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Abstract.  The Multilevel algorithm (ML) has been applied successfully as a 
metaheuristic for different combinatorial optimization problems: Graph 
Partitioning, Traveling Salesman, Graph Coloring, see refs. [6,7,18]. The main 
difficulty of ML are the convergence times needed to obtain solutions at a 
distance of 7% - 5% to the best known solution in large scale problems. In order 
to reduce these convergence times we studied numerically a Parallel Multilevel 
heuristic with Neural Network partitioning and uncoarsening + refinement 
phases (PML+PNN) for the Graph Bisection Problem on geometrically 
connected graphs. Our main result establish that for graphs with 
n[4000,12000] vertices, the performance of the parallel ML+NN heuristic 
increases linearly as n increases with respect to the parallel ML heuristic. For 
n{10000,12000} the distance to the best solution found is 0.32,0.25 
respectively that is obtained with a quadratic computing time. This suggests 
improving the performance of the PML+PNN heuristic by means of a hill 
climbing improvement heuristic. 
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1   Introduction 

Let G = (V,E) be a finite, undirected and connected graph, where ܸ is the set of 
vertices and ܧ is the set of edges. The Graph Partitioning Problem (GPP) consists in 
finding p subsets of vertices V₁,V₂,...,Vp, the partition of set V, verifying:  

 
(1) 

and such that the cardinality of the cut set: 

 
(2) 
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is minimal. If  ൌ 2 and n₁=n₂=(n/2) the graph partitioning problem reduces to the 
graph bisection problem. The GPP is a well known NP hard combinatorial 
optimization problem, see refs. [4,16], that has been applied in several areas of 
computer science, for example: processes load balancing (see ref. [6]) and circuit 
layout (see refs. [14,19]). Different heuristics and metaheuristics have been proposed 
to solve GPP, see for instance refs. [2,3,10,17]. In 1970 Kernighan and Lin, see ref. 
[14], proposed an effective local search heuristic that decreases the cardinality of the 
cut set by changing vertices from various partitions (swaps). The Multilevel 
algorithm, see ref. [6,7] computes a partition in 3 phases: coarsening, partitioning, 
uncoarsening, where the partitioning phase is performed by the KL heuristic or a 
greedy heuristic. The main idea of ML is to recursively reduce (coarse) the graph until 
obtain a size in which the partitioning phase can be applied more efficiently. Once an 
optimal partition is obtained the reduced graph is expanded to its original size 
(uncoarse) and the optimal partition is refined at each level. Several computational 
studies, see for instance refs. [1,7,11,12,13,18], have shown that ML is the best 
heuristic with respect to the distance to the optimal solution, and this fact has 
suggested its application to other combinatorial problems. The main pitfall of ML is 
the convergence times needed to obtain solutions in large scale problems at a 5% 
distance to the best known solution. In order to reduce these convergence times we 
studied numerically a multilevel heuristic with neural network (NN) partitioning 
phase (ML+NN). 

2   Parallel Heuristics for the Graph Bisection Problem 

A neural network is a dynamical system defined by, see refs. [5,8]: 
- A connectivity matrix W=(wij) i,j=1,...,n, where wij represents the interaction 

weight between neurons i,j.  
- A threshold vector b=(bi) i=1,...,n, where bi is the threshold of neuron i. 
- A local transition function fH: At each time step all neurons change its state 

according to: 

 

(3) 

In the Hopfield neuronal model fH is the Heaviside function. In refs. [5,8] it was 
proved that if the connectivity matrix W is symmetric with non negative diagonal, the 
dynamics (3) converges to fixed points or cycles of length 2, which also are local 
minima of the quadratic Lyapunov functional EP defined by: 
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(4) 

Therefore, the dynamics (3) defines an optimization heuristic of the functional EP. On 
the other hand, the GBP can be modeled by a combinatorial optimization problem 
with quadratic objective function and linear constraint. First, we have to redefine the 
variables: 

 (5) 

