
Impact Assessment on the Parallel Performance
of Node-Core Combinations in a Multicore

Cluster Environment: A Case of Study

Cesar Fernández, Francisco Saravia, Carlos Valle, and Héctor Allende

Universidad Técnica Federico Santa Maŕıa
Departamento de Informática

{cfernand,fsaravia,cvalle,hallende}@inf.utfsm.cl

Abstract. Multicore processors have opened new paths for improving
the parallel performance in cluster environments. Nevertheless, the se-
lection of different combinations between the amount of nodes and the
number of cores per node implies different results in terms of parallel
performance. We performed an impact assessment on the parallel perfor-
mance of node-core combinations using a parallel approach of a machine
learning ensemble algorithm. Our results reveal that two key factors for
selecting a suitable node-core combination: the network capabilities and
the workload distribution. We observed that the network interconnection
limits the amount of nodes that can be efficiently used, due to the extra-
node communications does not allow to keep scaling as the number of
nodes is increased. The best results were obtained by reaching a balance
between intra-node and extra-node communications. By the other hand,
the parallel performance can be negatively affected when the workload
distribution is not homogeneous among nodes.

Key words: Parallel Algorithms, Parallelism and Data Sharing on Multi-
core Architectures, Ensemble Learning, Local Negative Correlation.

1 Introduction

The new generation of multicore processor architecture delivers new possibilities
of exploding the potentials of calculus, multimedia and parallel processing, but
one of the limits has been undoubtedly to obtain real benefits respect of speed-
up and performance. Although performance has been increased (theoretically),
allowing to reach a better use of parallelism with the introduction of new fea-
tures in assembly functions [13]. Multicore processors are being used in a big
percentage by the most important High Performance Computing centers in the
world [3], and many others have begun to migrate their single core processors to
multicore processors [12].

Multicore technology has enhanced the shared memory system through op-
timizations both in new generation of multicore processors and in software, al-
lowing the execution, debugging and monitoring of applications [2]. However, in

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3363



2

distributed memory system, the advent of compute nodes equipped with mul-
ticore processors has allowed to increase the computing capability, by increas-
ing the amount of computing units in each node. By the other hand, this new
technology involves to consider the different kinds of communications between
processes, depending on whether they are running on different cores within the
same node or different nodes [4].

Chai [9] and Zhang [26] present the communication schemes in a multicore
cluster, as shown in Fig. 1, where the following kind of communications are
described: intra-processor, that represents the internal communications among
cores inside a processor (dashed lines), intra-node, that represents the commu-
nication among cores of the same node, but in different processor (dotted lines),
and finally the extra-node communication among cores in different nodes (solid
lines).

Fig. 1. Communications on a Multicore Cluster

The performance evaluation of parallel algorithms consists in analyzing the
behavior of the algorithm from different perspectives [22], considering variations
in both dataset size and number of processors used in the execution [16]. Adi-
tionally, there are constraints in real situations that determinate the amount of
available processors in a computer cluster, or limit the number of processors that
can be used by an algorithm, such as a limited amount of processors in shared
clusters, or algorithms with structural features that need to be run in a fixed
number of processors.

Inside of a multicore cluster based on distributed memory system, the par-
allel execution using a fixed number of p processors – with the Message Passing
Interface (MPI) [14] as the programming model – can be carried out by using
several combinations between nodes and cores per node. Considering a homo-
geneous hardware environment, for a number of parallel tasks λ (homogeneous
and independent from each other) executed in a cluster with a maximum num-
ber of nodes δ, where each node has the same number of cores µ, the node-core

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3364



3

combination for an execution with p processors is composed by the number of
used nodes n and the number of cores used per node c:

p = n · c 1 ≤ n ≤ δ, 1 ≤ c ≤ µ (1)

The equation (1) defines the set of combinations available to select p pro-
cessors in a multicore cluster. This fact involves taking a decision about what
node-core combination delivers the best performance, through the evaluation of
the key features of the algorithm that can affect – positive or negatively – the
expected performance.

