
A Comparative Study of

Implementation Strategies for

Real-Time Video Processing

Pablo Odorico1,2 Tomás Touceda1 Claudio Delrieux3,4

1 Departamento de Ciencias e Ingenieŕıa de la Computación
2 (corresponding author: pablo.odorico@uns.edu.ar)

3 Departmento de Ingenieŕıa Eléctrica y de Computadoras
4 IIIE - CONICET, parcialmente financiado por SECyT-UNS

Universidad Nacional del Sur - Alem 1253 - (8000) Bah́ıa Blanca - Argentina

Abstract

We present a comparative study of the efficiency and effectiveness of differ-
ent implementation strategies for real-time video processing. In particular, we
tested the performance of GPU processors (using the CUDA library) against
the performance of quad-core PC Intel processors (using the Intel Performance
Primitives library).

The test consisted on applying a standard group of image processing algo-
rithms, including histogram equalization, and convolution filtering, to a number
of high definition video sequences and measuring the performance of each imple-
mentation. The results show that GPU processing is extremely cost-effective,
but with the drawback that the underlying programming framework is very
architecture-dependent, making it prone to the hardware idiosyncrasies, and
therefore less abstract and reusable.

Keywords: Video Processing, GPGPU, Many-Core Computing.

1 Introduction

Graphic processing units (GPUs) emerged aproximately ten years ago, fueled by
the widespread interest in computer games, 3D animation, after-effects produc-
tion, and many other applications of computer graphics in the entertainment
industry. GPU products have experienced since then a skyrocketing evolution
in performance and capabilities, nearly doubling Moore’s law [11]. Off the shelf

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1542



graphic cards are now able to peak over a teraflop processing capabilities, that
is, several times more computing power at a fraction of the cost of the main pro-
cessor. This trend was very soon recognised in the High-Performance Comput-
ing (HPC) community, and methods to take advantage of this huge computing
power were foreseen in general purpose applications. This gave raise to General
Purpose GPU (GPGPU) [9].

Earlier use of GPUs in generic applications was based on creative ways of
taking advantage of the rendering pipeline hardwired in the graphic card. In
other words, a given computational problem, for instance huge matrices multi-
plication, was transformed and presented to the GPU in a way such that the
rendering pipeline was indeed computing the desired result. For that reason,
GPGPU programming was an extremely artisanal, hardware-specific task, with
little or no abstraction, and therefore featuring neither code reuse nor portabil-
ity.

Soon the GPU developers acknowledged this problem, and designed GPGPU
programming platforms with a relatively higher level of abstraction, being
NVIDIA’s CUDA probably the most remarkable and widespread example (see
for instance http://www.nvidia.com/cuda). As of today, NVIDIA’s technolo-
gies claim to achieve supercomputing performance in a desktop system, at very
reasonable costs [14, 12].

On the other hand, CPU makers have developed libraries that take advantage
of the available hardware features to the limit, including the increasing amount
of cores, and the availability of SIMD operations. An outstanding example of
this trend is the recent release of Intel’s Integrated Performance Primitives (IPP,
see http://software.intel.com/en-us/intel-ipp/), that usually provides
image processing capabilities more than an order of magnitude faster that what
could be achieved through a high level platform including optimizing compilers.

One of the most important aspects to consider in the development of HPC
applications is the tradeoff between the cost-effectiveness (the acceleration pro-
vided under similar costs) and the programming flexibility (the ability to rep-
resent and use programming abstractions that allow the use of software engi-
neering methodologies). There are several HPC architectures in the literature
(multicore computing [1], grid computing [2], cluster [6], among others), each
with a specific set of advantages over the others. However, there are few compar-
ative studies of the performance, cost-effectiveness, and programming flexibility
of these architectures in specific applications or contexts. It is unlikely that any
of these technologies will be definitely shown to be superior to others in general
purpose applications, and therefore, given a specific problem in hand, the most
sensible way to apply an HPC schema is to use an appropriate benchmarking.

This work is aimed to provide comparative results of the cost-effectiveness,
and programming flexibility of some implementation strategies in real-time video
programming. In particular, we tested the performance of GPU processors

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1543



against quad-core PC Intel processors (using IPP). The processing benchmark
implemented several general purpose image and video processing techniques,
including histogram equalization, morphology, and convolution filtering. Similar
processing techniques were applied to high definition video files.

In the next Section we describe the different implementation strategies that
were used in this work, and the video processing algorithms that were applied.
In Section 3 we show the implementation details, whose results are presented
in Section 4. Finally, in Section 5 we discuss the conclusions and directions for
further work.

2 Real-Time Image and Video Processing

Most image and video processing problems may be tackled using a relatively
small set of basic techniques, whose usefulness, properties, and implementation
and optimization details were thoroughfully studied in the last decades under
the generic subject of image processing [3, 5, 8]. Among those fundamental tech-
niques we may mention histogram manipulation and binarization; convolution,
morphology, and other local, mask-based processing; over- and undersampling,
including interpolation, rotation, and reconstruction techniques; quantization,
including luminance, color, and chromatic-space manipulation algorithms; and
spectral processing, including Fourier and DCT transform [4, 7, 10].

