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Abstract. Solving the structure of protein-protein complexes is one of
the most important tasks in structural biology. Even though there has
been great progress in recent years there still a small number of protein
complexes structures deposited in the Protein Data Bank in comparison
to isolated partners. In this sense, the computational prediction of protein
complexes starting from the unbound structures, protein-protein Dock-
ing algorithms, has emerged as a reasonable alternative. Many docking
programs employ Fast Fourier Transform (FFT) correlations as an effi-
cient search strategy. We describe an implementation of a protein-protein
docking program based on FFT surface complementarity that runs en-
tirely on a Graphics Processing Unit (GPU), including grid generation,
rotation and scoring. We evaluate its performance, and show that it can
be up to 13 times faster than conventional CPU based implementations.

1 Introduction

As protein-protein interactions play a central role in almost any physiological
process, the structural characterization of protein-protein complexes is key to
understand normal and pathological cell function [1]. Knowledge of the protein
complex structures can shed light into the functions of the component proteins
and can guide the design of novel drugs to regulate the complex protein in-
teraction networks [2].Even though there are more than 50000 protein struc-
tures deposited up to date in the protein data bank [3] only a small subset
correspond to protein complexes as the experimental determination of their 3D
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structures has remained difficult. In this sense, there is a pressing need to de-
velop reliable and rapid computational methods for predicting protein-protein
complexes structures at a genomic scale [4]. Docking algorithms attempt to pre-
dict the structure of complexes formed by two or more interacting biological
macromolecules starting from the structure of the isolated partners [5, 6].

There has been a wealth of research on protein-protein docking and every
year results from blind docking experiments show that the performance of the al-
gorithms is improving in efficiency, reliability and accuracy [7]. However, in most
cases current algorithms still have difficulty in identifying the correct solution.

The majority of the docking programs contain a search algorithm that sam-
ples possible docking orientations efficiently and a scoring function that aims to
discriminate near native docked orientations from incorrect ones. Many of these
approaches can be computationally intensive as the search space consists of all
possible orientations and conformations of the protein paired with the ligand.
Shape complementarity is the most basic ingredient of the scoring functions for
docking as it is known that protein surfaces are complementary to each other at
the binding interface. One way of calculating the surface complementarity is to
discretize each protein in a grid were each voxel has a different value depend-
ing if it lies inside, in the surface or outside the protein. One protein, usually
the biggest one, is consider the receptor and remains fixed. The other one, the
ligand, is translated and rotated accounting for all possible positions. The total
number of surface voxels in the receptor that overlap any ligand surface voxel
(which approximates buried surface area upon complexation), minus a penalty
due to the overlapping of voxels that lies inside the two proteins, is proportional
to the surface complementarity score. Katchalski-Katzir et al developed a FFT-
based algorithm that was able to explore all possible translational orientations
rapidly while computing the surfaces complementarity at the same time [8]. The
computational speed up comes because FFT allows a problem that formally re-
quires O(N2) operations to be computed in O(N log N) steps [8]. This method
has then been adopted and extended in later works by other groups, like the pro-
grams ZDOCK [9], FTDock [10], 3D-Dock [11], GRAMM [12,13] and DOT [14].
Several groups have developed multiterm interaction potentials and others use
multi-copy approaches to simulate protein flexibility, which both add to the com-
putational cost of FFT-based docking algorithms [10, 14, 9, 15, 16]. In this sense
there is a need to develop more efficient FFT docking techniques.

Attention have been attracted to Graphics Processing Unit (GPU) as high-
performance computing devices. GPU computation has been successfully ap-
plied to various types of applications, including molecular dynamics, quantum
chemistry, and quantum Monte Carlo. We present an implementation of a FFT-
docking algorithm that fully runs in the GPU, including grid generation, rotation
and scoring, that reduced the computational time up to an order of magnitude
than that of latest commodity CPUs. We show that the different stages of the
docking process must be run in the GPU to efficiently reduce the computational
cost. This approach is applied to a benchmark of complexes previously studied
using shape-only correlations. The implementation presented here can be easily
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incorporated into any docking program based on FFT and can be easily extended
to more complex scoring functions.

