New NMR investigation of [RuF₅NO]²⁻ anion

L. Diana Castañeda Trujillo a, Jorge L. Jios b, Carlos A. Franca a, Jorge A. Güida a,c,d,*

a CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (CONICET-CCT La Plata), Boulevard 120 N° 1465, La Plata 1900, Argentina
b Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, Argentina
c Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 esq. 115, 1900 La Plata, Argentina
d UNIDAD PLAPIMU-LASEISIC (UNLP-CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 esq. 115, 1900 La Plata, Argentina

corresponding author at: CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (CONICET-CCT La Plata), Boulevard 120 N° 1465, La Plata 1900, Argentina

E-mail address: guidar@quimica.unlp.edu.ar (J.A. Güida).

Keywords: ¹⁹F, ¹⁴N NMR
Ru[Fe(NO)₅]²⁻
DFT Calculations
Ruthenium nitrosyl

ARTICLE INFO

Article history:
Received 30 November 2017
Received in revised form 8 February 2018
Accepted 9 March 2018
Available online 10 March 2018

Abstract

The ¹⁵N shift value is the main distinctive parameter to distinguish linear than angular MNO in transition metal nitrosyls by NMR spectroscopy. To get insight into the spectroscopic properties of a simple ruthenium-nitrosyl complex, the [RuF₅NO]²⁻ anion, was reinvestigated. Their ¹⁵N and ¹⁹F nuclear magnetic resonance spectra (NMR) were analyzed and compared with the behavior observed for the geometrically related (Cᵥ) [Fe(CN)₅NO]²⁻ (¹⁵N and ¹³C enriched) ion. The different splitting and coupling constants observed in both systems were attributed to the small change in angles and atomic distances. These results highlight the sensitivity of this spectroscopy to detect small geometrical distortion in transition metal complexes. DFT calculations predicted for both systems, shifts and coupling constant values in good agreement with the experimental results. The chemical shifts and coupling constants parameters predicted by DFT calculations for both systems are in good agreement with experimental values.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The important roles discovered for nitric oxide (NO) in biological systems in the last three decades stimulated research on transition metal complexes containing nitrosyls [1]. Their synthesis was explored with the aim of being able to release NO for biological and therapeutic applications [2,3]. Among these, ruthenium nitrosyls pay a lot of attention judging from the large number of reported investigations [2]. Sodium nitroprusside (Na₂[Fe(CN)₅NO].2H₂O), Roussin’s red salt (K₂[Fe₂S₂(NO)₄]), and black salt (Na[(FeNOS)₄]) are other nonheme iron nitrosyl complexes widely studied as potential NO sources [3,4] Despite the risks for cyanide release [5], sodium nitroprusside has to be used in cardiac hypertensive crises, vascular surgery, heart failure, pediatric surgery, and other acute applications [6].

The detailed study of NO coordinated to a metal centre is crucial to understand biological process at molecular level. Different spectroscopic and structural methods provide complementary information on the bonds nature. Among this, NMR spectroscopy is one of the most powerful and sensitive methods to explore the molecules in a solvent media. Its utility was extended to coordination chemistry to evaluate the structure and behavior of the complexes and their ligands in solution [7,8], also in coordination supramolecular chemistry [9]. However, the simplest of all ruthenium nitrosyls ([RuF₅NO]²⁻) has not been sufficiently studied. The theoretical and experimental conclusions for this compound might be used as a model to understand more complex systems.

Although the number of studies on ¹⁵N NMR in metal nitrosyl are few, ¹⁵N chemical shift was proposed to distinguish between bent and linear M–N–O structure because bent nitrosyls appeared separated by hundreds of ppm from linear arrangements [10–12]. This behavior is also observed in solid state [13].

The aim of the present work is to get insight on the NMR study of the [RuF₅NO]²⁻ ion by exploring the ¹⁹F and ¹⁴N spectra of [RuF₅¹⁵NO]²⁻ (¹⁵N isotopic substitution >90%). This simple inorganic system is ideal to be studied by NMR spectroscopy because ¹⁹F and ¹⁵N (isotopically enriched) atoms are directly coordinated to the central metal and the multiplicity and coupling constant values between them can reflect conformational and structural information.

The nitroprusside ion ([Fe(CN)₅NO]²⁻), geometrically related to the title compound (Cᵥ), was synthesized with fully enriched ¹⁵N (O) and ¹³C isotopes in order to compare the splitting of NMR signals and coupling constant with that observed for [RuF₅¹⁵NO]²⁻.