For a number of tasks λ ≥ p, two possible scenarios are generated: balanced
workload among nodes, as shown in Fig. 2(a), where (a.1) represents the parallel
tasks being executed using a single node, and (a.2) represents the same tasks
being executed using two nodes, in both combinations the number of used cores
is the same, varying the workload distribution. Unbalanced workload is shown
in Fig. 2(b), where (b.1) and (b.2) are analogous with the previous case respect
of the number of nodes used, but with different number of tasks in each node.

Fig. 2. Load Balance with p = {(1, 4), (2, 2)}, considering values of λ = 4 (illustrations
(a) and (b)), and λ = 25 (illustrations (c) and (d))

Considering the previous issue, the selection of node-core combinations with
λ ≥ p can be defined as follows:

p = n · c 1 ≤ n ≤ δ, 1 ≤ c ≤ µ

λ =
n∑

i=1

Ti =
n∑

i=1

(⌊
λ

n

⌋
+ ϕi

)
(2)

where Ti represents the number of parallel tasks assigned to the node i and
ϕi ∈ {0, 1} represents the additional workload caused by the unbalance obtained
when λ

n 6=
⌊

λ
n

⌋
.

According to the definition given by Breshears [6], the granularity is defined
as the amount of computations within a task or alternatively as the amount of

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3365



4

computation done before synchronization is need. Based on previous definition,
the granularity of an algorithm is a key factor of the parallel behavior in terms
of scalability, according to the trade-off between processing time and overhead
time caused by synchronization or communications among processes.

Given the degree of granularity, a parallel algorithm can be classified as fol-
lows: A coarse-grained algorithm, characterized by a high granularity, spends a
minuscule fraction of the overall parallel execution in synchronization or com-
munication, while fine-grained algorithms, characterized by a low granularity,
spend a higher fraction of the execution time in synchronization. In distributed
memory systems, a coarse-grained algorithm has better parallel performance due
that overhead time represents a small fraction of the overall parallel execution
time. By other hand, a fine-grained algorithm tends to produce bottlenecks in the
network interface due to the high frequency of communications among parallel
tasks as the number of processors increases.

To improve the parallel performance on fine-grained algorithms it is nec-
essary to modify their structure through a set of optimizations to reduce the
overhead time, thus the algorithm tends to mainly focus on processing instead
of synchronization. Optimizations introduce changes on algorithm, such a way
its structure can be adjusted to our parallel approach that allow to decrease the
amount of synchronization events, reducing the risk of a parallel task does not
have enough work to perform before a synchronization event.

On distributed memory environments, the information exchange among par-
allel tasks are carried out through message passing over the network. Communi-
cations in fine-grained algorithms run the risk of spending a high fraction of the
execution time, according to their structural features, which can be influenced
positively or negatively by the relationship between intra-node and extra-node
communications [26] depending of the node-core combination selected. According
to the previous issue, the node-core combinations can be a key factor to con-
sider in MPI implementations on multicore cluster environments, such a way to
reach a successful parallel implementation, both optimizations in the algorithm
structure and determining the suitable node-core combination are required.

An ensemble of learning machines consists in the arrangement of N learners
which are trained for solving the same problem. The goal of this approach is to
obtain a different prediction from each learner for the same data sample, such a
way the weighted average of the N predictions has better generalization ability
than the obtained from a single learner [7]. The training process of an ensemble is
performed by exhibiting to each learner a set of training samples, whose expected
outputs (targets) are known. Using a functional for the error, that considers
the difference between the obtained outputs and the targets of each sample,
where the internal parameters of each learner are adjusted through a learning
rule, which allows to minimize the error. The algorithms for training ensembles
of learning machines often consume considerable computational resources, such
that the parallel approach has many benefits in terms of scalability, to achieve
large instances of the problem and also a better use of the available resources.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3366



5

In this work, we perform an impact assessment on the parallel performance,
considering a set of node-core combinations available in our testing environment
We have selected Resampling Local Negative Correlation (RLNC) [19], an al-
gorithm for training an ensemble of learning machines. The goals of this work
consist in: to analyze the impact of the node-core combinations on the parallel
performance, using RLNC as testing algorithm, and to determinate what node-
core combination (n, c) is suitable given a set of processors, parallel tasks and
dataset sizes.