2 Materials and Methods

The increasing demand for sophisticated graphics for video games, comput-
eraided design (CAD), animation, and other applications is driving the develop-
ment of more and more powerful graphical processing units, which take advan-
tage of data parallelism to render graphics at high speeds. The recent release
of graphics card manufacturer NVIDIA’s Compute Unified Device Architecture
(CUDA) development toolkit for some of their high-end graphics cards allows
developers to code algorithms in a C-like language. CUDA greatly eases the
transition from using CPUs to general-purpose computing on GPUs (GPGPU).
Graphical processors are able to outperform CPUs for certain applications be-
cause of intrinsic parallelization within the device.

Multicore and parallel CPU architectures, though able to run many instruc-
tions simultaneously, require computational threads to be explicitly coded to
make optimal use of the available resources. Whereas a single-core CPU can
only execute a single instruction at a time (although several instructions may be
in the pipeline), a GPU can execute a single instruction on many pieces of data
at the same time, using a Single Instruction, Multiple Data (SIMD) paradigm.
This inherent parallelization is a result of hardware architecture; graphics cards
are composed of an array of multiprocessors, each of which has its own section
of pipeline bandwidth.

Data access from the internal math units to GPU local memory is slow com-
pared to computation, but transferring data between the GPU and CPU across
the PCIe bus is still much slower. For this reason, communication between the
GPU and CPU should be kept to an absolute minimum. Ideally, the simulation
should be executed entirely on the GPU, and results should be sent back to the
CPU only infrequently for analysis and reporting.

Jamaica has been implemented both in Python calling pure ANSI C func-
tions using FFTW3 library [17] for Fourier transformation computation, and in
Python calling CUDA-C [18] functions which uses the GPU.

In this work, two different computational setups were used:

1. 2 dual core Opteron CPUs (2.2GHz, 1MB cache), 4 GB of RAM. Operating
System Red Hat 4.1.2-42, kernel version 2.6.18-92.el5 and Tesla C1060 card.
It has 240 streaming processor cores working at 1.3GHz and 4GB DDR3 of
dedicated memory.

2. 1 Pentium dual core CPU (2.2GHz, 1MB cache), 2 GB of RAM, motherboard
ASUS P5KPL-CM. Operating system Ubuntu 8.10, kernel version 2.6.27-7-
generic and GeForce 8800 GTX board. This card manufactured by PYN
has 128 streaming processor cores working at 575MHz and 768MB DDR3 of
dedicated memory.

The figure 1 shows the main program structure and the data flow. The arrows
represent the information flow between the different software modules. The big
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box on the right titled GPU contains the Jamaica main operations that can be
selected to be computed in CPU or GPU.

Protein Data Bank

PDB
Ligand

PDB
Receptor

FFT Cross 
Correlation

Rotation & 
Grid setting

Sorting & filtering 
of results

GPU

C - CUDA

Python Interface

Fig. 1. Modules composing the Jamaica docking program. The rounded part on
the right indicates the functions that are designed to support computation in
the CPU or GPU.

A brief description of the module’s functions is given assuming the GPU is
selected to be used for the computation:

1. Jamaica needs the crystallographic structures of ligand and receptor which
are stored in PDB files. The docking procedure can be applied to the subunits
extracted from the entire crystallized complex (using only one PDB file) or
to two different units (using two PDB files, one for the ligand and one for
the receptor).
So, the first action is to read the Protein Data Bank (PDB) files and calculate
the size of the boxes containing the two subunits to dock. Each file contains
the position of the atoms forming the protein. This is implemented with
Python and computed in the CPU. Then the positions are transferred to the
GPU main memory.

2. The receptor is rendered and its FFT is calculated in the GPU (all the invo-
cations are stated using the Python interface to CUDA API). The rendering
procedure consists in asigning a value to each position in a discretized 3D
grid, which represents the space. The rule for asigning values to the grid
nodes depends on the positions of each node and molecule’ atoms:
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a) C is used for the core if the node distance from molecule’s atoms is less
than an user-defined threshold D, normally selected in the order of half
van der Waals (VDW) distance.

b) S is selected if the node distance from molecule’s atoms is more than D
and less than a D + T , where T is the surface thickness, usually in the
order of half VDW radius.

