
µBert: Mutation Testing using Pre-Trained
Language Models

Renzo Degiovanni and Mike Papadakis

SnT, University of Luxembourg, Luxembourg

Conference: Mutation Workshop at the International Conference on
Software Testing, Verification and Validation ICST 2022, Valencia,
Spain, April 4-13, 2022.
https://orbilu.uni.lu/retrieve/91556/98008/codebert_mutation-5.pdf

Mutation testing seeds faults using a predefined set of simple syntactic trans-
formations, aka mutation operators, that are (typically) defined based on the
grammar of the targeted programming language. As a result, mutation opera-
tors often alter the program semantics in ways that often lead to unnatural code
(unnatural in the sense that the mutated code is unlikely to be produced by a
competent programmer).

Such unnatural faults may not be convincing for developers as they might
perceive them as unrealistic/uninteresting, thereby hindering the usability of
the method. Additionally, the use of unnatural mutants may have actual impact
on the guidance and assessment capabilities of mutation testing. This is because
unnatural mutants often lead to exceptions, or segmentation faults, infinite loops
and other trivial cases.

To deal with this issue, we propose forming mutants that are in some sense
natural; meaning that the mutated code/statement follows the implicit rules,
coding conventions and generally representativeness of the code produced by
competent programmers. We define/capture this naturalness of mutants using
language models trained on big code that learn (quantify) the occurrence of code
tokens given their surrounding code.

We introduce µBert, a mutation testing tool that uses a pre-trained language
model (CodeBERT) to generate mutants. This is done by masking a token from
the expression given as input and using CodeBERT to predict it. For example,
given the masked sequence int a = <mask>;, CodeBERT predicts that 0, 1, b,
2, and 10 are the (five) most likely tokens/mutants to replace the masked one
(ordered in descending order according to their score – likelihood). Thus, the
mutants are generated by replacing the masked tokens with the predicted ones.

We evaluate µBert on 40 real faults from Defects4J and show that it can
detect 27 out of the 40 faults, while the baseline (PiTest) detects 26 of them.
We also show that µBert can be 2 times more cost-effective than PiTest, when
the same number of mutants are analysed. Additionally, we evaluate the impact
of µBert’s mutants when used by program assertion inference techniques, and
show that they can help in producing better specifications. Finally, we discuss
about the quality and naturalness of some interesting mutants produced by
µBert during our experimental evaluation.

ASSE, Argentine Symposium on Software Engineering

Memorias de las 51 JAIIO - ASSE - ISSN: 2451-7496 - Página 64