The experimental results were supported with Density Functional Theory (DFT) calculations.
2. Experimental section

2.1. Synthesis of [RuF$_5$]$_{14/15}$NO$_2^-$ ion

The K$_2$[RuF$_5$NO]·H$_2$O complex was synthesized by a modifying method reported in the literature [14]. The synthesis started from K$_2$[RuBr$_5$NO] instead of K$_2$[RuCl$_5$NO] because a better yield was achieved (60%). The solid K$_2$[RuBr$_5$NO] in intimate contact with KHF$_2$ (at a molar ratio: complex: KHF$_2$: 1:5) was placed in a nickel crucible and then heated in a muffle for 30 min at 320–340 °C. The obtained solid was dissolved in the minima water volume and left for crystallization by spontaneous evaporation of the solvent at room temperature.

K$_2$[RuBr$_5$NO] was prepared by a modified method reported in reference [15] RuCl$_3$ (0.070 g, 3.372 × 10$^{-4}$ mol) was dissolved in 50 mL of water with addition of KNO$_2$ (0.0573 g, 6.744 × 10$^{-4}$ mol) and HBr (2 mL, δ = 1.490 g/cm3, 48%) to give a red solution which was heated to boiling point for 15 min (65% yield).

The isotopically 14/15N-substituted anion was prepared using Na$_{13}$CN [16]. In the second step, Na$_4$[Fe(13CN)$_6$] was obtained from the reaction of FeCl$_3$ with Na$_{15}$NO$_2$ to obtain the final product [17].

2.2. Instruments and methods

The 13C (125.8 MHz) and 15N (50.7 MHz) NMR spectra of the nitroprusside anion measured with respect to the external standard (TMS) were compared with those reported in the literature showing good agreement [14,15,18].

2.3. Computational details

The input data for the computational calculations were performed using parameters values obtained from sodium nitroprusside dihydrate and potassium pentafluoronitrosylruthenate(II) monohydrate crystal structures. The optimization of the geometries and the vibrational analysis for both complexes were carried out with the aim to get the lowest value in the potential energy surface. The calculations were performed with the DFT tools as implemented in GAUSSIAN 09 [19], using Troullier M06L [20] functionals and a DEFF2-TZVPPD basis set [21,22] for all atoms. Nuclear magnetic resonance properties for both complexes were calculated at the B3LYP/6-311+G** level of theory. This method was suggested by Cheeseman et al. [23], using the Gauge-Including Atomic Orbital (GIAO) method [24,25] as implemented in the Gaussian 09 package. Isotropic shielding tensors of 13C, 15N and 19F were turned into chemical shifts subtracting this amounts from the references values. The chemical shifts values obtained as references are: TMS: 182.9795 ppm; CCl$_3$: 174.6841 ppm; CH$_3$NO$_2$: −160.907 ppm.

3. Results and discussions

The nitroprusside anion ([Fe(CN)$_5$NO]$_2^-$) is related geometrically to [RuF$_5$NO]$_2^-$ because both ions can be described as a distorted octahedral characterized by short M-N distances. The symmetry of both anions is very close to the idealized C$_{6h}$ point group. Some selected geometric parameters, extracted from the Na$_2$[Fe(CN)$_5$NO]·2H$_2$O [26] and K$_2$[RuF$_5$NO]·H$_2$O [27] crystallographic structures, are compared in Table 1. The ions structures are shown in Fig. 1.

Although both ions belong to the same point group of symmetry, some small structural differences can be remarked from the analysis of Table 1.

The [RuF$_5$NO]$_2^-$ ion is more symmetric (closer to an octahedral geometry) than [Fe(CN)$_5$NO]$_2^-$; the N-Ru-Fax (Fax refers to axial position) angle is linear while in nitroprusside (N-Fe-Cax) it is slightly bent. The N-M-Qeq (Qeq refers to equatorial position) angle is slightly larger in nitroprusside ion than in [RuF$_5$NO]$_2^-$; Equatorial groups are slightly bent towards the fifth axial ligand in both ions, but the Ceq-Fe-Ceq angle (for opposite Ceq) is smaller than the equivalent FeQeqFax ones. It is interesting to test whether the smaller structural differences between ions are evidenced in the NMR spectra.

The [Fe(CN)$_5$NO]$_2^-$ ion was intensely studied by Butler and coworkers [28] using 13C and 15N NMR spectroscopy, including partial and total isotopical substitution.