The remainder of the paper is organized as follows. Section 2 presents the
RLNC algorithm. Section 3 presents our parallel implementation of RLNC using
MPI and Section 4 details the experimental methodology and reports the exper-
imental results. Finally, Section 5 presents the conclusions and future works of
this paper.

2 Resampling Local Negative Correlation Algorithm

Ensemble algorithms, a technique that uses a set of n learning machines in col-
laboratively way to solve the same problem, have gained considerable attention
from the machine learning and soft computing communities [15], [10], [17]. The
basic idea is to build hypotheses by combining a set of simple functions, instead
of carefully designing the complete map between the set of inputs X and the set
of outputs Y in one single step. Ensemble algorithms have demonstrated to be a
flexible way of improving the generalization ability of a base learning algorithm
in different tasks including classification [21], regression estimation [8], feature
selection [20] and clustering [25], also for a broad range of applications such as
financial, network security, astronomy and physics, to name a few.

An ensemble consists of a set of machines that solve the same problem: each
machine i solves the problem independently, providing an answer fi and finally
these responses are combined using an aggregation function to get the answer F
of the ensemble.

For classification tasks, a common aggregation function is the majority vot-
ing, while for regression, the convex combination of the individual outputs

F =
N∑

i=1

wifi (3)

is commonly used, where N is the number of ensemble machines, wi and fi are
the weight and the output of the i-th machine respectively.

The problem in designing successful ensemble learning algorithms is how to
select the individual hypotheses from the base space H and how those are aggre-
gated. Since replication of exactly the same hypothesis does not represent any
advantage, the concept of diversity has appeared as a key characteristic to get
better generalization performance and denotes the differences in the behavior
of the individual components to be combined. Hence, designing ensembles in-
volves the definition of a strategy to make the individual components different

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3367



6

in a useful way. Many efforts has been made in order to measure and generate
diversity, this has permitted the elaboration of a taxonomy of diversity creation
methods in classification and regression scenarios [23]. Resampling Local Nega-
tive Correlation (RLNC) [19] is an alternative approach to generate an ensemble
for regression problems. This technique has performed a generalization ability
comparable with well-known ensemble methods as Adaboost [24].

2.1 Local Negative Correlation

A way to train ensembles using explicitly diversity is based in the so-called
Ambiguity Decomposition, for ensemble F obtained as equation (3) the quadratic
loss can be decomposed as,

(y − F )2 =
N−1∑

i=0

w2
i (y − fi)2

+
N−1∑

i=0

wi(fi − F )2 (4)

This decomposition states that the error can be decomposed into two terms
where the first is the aggregation of the individual error (y− fi) and the second,
called ambiguity term, measure the deviations of these individual predictions
around the ensemble prediction. It can be observed that the higher the second
term, the lower the ensemble error and so this seems an approach to measure
the concept of diversity. This decomposition can be alternatively stated [19] as
follows:

(F − y)2 =
N−1∑

i=0

w2
i (y − fi)2

+
N−1∑

i=0

∑

j 6=i

wiwj(fi − y)(fj − y) (5)

As the ambiguity decomposition, the first term measures the individual per-
formance of the learners while the second measures the error correlation between
the different predictors. From this decomposition it seems natural to train each
learner with the training function, i = 0, . . . , N − 1 with the training function

ẽi = (y − fi)2 + η
∑

j 6=i

(fi − y)(fj − y) (6)

where η > 0 controls the importance of the diversity term versus the individual
performance. The diversity term is computed over the correlations among the

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3368



7

entire sets of learners, therefore the approach is computationally expensive due
to the communication process among the learners. We can make this objective
function local by restricting it to the neighborhood of the i-th predictor

elocal
i = (y − fi)2 + η

∑

j∈Vi

(fi − y)(fj − y) (7)

We can generate ensemble diversity using a set of locally coupled learners.
Each learner fi is related with a reduced and fixed subset of other learners Vi

through the definition of a linear neighborhood function of order ν.

ψ(i, j) = 1 ⇔ (i− j) mod n ≤ ν or (j − i) mod n ≤ ν (8)

It can be proved that a minimal degree of overlapping (ν = 1) between the
learner is enough to propagate the information about the performance of each
learner by all the group [18].