Then: yi=-1 iff i∈V₁ and yi=1 iff i∈V₂. In addition: 

 

(6) 

Hence the following combinatorial optimization problem is equivalent to the GBP: 

 

(7) 

If the constraint is quadratically penalized is obtained an unconstrained non linear 
integer problem: 

 
(8) 

where: 

 

(9) 

Therefore, the following optimization heuristic based on the neural network dynamics 
can be applied to find a local minimum of the GBP:  
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(10) 

where ݊݃ݏሺݑሻ  is the sign function. The dynamics (10) converges only to fixed points 
or cycles of length 2, which also are local minima of Gα. The NN dynamics can be 
parallelized in a distributed memory cluster in two ways: Distribute the update of the 
dynamics in different processors and run sequentially several copies of the dynamics 
in different processors. The second way is more efficient than the first one because it 
is not necessary to send in each iteration the updated state to all processors. 
 
The sequential version of the Multilevel algorithm, see ref. [6,7,11,13] have 3 phases: 

 
Phase 1. Coarsening: In the first phase the graph is reduced recursively conserving 

its structure until obtain a graph with size in which the partitioning phase 
can be applied more efficiently. In this way, it is obtained a sequence of 
graphs G0=G,G1,G2…,Gp such that Gi+1 is constructed from Gi by applying 
one of the following matching process: Random Matching, Heavy Edge 
Matching, Light Edge Matching, Heavy Clique Matching. The number of 
nodes of Gp is called the threshold and is usually chosen less than 1000. 

Phase 2. Partitioning: In this phase, an optimal partition is computed for the reduced 
graph Gp by applying a fast greedy algorithm or the Kernighan and Lin 
heuristic. 

Phase 3. Uncoarsening and Refinement: In the last phase, the reduced graph Gp is 
expanded to its original size and the optimal partition is refined at each 
level. In order to obtain a good solution it is not sufficient to apply a greedy 
heuristic and in general is applied the Kernighan and Lin heuristic. 
 

In the Multilevel Algorithm the coarsening phase is the more time consuming and 
therefore must be parallelized in an efficient way. For this reason we implemented the 
coarsening phase described in ref. [12]. In the second and third phase of the parallel 
Multilevel algorithm we applied a simple parallel version of the Kernighan and Lin 
heuristic that runs several copies of the heuristic in different processors and chooses 
the best solution found. 
 
In this work we propose a modified version of the parallel Multilevel heuristic that 
considers a Neural Network heuristic for the partitioning and coarsening + refinement 
phases (PML+PNN). The modified phases are parallelized by running several copies 
of the NN dynamics in different processors. In the next section the performance of the 
proposed parallel PML+PNN heuristic will be compared with the standard parallel 
Multilevel heuristics PML on several instances of the GBP Problem defined on sparse 
geometrically connected graphs. 
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3   Performance of the ML+NN Heuristic     

A geometrically connected graph of size n and connectivity radius r can be 
constructed as follows: 
i) Generate n random points (x_{i},y_{i}) i=1,...,n in the unit square S=[0,1]×[0,1]. 

These points will represent the location of the nodes. 
ii) Compute the graph connectivity matrix W=(w_{ij}) i,j=1,...,n. The nodes i≠j are 

connected if and only if: 

 
(11) 

In figure 1 is shown an example of a geometrically connected graph with n=4000 and 
r=0.030. 

 
Fig .1. Example of geometrically connected graphs with n=4000 and r=0.030. 

 
A geometrically connected graph can be used to model local connectivity while 
maintaining some level of irregularity. This characteristic can be appreciated in the 
degree of each vertex. In figure 2 is shown the histogram of degrees of the 
geometrically connected graph of figure 1. 

 
Fig. 2. Degree histogram of the geometrically connected graph of figure 1. 

disti, j  x i − x j 
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The Parallel Multilevel (PML) and Parallel Multilevel + Neural Networks (PML + 
PNN) heuristics were studied using the following geometrically connected graphs: 
 

Table 1. Geometrically connected graphs used for the numerical study. 
 