In order to compare the splitting and coupling constants between 13N and 19F in [RuF$_5$NO]$_2^-$ with those of 13C and 15N in nitroprusside ion, the 13C and 15N NMR spectra of natural [Fe(CN)$_5$NO]$_2^-$ and 12C and 15N enriched samples were measured in this work.

Fig. 2 compares the 13C NMR spectra of the nitroprusside anion measured at natural abundance [Fe(CN)$_5$NO]$_2^-$, with [Fe(CN)$_5^{15}$NO]$_2^-$ (90% 15N enrichment) and with [Fe(CN)$_5^{13}$NO]$_2^-$ (>90% 13N and 15N isotopically enriched samples).

As expected, the coupling constant value (J) between nitrosyl nitrogen and axial 13C (13-Cax-15N = 13 Hz) is larger than equatorial 13C (13-Ceq-15N = 4 Hz) due to geometrical considerations (see Fig. 2B and C).

The 15N NMR chemical shift singlet of [Fe(CN)$_5$NO]$_2^-$ at −8.83 ppm (Fig. 3A) is in good agreement with the reported values (−9.9 ppm) [28]. This signal becomes a double quintet when the sample

Table 1

<table>
<thead>
<tr>
<th>Angles (°)</th>
<th>[Fe(CN)$_5$NO]$_2^-$</th>
<th>[RuF$_5$NO]$_2^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-M-Qeq*</td>
<td>95.46 (Av)</td>
<td>94.3</td>
</tr>
<tr>
<td>QeqMxax*</td>
<td>84.52 (Av)</td>
<td>85.7</td>
</tr>
<tr>
<td>QeqMxax*</td>
<td>169.05 (5)</td>
<td>171.4</td>
</tr>
<tr>
<td>MNO</td>
<td>176.2 (2)</td>
<td>180.0</td>
</tr>
<tr>
<td>N-M-Xax</td>
<td>176.89 (7)</td>
<td>180.0</td>
</tr>
</tbody>
</table>

Atomic distances (Å): d(NO) = 1.299 (2); d(M-N) = 1.660 (2); d(M-Xax) = 1.928 (2); d(M-2Xeq) = 1.941 (Av) 1.954

M = Ru, Fe; X = C or F; (op): referred to opposite ligands in equatorial plane; Av: average value.

* Xax or Qeq is referred to the axial or equatorial position relative to NO for the CN or F ligands.
is 13C enriched [Fe(13CN)515NO]2− (Fig. 3B). The measured heteronuclear coupling constants (JNC) were 13 and 3.6 Hz, for axial and equatorial carbons, respectively (see Fig. 3B).

For the title complex, some spectroscopic properties, such as the 19F NMR spectrum were published before. This study includes time decomposition processes monitored by this spectroscopy [18]. Our data shows two spin systems, a quintet (integrating for one F) at 411.1 ppm, and a doublet (integrating for four F) at 140.5 ppm. Those multiplicities indicate the axial and equatorial fluorine atoms, respectively. The same signals were reported at 409.5 and 142.2 ppm [18].

To evaluate the effect of the isotopic substitution, the 19F spectra of a natural sample ([RuF5NO]2−) and an enriched one ([RuF515NO]2−) are shown in Fig. 4. As consequence of the 15N substitution the axial fluorine should be split in a double quintet, but instead of this, the observed multiplicity is a sextet because of the similar coupling constant values (JFax-Feq = 71 Hz; JFax-15N = 67 Hz). Other important feature is the lack of heteronuclear coupling for the equatorial fluorine atoms after 15N enrichment, suggesting that these atoms are in a geometric arrangement close to 90° and then with the smallest coupling magnitude.

The 15N NMR spectra of [RuF515NO]2− sample is observed as a doublet at −36.5 ppm due to the coupling with the axial fluorine (see Fig. 5). Again, the spectrum does not show the coupling with the equatorial fluorine atoms.

Due to the geometric analogy between the nitroprusside and [RuF5NO]2− ions, similar NMR splitting signal are expected. The spectra of Figs. 2 and 3 (nitroprusside ion) compared with those shown in Figs. 4 and 5 ([RuF5NO]2−) reveals different splitting patterns and coupling constant values. In the nitroprusside ion a coupling of smaller magnitude between 15N and equatorial atoms than 15N Cax was detected, but the corresponding 15N Feq splitting was not observed in ([RuF5NO]2−).

This distinctive behavior could be explained by the few geometric differences highlighted above (see Table 1).

To provide theoretical support to this interpretation, DFT calculations were carried out to evaluate the coupling constants in both complexes, starting from the crystallographic parameters and optimizing them.