S and C are complex values chosen to achieve the next relations:
i) a high positive value of S × S represents a surface sharing between the

ligand and receptor.
ii) a value near zero of S×C represents the one of the molecules is getting

near the other core. This is a very usual behaviour in rigid docking.
iii) a high negative value of the real part of C × C results in a core super-

position. This behaviour is not desired, and a penalty must be applied.
3. Using the rotation step selected by the user, the rotation matrices are cal-

culated and stored in disk for later use.
4. One of the unused rotation matrices is transferred to the GPU.
5. Rotation & Grid setting: includes the rotation and rendering of the receptor

in GPU.
6. FFT for the ligand is performed in the GPU.
7. Value to value multiplication of ligand and receptor is performed in GPU.

The result of this procedure is stored in the memory area of the ligand to
save space. This grid is now called multiplication grid. This is part of the
cross correlation computation.

8. FFT for the multiplication grid is performed (in GPU using CUFFT). This
is part of the cross correlation computation.

9. sorting and filtering of the intermediate results are performed in GPU and
then transferred to CPU (results sorting & filtering).

10. The results obtained are merged with the previous ones, then the whole
set is sorted. Only the first 1000 results are kept, the others are discarded
(this value can be configured by the user). These operations are done in
CPU using Python. A cycle is established to step 4 until no more rotation
matrices remain unused.

11. Final results are written to disk.

The steps 1 to 3 constitute the initial serial start-up. A cycle is established
between steps 4 and 10 repeating the computation using all the pre-calculated
rotation matrices.

In the following, we give some implementation details of the GPU based
modules:

Grid Generation: One of the most time consuming operation is computing the
FFT, which is implemented using CUDA FFT library (CUFFT). The other
time consuming operation is the the renderization of the rotated protein. As
was mentioned before, the molecule is composed of an inner core space and
a surface volume wrapping it. The rendering procedure consists in initially
resetting all the points inside the box containing the molecule, then the
points occupied by the molecule are painted with the value S. Finally, the
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Fig. 2. Renderized grid of the protein included in the 1AVX.pdb file. The ex-
ternal view of the molecule surface is superimposed with a slice showing the
assigned values for each atom, the light grey dots represent the molecule core
and black dots indicate the surface.

core is determined and painted using the value C. The first step in the
painting procedure is to determine the smallest box containing each atom.
Then the points corresponding to the sphere that represents the atom inside
the box are assigned C or S value according to the position. The points
inside the box but outside the sphere remain unchanged.
In the CUDA implementation, a block of threads is assigned for painting
each sphere. A single thread is used to compute the value to be used in each
point of the corresponding box. If the amount of points in the box overpasses
the maximum number of threads per block of the used GPU, then a cycle is
established to process the remaining points. The code listing 1.1 shows the
kernel source code for the sphere painting function. Some interesting details
of this code are given:
– Due to the fact that the same program must be executed in all threads

simultaneously, the same set of parameters are received and each thread
must obtain the assigned subset of input values. In this routine, two
arrays are received: one with the information regarding the previously
calculted color (i.e. core, surface) to use in the painting of the sphere
containde in the box and one with the coordinates of each sphere’s center.

– In the line 3, each block of threads obtains the index of the sphere to
paint, i.e. this step corresponds to the job assignment.
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– Using the index obtained in the step 2, the lines 4, 5 and 6 obtain from the
received arrays, the coordinates of the sphere center, the sphere radious
and the complex value to use for the painting (previously obtained in
another part of the program).

– In the line 13, a cycle is established for the case in which the number
of points to paint is larger than de number of threads per block, this
parameter depends on the hardware used.

– A coordinate transformation is done in the line 15 from a system based
on one of the box corners to a system with origin in the center of the
box. In particular, each thread computes its own coordinate using the
thread-id array (named threadIdx).

– The line 17 corresponds to the transformation of the sphere’s center in
floating point to integer. The idea behind this is to have a point which
represents the center of the sphere in global coordinates.

– In the line 19 a vector is computed. This vector joins the point assigned
to the thread and the sphere’s center, the components of the obtained
vector are expressed in global coordinate system. The difference between
the sphere’s center and the coordinates obtained in the previous steps is
used (after converting those coordinates to Ångströms).