 
 

The performance of the PML and PML+PNN heuristics were computed using the 
graphs of table 1 and applying the methodology that follows: 
 
Step 0. For each graph of table 1, 50 random and balanced initial conditions were 

generated: y0. The heuristic described below were executed using 5 
processors.  
 

Step 1. From each initial condition y0, the PML heuristic was applied considering: 
 
A threshold equals to 500 and 1000. 
The Heavy Edge Matching for the coarsening phase. 
The Kernighan-Lin heuristic for the phases of partitioning and uncoarsening 
with refinement, according to the results of refs. [1,11,12]. 
The best minimum cut MinCut was computed over all the solutions obtained 
from the initial conditions y0. 
 

Step 2. From each initial condition y0, the PML+PNN heuristic was applied 
considering: 
 
A threshold equals to 1000. 
The Heavy Edge Matching for the coarsening phase. 
The parallel Neural Network heuristic, see equation (10), for the phases of 
partitioning and uncoarsening with refinement. 
The best minimum cut MinCut was computed over all the solutions obtained 
from the initial conditions y0. 

 
 

The PML+PNN heuristic differ from the standard PML in the phases of partitioning 
and uncoarsening with refinement. This new version of the PML is proposed in order 
to reduce the convergence times of the standard version applying a greedy type of 
heuristic. The numerical results that were obtained are summarized in following 
tables 2 and 3. 

Name Number of edges n Number of arcs |E | Radius r

G4000 4000 13054 0.023

G6000 6000 31671 0.024

G8000 8000 39788 0.02

G10000 10000 49817 0.018

G12000 12000 61366 0.0165
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Table 2. Performance of the Parallel ML(500), Parallel ML(1000), Parallel ML+NN 
heuristics. 

 

 
 

Table 3. Relative performance of the Parallel ML with respect to the Parallel 
ML+NN heuristics. 

 

 
 

where:  

 

(12) 

And U represents the threshold of PML. 
 

In tables 2 and 3 can be observed that for medium-sized graphs with n∈[4000,12000] 
vertices, the relative distance of the PML and PML+PNN heuristics MinCut has a 
decreasing linear tendency as the number of nodes is increased, with a quadratic  
computing time for both heuristics.  
 
The best result of the PML+PNN heuristic is obtained for n∈{10000,12000} where a 
performance comparable to PML(1000) is achieved with run time reduced at 14% and 
5%, respectively. 
 

Heuristic PML (500) PML (1000) PML PNN

Graph MinCut Time s MinCut Time s MinCut Time s

G4000 935 5179 1021 4913 1925 4012

G6000 1083 9741 1204 8085 2099 6975

G8000 1601 20844 1682 17580 2430 16128

G10000 1969 39449 2314 36430 2881 32003

G12000 2852 81860 2891 77611 3791 74117

Graph dPML500,PMLPNN TPML500,PMLPNN dPML1000,PMLPNN TPML1000,PMLPNN

G4000 0.51 0.29 0.47 0.22

G6000 0.48 0.40 0.43 0.16

G8000 0.34 0.29 0.31 0.09

G10000 0.32 0.23 0.20 0.14

G12000 0.25 0.10 0.24 0.05

dPMLU,PMLPNN  1 −
MinCut PMLU

MinCut PML  PNN

TPMLU,PMLPNN 
Time PMLU

Time PML  PNN
− 1
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Conclusions 

The parallel ML+NN heuristic was studied for the Graph Bisection Problem defined 
in sparse graphs with local connectivity. The main result establishes that the 
performance of this heuristics increases linearly as n increases with respect to the 
parallel ML heuristic with a quadratic computing time. For n∈{10000,12000} is 
obtained a performance comparable to PML(1000) with run time reduced at 14% and 
5%, respectively. 
 
As future work is proposed to improve the PML+PNN by implementing a hill 
climbing algorithm that allow to escape the high energy local minimum reached by 
the NN heuristic.  
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