxins, yet the latter is not obtained through 
the elutriate method we used (Burton, 1991; Canter, 2018). 

5. Conclusions 

Our results show that the widely distributed diatom, N. palea, might 
be used as a sensitive indicator of sediment quality for streams in agri-
cultural areas. Diatom motility measurements and the condition of the 
nuclei may be used to quantify sediment quality problems faster than 
more traditional structural parameters of algal communities, such as cell 
density or taxonomic diversity. The whole-sediment assay used here 
showed that sediment elutriates can be used to reveal effects quickly and 
inexpensively, and provided sensitive and ecologically relevant re-
sponses in a few days. 
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