– In the line 21, the distance from the sphere’s center to the assigned point
is calculated.

– Then, in the line 22, the algorithm checks if the point is inside the sphere
or not. If it is inside, then the painting value is stored in the GPU memory
indexing in the array which contains all the points.

– Finally, the lines 23 and 24 obtain the index of the array corresponding
to the point to be painted.

A renderized grid of the protein included in the 1AVX.pdb file (correspond-
ing to the Soybean Trypsin Inhibitor, Tetragonal Crystal Form) is shown
in the figure 2, which contains a visualization of the external view of the
molecule surface superimposed with a slice showing the assigned values for
each sphere, the light grey dots represent the molecule core and black dots
indicate the surface.

Listing 1.1. Kernel code for rendering an atom represented by one sphere.
The value used for the painting procedure is one of the function parameters.

1 g l o b a l void pa intSphere ( cuComplex ∗ vo l , dim3 shape , f l o a t 3
de l ta , f l o a t 3 r e s o l , f l o a t 3 ∗v x , f loat ∗v r , cuComplex ∗v v ,

int n , f l o a t 4 ∗ T , int o f f s e t Sphe r e , int wishedDimZ ) {
2
3 const uint i = o f f s e t Sphe r e + blockIdx . x ∗ gridDim . y ∗ gridDim . z +

blockIdx . y ∗ gridDim . z + blockIdx . z ;
4 f l o a t 3 x =v x [ i ] , r a d i e c i t o ;
5 const f loat r=v r [ i ] , r a d i o 2 = r ∗ r ;
6 const cuComplex v = v v [ i ] ;
7 const f l o a t 3 r e s o l 2 = r e s o l ∗ r e s o l ;
8 in t3 idx , c , p ;
9 int r e f ;

10 f loat sum ;
11 u int o f f s e tThread Idx z ;
12
13 for ( o f f s e tThread Idx z =0; o f f s e tThread Idx z < wishedDimZ ;

o f f s e tThread Idx z += blockDim . z ){
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14
15 p = make int3 ( threadIdx . x − ( blockDim . x−1)/2 , threadIdx . y − (

blockDim . y−1)/2 , threadIdx . z − (wishedDimZ−1)/2 +
o f f s e tThread Idx z ) ;

16
17 c = make int3 ( f l o o r f ( x . x/ r e s o l . x ) , f l o o r f ( x . y/ r e s o l . y ) ,

f l o o r f ( x . z/ r e s o l . z ) ) ;
18
19 r a d i e c i t o = t o f l o a t 3 (p+c )∗ r e s o l − x ;
20
21 sum = len2 ( r a d i e c i t o ) ;
22 i f ( sum <= rad i o 2 ){
23 idx = p + c ;
24 r e f = r e f e r e n c e ( idx , shape ) ;
25 vo l [ r e f ] = v ;
26 }
27 }
28 }

Sorting and Filtering: After every cross correlation computation, the obtained
grid contains a score value in each position. These values must be sorted
and filtered to keep only a subset of them. In GPU implementation two
algorithms were developed based on the ideas behind CUDA Data Parallel
Primitives (CUDPP) [19]. A modified version of Radix Sort was implemented
to obtain not only the data vector but also a permutation vector. On the
other hand, a fast threshold filtering of scores was implemented based on the
CUDPP compact function. The original function takes as input a data vector
and a logical vector which indicates if each element of the first vector must
be included in the compacted output or not. In this case, the function was
modified to operate at the same time in two data vectors: the data and per-
mutation vectors. A threshold comparation routine was also implemented to
generate the logical vector needed by the modified compact function. After
computing each rotation, only the best 1000 solutions are transfered to the
CPU main memory to be compared with the best solutions of the previous
rotations.
The CPU implementation of this module use Heap sort and then applies a
cut-off procedure to the sorted vector in order to keep the top 1000 solutions.

The figure 3 shows the use of computing time of Jamaica main modules. As
was mentioned before, the FFT related operations are the top processor cicle
consumers followed by the grid generation procedure and, finally, by the sorting
& filtering process. Nevertheless, the FFT related operations constitute almost
the 80% of time in the case of GPU and 90% for the CPU based solution.