Even though the fields of video processing and computer vision require time-
specific processing techniques, most of them are explicitly or implicitly founded
on the basic image manipulation algorithms mentioned above, or are just exten-
sions of the 2D versions of the algorithms to the 2D plus time domain [13, 15].
Therefore, the performance of any real-time application including digital video
will depend highly on the implementation efficiency of these basic set of pro-
cessing operations.

For these applications, a direct real-time implementation of these algorithms
in high level programming platforms so far exeeds the capabilities of standard
PC computers, since even the most aggressive optimizing compilers cannot meet
the standards and requirements of real-time, high definition video processing.
This, however, does not mean that desktop computers are lacking computational
power. Instead, the problem is to devise implementation strategies that circum-
vent the bottlenecks produced by serial code programming platforms in modern
parallel, multicore hardware. In domain-specific areas, CPU makers released li-
braries that take advantage of the available hardware features (for instance IPP)
in a way such that facilitates a rapid development of high-level applications with
very high execution performance. Other implementation strategy, that appears
to be increasingly fruitful in the embarrassingly parallel domain of image and
video processing, is to take advantage of the huge amount of cores present in
the GPU hardware, developing the processing operations in a GPGPU program-

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1544



Figure 1: Sample frames of the four HDTV video sequences used for testing
purposes.

ming platform. These two are the implementation strategies that we tested and
benchmarked in this work.

We have developed a testing framework, in which a meaningful subset of
the basic image processing operations were implemented both on the CPU and
the GPU. Such operations commonly take part in more complex processing
pipelines. We used four high definition video sequences (1920x1080) from the
SVT High Definition Multi Format Test Set, encoded with lossless compression
(see Fig. 1). This test set has been specifically designed to evaluate the perfor-
mance of video processing technologies. We have chosen to work with high defi-
nition video as it is becoming the standard resolution for television and internet
broadcasting. The video sequences were obtained from the National Institute of
Standards and Technology (NIST) (ftp://vqeg.its.bldrdoc.gov/HDTV/SVT
MultiFormat/SVT MultiFormat v10.pdf ).

3 Implementation Details

For the CPU-based implementation we have used the library IPP. The main
reason for using IPP is the high level of optimization that it provides for In-

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1545



tel’s microprocessors on an algorithmic level, and on the extensive use of the
microprocessor’s technologies, such as SSE in it’s different versions. All the test
operations developed for the GPU were implemented for NVIDIA’s hardware,
using the CUDA Toolkit and SDK version 3. A detailed explanation of some of
the processing functions follows.

Convolution Implemented with support for 3x3 non separable kernels, and
applied to each RGB channel individually.

Morphology 3x3 dilation and erosion applied to the luminance channel.

Histogram equalization A 256-bucket histogram is computed using a 1 byte
representation of the luminance channel of the frame. A cumulative fre-
quency function is calculated, and applied back to the original frame.
Given that obtaining the cumulative frequency function is a naturally se-
quential operation, and that it only requires 255 32-bit integer sums, it is
better to perform this on the CPU.

Local luminance manipulation Typical brightness adjustment functions
(gamma correction, contrast enhancement, and so on) are computed mod-
ifying pixelwise the luminance channel.

In every operation, the individual frames have been uploaded to a data
buffer in the GPU’s global memory using the ARGB format (32 bits per pixel).
This buffer was later associated with a CUDA texture sampler object, taking
advantage of the GPU’s texture cache for fast pixel access. Since the pixel’s
format doesn’t include luminance information, this is calculated on the fly for
each pixel. We have used a two-dimensional execution layout with 16x16 blocks
and one thread per pixel, which maximises the occupancy of the GPU proces-
sors. In the implementation of histogram equalisation, the GPU internal shared
memory was used in order to reduce the number of uncached global memory
fetches. The tests were performed on two computers, both running 64-bit Linux:

System 1 System 2
Intel Core 2 Quad Q6600 @ 2.4 Ghz Intel Core i7 920 @ 2.6 Ghz
4GB DDR2 6GB DDR3
XFX NVIDIA 9800GT XFX NVIDIA GTX295
Asus P5N32-E SLI Asus P6T7 WS Supercomputer

Note: The NVIDIA GTX295 is a dual-GPU graphics card, but for a
better comparison with the NVIDIA 9800GT only one GPU was used for the
tests.

With respect to the performance evaluation method, for each video sequence
the following procedure is performed:

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1546



1. A large number of frames are loaded into the system’s RAM memory. This
prevents the hard drive from becoming a bottleneck.

2. For each operation:

For the CPU process, the operation is applied to all the frames in
the sequence, and these are later saved in another memory location. The
elapsed time is evaluated, and the average processing time of a single
frame is estimated as the ratio of the elapsed time divided by the number
of frames in the sequence.

For the GPU process, the timers provided by the GPU were used
to accurately measure the processing time of each individual frame.