Table 2 compares the experimental coupling constants for the nitroprusside and [RuF515NO]2− ions with those predicted by the DFT calculations. The theoretical calculations predict for [RuF515NO]2− the lowest coupling constant value (1.1 Hz) between 15N and equatorial groups, a fact that is observed in experimental spectra (J15N-Feq not observed), while this coupling constants rise to 78.8 Hz (observed J15N-Fax = 67 Hz) for axial group.

15N RMN spectra shows signals between 200 and −50 ppm [nitromethane as reference] for linear transition metal nitrosyls [11]. Our spectra show a doublet at −36.5 ppm, close to the values observed for similar Ru-complexes (−48 ppm for [RuCl3NO]2− and −29 ppm for [Ru(NH3)5NO]2−) with linear geometry [29].

Table 3 compare experimental and calculated chemical shifts (δ) of [Fe(13CN)515NO]2− and [RuF515NO]2− ions. Calculated δ are in reasonable agreement with experimental values with exception of the values of 15N NMR. As is known, the 15N NMR chemical shift depends strongly on the experimental conditions of measurement. In this communication no effort was made in evaluate the effect of the change in some variables such as solvent, temperature or sample concentration.

![Fig. 1. [RuF5NO]2− and [Fe(CN)5NO]2− C4v ions geometry taken from crystal structures.](image1)

![Fig. 2. 13C NMR spectra of the nitroprusside anion: (A) natural sample [Fe(CN)5-NO]2−, (B) (15NO: >90%) [Fe(CN)515NO]2− and (C) (15NO and 13C: >90%) [Fe(13CN)515NO]2−.](image2)

![Fig. 3. 15N NMR spectra of nitroprusside anion: (A) [Fe(CN)515NO]2− sample (15N enrichment >90%) and (B) [Fe(13CN)515NO]2− (13C and 15N isotopically enrichment >90%).](image3)
4. Conclusions

The 15N shift value is the main distinctive parameter to distinguish linear than angular MNO in transition metal nitrosyls by NMR spectroscopy, and in the case of the compounds under study, they belong to linear nitrosyl complexes (MNO angles close to 180°). Although the symmetry of both, the nitroprusside and pentacianenitrosylruthenate(II) ions is similar and consequently the same type of coupling between the nuclei located in axial and equatorial positions are expected, the parameters observed in the NMR spectra, however, reveals some significant differences. The differential behavior in the magnitude of the heteronuclear coupling constant value between equatorial ligands and 15N nitrosyl axial group is attributed to the small geometric differences in angles and distances observed in both complexes.

Since equatorial groups are more bent towards the fifth axial ligand in $[\text{Fe(CN)}_5\text{NO}]^{2-}$ than in $[\text{RuF}_5\text{NO}]^{2-}$ and $\text{Cax}-\text{Fe}-\text{N}$ angle is lower than the equivalent $\text{Fax}-\text{Ru}-\text{N}$ ones, these two geometrical differences allowed a small coupling constant for the first detected by the NMR spectroscopy. This experimental result was supported by DFT calculation. However, the less distorted pentafluorinitrosylruthenate(II) ion precludes the experimental observation of this coupling. These results points towards the sensitivity of the NMR spectroscopy as an analytical tool with sensitivity to detect small differences in molecular geometry of this kind of complexes. All spectroscopic results were accompanied by DFT calculations. Coupling constants obtained by theoretical calculation are in good agreement with experimental results observed for both ions, supporting these conclusions.

Acknowledgments

This work was supported by the following institutions: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, grants: PIP 5633/05 and 0327), Argentina; Agencia Nacional de Promoción Científica y Tecnológica (Grants PICT 06-11127 and 1539, PME 2006-00069-05), Argentina; Facultad de Ciencias Exactas, Universidad Nacional de La Plata (14/B15), and Universidad de Luján (11/X565 and 11/X672), República Argentina.

CAF acknowledges the Universidad Nacional de Catamarca for computing time.
J. A. G. is member of Research Staff of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Associate Professor at Facultad de Ingeniería, UNLP, Argentina. J.L.J is research fellow of Comisión de Investigaciones Científicas (CIC).

JAG also thanks to R.H. Hester (The University of York, UK) for NMR facilities and S. Duckett (U. of York) and Lucas Fabian (Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina) for technical assistance. Moreover, we thank to Dr. Ana M.P. de Izara for helpful discussion on the important roles of nitric oxide (NO) in biological systems.

References