The RNLC algorithm requires a set of previous tasks to prepare the data for
each learner through the bootstrap resampling, obtaining N different datasets
from the original dataset, generating as many datasets as learners the ensemble
has. The algorithm defines a neighborhood Vi for each learner i ∈ {1, . . . , N}.
Each learner is trained T times, using the equation (9). The training rule consists
in adjusting each learner i in the step t with information based on the predictions
made by its neighbors in the step t−1. The RLNC algorithm is defined as follows:

Algorithm 1 RLNC
1: Let D = {(xi , yi); i = 1, . . . , m} be a set of training patterns
2: Let fi, i = 0, . . . , n − 1 be a set of n learner and f t

i the function implemented by
the learner fi at time t = 0, . . . , T

3: Let Vi be the neighborhood of fi as described in equation (8)
4: Generate n new samples Di, i = 1, . . . , n randomly sampling with replacement the

original set of examples D
5: for t = 1 to T do
6: Perform one epoch on the learner fi with the learning function

et
i = (y − fi)

2 + η
X
j∈Vi

(fi − y)
`
f t−1

j − y
´

(9)

and the set of examples Di

7: end for
8: Set the ensemble at time t to be F (x) = 1/N

PN−1
i=0 fi(x)

3 Parallel Resampling Local Negative Correlation

A parallel approach for the RLNC algorithm needs to identify the regions in the
algorithm that can be simultaneously executed, which allows: to separate the

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3369



8

parallel tasks, to establish control points, and to determine what information
to exchange. We have used an approach based on distributed memory, such
the information interchange among parallel tasks is carried out through message
passing, which introduces synchronization events. We have selected a distributed
memory approach due to it fits better to the features of the algorithm, and has
more flexibility to adapt to a particular communication scheme (in our case,
a ring) among learners using a graph-based representation. It also allows to
perform the processing of enormous amount of data, because it uses a less amount
of local copies inside the node than the number of threads, such a way both the
amount of synchronization events and the memory usage decreases. By the other
hand, this approach is more suitable to our multicore cluster environment, given
its features.

Our parallel approach for the training process described by equation (9) can
be divided in three stages: processing, synchronization and adjusting. Processing
stage consists in each learner i computes the outputs for the dataset Dj , j ∈ Vi,
using the state t − 1. The synchronization stage consists in information inter-
change among neighbors, based on a ring scheme of communications where 2ν
represents the size of the neighborhood Vi of each learner i. The adjusting stage
takes the previously received outputs and uses them to adjust each learner using
the error function et

i. The division on three stages is shown in the Fig. 3.

Fig. 3. Processing, synchronization and adjusting stages

In the sequential algorithm, each learner uses the original dataset for process-
ing, thus processing the data of the whole neighborhood is performed without
accessing to the resampled dataset Dj of each neighbor, avoiding concurrency
problems. Nevertheless, in our parallel approach, each learner i is able to access
only to a local copy of the original dataset D and to its own resampled dataset
Di, such a way in the processing stage the original dataset is processed by each
learner simultaneously. Then, each learner interchanges the obtained outputs
with its neighborhood, and finally the adjusting is performed.

From the point of view of a particular learner i, the parallel implementation
of algorithm 1 under a distributed memory paradigm presents two drawbacks:
the learner i needs a local copy of the datasets of all neighbors, and by other
hand the size of the messages depends of the resampling performed by learner i.
Considering the previous issues, our parallel implementation considers that each
learn processes the original dataset D and sends the outputs to its neighborhood,
in this way, each learner i receives the outputs for the whole dataset D from

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3370



9

j ∈ Vi, and all the messages have the same fixed size m. The improvements of
this approach consist in: avoiding the concurrent access to each remote dataset
Dj , and avoid handshake messages by using a fixed message length instead
of a variable length caused by the resampling. The parallel structure of the
implementation is shown in the Fig. 4.