The time required to transfer a frame through the PCI-Express bus is esti-
mated as half of the difference between the total time required to perform
the operation (measured using the CPU) and the processing time mea-
sured using the GPU timers. The launch of the CUDA kernels presents
no measurable time overhead.

4 Results and Discussion

A pipeline of operations involving convolution, morphology, and local luminance
manipulation was applied to the four video sequences mentioned in Section 2.
In Fig. 2 we show a region of an original frame and the processing result thereof.
The processing time was very similar in the four video sequences. In Fig. 3 we
compare the individual processing time for every operation under the different
implementation strategies. Finally, in Fig. 4 we show the execution time per
operation of a processing pipeline in CPU vs. GPU. All the tests were performed
using HDTV format (1920x1080).

The results show that, in the context of digital image and video processing,
the GPUs performs several times faster than the CPUs. This figure doesn’t
even take into account the fact that our GPU implementation is not as tightly
optimized as IPP. In particular, neither of these CPUs is able to perform real-
time processing since the required processing time is above 33ms (30fps). This
–together with the fact that several GPUs can be installed to work in parallel,
with a roughly linear speedup rate– shows the huge potential for GPGPU in
real-time video applications. Also, given the retail cost, the cost-effectiveness
is clearly better in GPU than in CPU. The comparison among two successive
generations of both technologies shows that this tendency is even increasing,
meaning that the competitive advantages of GPU over CPU in this type of
applications is not merely circumstantial, and will certainly be huger in the
future.

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1547



Figure 2: A frame and the processing result after border detection, and after a
pipeline of operations.

Figure 3: Processing time of the operations under different implementation
strategies.

5 Conclusion

In this work we developed a testing framework that included a meaningful subset
of the basic image processing operations. These operations were implemented
both on CPU and GPU programming pipelines. We used four HDTV video
sequences (1920x1080) from the SVT High Definition Multi Format Test Set,

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1548



Figure 4: Execution time per operation of a processing pipeline in CPU vs.
GPU.

encoded with lossless compression. The results show a very clear advantage to
GPU, both in execution time as in cost-effectiveness.

A drawback that must be considered, however, is the lack of abstraction
mechanisms in the GPGPU programming platforms that makes almost impos-
sible to develop reasonably complex tasks without a detailed exposure of the
execution model. Therefore, it is foreseeable that computer-intensive video ap-
plications will be hybrid in nature, progressively relying on GPU power for easily
programmable tasks, and relieving the CPU load which can be applied to other
tasks, such as encoding and streaming operations.

The natural evolution of GPU programming frameworks will eventually
reach more reasonable levels of abstraction. For instance, the recently released
Fermi platform promises full C++ facilities, which will strongly facilitate code
development, reuse, and portability. However, this does not imply that devel-
opment productivity in massively parallel applications will increase smoothly,
since finding adequate algorithmic implementations in this context is not only
a matter of programming abstractions, it also requires a radically new way of
developing. This is probably going to be the main unavoidable paradigm shift in
the future of programming, since CPU architecture innovation almost reached
the theoretical limit for serial acceleration, and the only possible venue appears
to be many core, multithread development.

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1549



References

[1] Shameem Akhter and Jason Roberts. Multi-Core Programming: Increasing
Performance through Software Multi-threading. Intel, 2006.

[2] Kentaro Fukui Bart Jacob, Michael Brown and Nihar Trivedi. Introduction
to Grid Computing. IBM RedBooks Publishing, USA, 2005.

[3] Gregory A. Baxes. Digital Image Processing. John Wiley and Sons, New
York, 1994.

[4] K. Castleman. Digital Image Processing. Prentice-Hall, New York, 1989.

[5] B. Dougharte and P. Giardino. Matrix Structured Image Processing.
Prentice-Hall, Cambridge, MA, 1991.

[6] Rajkumar Buyya (editor). High Performance Cluster Computing: Archi-
tectures and Systems,. Prentice Hall, NJ, 1999.

[7] Andrew Glassner. Principles of Digital Image Synthesis. Morgan Kaufman,
San Francisco, 1995.

[8] Rafael González and Richard Woods. Digital Image Processing. Addison-
Wesley, Wilmington, USA, 1996.

[9] Mark Harris and Kavid Luebke. GPGPU Tutorial. Supercomputing 2006
Conference, 2006.

[10] Anil Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Cam-
bridge, 1996.

[11] Kenny Yeo. Voodoo Beginnings - 10 Years of GPU Development. PcStats,
2009.

[12] David B. Kirk and Wen mei W. Hwu. Programming Massively Parallel Pro-
cessors: A Hands-on Approach. Morgan Kaufmann, ISBN 978-0123814722,
2010.

[13] M.Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Ma-
chine Vision. PWS Publishing, Pacific Grove, CA, 1998.

[14] Gale Reference Team. Nvidia tesla gpu processor ushers in personal super-
computing. Mainframe Computing Newsletter, 20(8), 2007.

[15] S. E. Umbaugh. Computer Vision and Image Processing. Prentice-Hall,
New York, 1998.

39JAIIO - AST 2010 - ISSN:1850-2806 - Página 1550