3 Results and Discussion

Human hemoglobin (HH) consists of four subunits: two pairs A, and two pairs
B. It is a very good target for testing a docking procedure because it has been
crystallized not only the entire complex but also each subunit separately. The
differences between the subunit structures obtained in these two cases are mini-
mal. Due to fact that the deformation produced in the docking process is so small
that HH turns to be an excellent testing bed specifically for rigid docking [8].
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Fig. 3. Computing time distribution of the main Jamaica modules
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Fig. 4. Speedup obtained for the Human hemoglobin (HH) using selected grid
size values in different computational setups. For grid sizes larger than 1253

nodes the obtained speedup for the version using a 8800 GTX board is at least
5X. With the Tesla board, the speedup for grid size larger than 1203 nodes is at
least 8X.

The testing procedure for Jamaica consists in the docking of the HH subunits
A and B included in the 2HHB.pdb, which includes the structure for the bounded
HH complex. The methodology involves the evaluation of the rotational space
uniformely distributed using 10 degrees rotational steps, resulting in 17.497 sin-
gle rotations.

The Cooley-Tukey algorithm implemented using FFTW3 and CUFFT share
the feature of being very efficient when the factorization of the dataset dimention
is composed of low values. For this reason, the grid size was generated following
2a ∗ 3b ∗ 5c, with a , b , and c in the range from 0 to 7; leading to cubic grids of
753 (1.406Å resolution), 813 , 903, . . . 2003, 2163 (0.488Å resolution) nodes.

The figure 4 shows the speedup obtained for Jamaica in each selected grid
size. The base time used for the speedup calculation corresponds to the CPU
version of Jamaica executed in a machine with a Core 2 Duo processor with only
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one core enabled. This figure includes the result for three computational setups:
a CPU version with a Core 2 Duo processor using the two cores, a GPU version
using the 8800 GTX board and a GPU version with a Tesla C1060 board. The
results obtained with the 8800 GTX board show up to 6.5 times speedup, for grid
sizes larger than 1253 nodes the obtained speedup is at least 5X. With the Tesla
board, the speedup for grid size larger than 1203 nodes is at least 8X, reaching
13X for the case of 1253 nodes. The results obtained using the two cores of the
CPU do not show significant improvement compared with the single core case.

Speedup vs. Technology (for 2HHB at 125 grid side)
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Fig. 5. Grid containing 1253 nodes, the CPU version with two cores shows almost
no gain compared with the single core version. The 8800GTX version shows a
6.5X speedup, while the Tesla version reaches 13X.

In the figure 5 the case with the grid containing 1253 nodes was selected
to be analysed. The column named ”Single Core” corresponds to the base case
used in the previous analisys for computing the speedup. In this case, the 8800
GTX version achieves a speedup near 6.5X, while the Tesla version reaches 13.5X
overmatching the others technologies evaluated. The single and dual cores CPU
versions maintain the same behavior previously described.

4 Conclusions

Solving the structure of protein-protein complexes is one of the most important
tasks in structural biology. Even though there has been great progress in recent
years there still a small number of protein complexes structures deposited in the
Protein Data Bank in comparison to isolated partners. In this sense, the compu-
tational prediction of protein complexes starting from the unbound structures,
protein-protein Docking algorithms, has emerged as a reasonable alternative.

Multicore and parallel CPU architectures, though able to run many instruc-
tions simultaneously, require computational threads to be explicitly coded to
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make optimal use of the available resources. Graphics cards are composed of
an array of multiprocessors, each of which has its own section of pipeline band-
width. Data access from the internal math units to GPU local memory is slow
compared to computation, but transferring data between the GPU and CPU
across the PCIe bus is still much slower, leading to the necessity of keeping the
communication between the GPU and CPU to an absolute minimum.

Jamaica has been implemented both in Python calling ANSI C using FFTW3
library, and in Python calling CUDA-C functions which uses the GPU and was
tested using the Human hemoglobin (HH). The results obtained with the 8800
GTX board show up to 6.5 times speedup. With the Tesla board, the speedup
reached 13X.
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