Fig. 4. Processing, synchronization and adjusting stages according to our parallel ap-
proach. Interconnections for a neighborhood order ν = 1 are also shown

According to the parallel structure used in the implementation of RLNC, the
parallel training of i-th learner is defined in the algorithm 2.

Algorithm 2 Parallel RLNC Training of i-th learner
1: Initialize the learner with random weights
2: Define Vi as described in equation (8)
3: Load D and resampled Di

4: for t = 1 to T do
5: for j ∈ Vi do
6: SEND fi(D) to learner j
7: end for
8: for j ∈ Vi do
9: f t−1

j = RECV from learner j
10: end for
11: Perform one epoch with learning function in equation (9)
12: end for

The parallel implementation of RNLC is developed using Message Passing
Interface (MPI) [6], [16], where the parallel scheme consists in a set of slave

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3371



10

processes which represent the learners of the ensemble, and a master process
that only implements the aggregation function.

4 Experimental Results

Our impact assessment of node-core combinations involves a study of the be-
havior of the RLNC algorithm when the number of processors and dataset sizes
are increased. We have proposed a classification of the node-core combinations
to carry out the parallel performance analysis and to determinate which is the
suitable combination according to each case. In this section, we present and dis-
cuss the obtained experimental results, considering the following perspectives:
the increasing of the amount of processors and the increasing of the dataset sizes.

4.1 Hardware and Software Configuration

The experiments in this section were run using the following hardware and soft-
ware configuration:

– Hardware: six compute nodes with the following specifications:

• Processor: Intel Core2 Quad CPU Q9400 @ 2.66GHz
• Memory: 4 GB
• Network Interconnect: Gigabit Ethernet

– Software:

• Operating System: Centos 5.4 x86 64
• Kernel Version: 2.6.18
• Compiler: Intel icc 10.1
• MPI Library: Mpich2 1.1.1

4.2 Classification of Node-core Combinations

According to the definition about selecting node-core combinations described
in equation (2), we have classified the set of feasible combinations as: coupled,
combined and scattered. Coupled combinations are focused on concentrate the
computing in the cores, for maximizing the number of cores per node. Combined
combinations are focused on a balance between nodes and cores as possible.
Scattered combinations try to maximize the number of nodes, distributing the
workload as scattered as possible. Given the previous definitions and according
to the set of nodes and cores feasible in our cluster environment. We have used
the combinations shown in Table 1.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3372



11

Combination (p, n, c) Combination (p, n, c) Combination (p, n, c)

Coupled (2, 1, 2) – – Scattered (2, 2, 1)
Coupled (3, 1, 3) – – Scattered (3, 3, 1)
Coupled (4, 1, 4) Combined (4, 2, 2) Scattered (4, 4, 1)
Coupled (6, 2, 3) Combined (6, 3, 2) Scattered (6, 6, 1)
Coupled (8, 2, 4) – – Scattered (8, 4, 2)
Coupled (12, 3, 4) Combined (12, 4, 3) Scattered (12, 6, 2)

Table 1. Classification of node-core combinations

4.3 Execution Set-up

In Table 2 the parameters of the execution and a brief description of them are
shown.

Table 2. Algorithm Parameters

Parameter Description Values

p Number of processors (cores) {2, 3, 4, 6, 8, 12}
N Number of machines in the ensemble 50 (fixed)
ν Neighborhood order 1 (fixed)
m Dataset size {250, 500, . . . , 2500}
T Number of training iterations 100 (fixed)
η Influence of neighborhood in training process 0.95 (fixed)
β Number of executions of each experiment 10 (fixed)

According to our cluster environment, the values for the number of processors
described in Table 2 correspond to those that allow to obtain diverse node-core
combinations, for this reason, values over twelve processors are not considered.
The number of parallel tasks λ is equal to the number of learners in the ensamble
N , being this parameter fixed during execution.

RLNC has been implemented using the Multilayer Perceptron [5] as the learn-
ing machine. The synthetic dataset used with the RLNC algorithm is the Fried-
man Dataset which is available in the Delve Datasets [1]. The generation of
samples with arbitrary sizes is carried out by using the equation defined by
Friedman [11].

The execution time was obtained by the UNIX command “time -p”. Each
experiment was executed β times, such a way the experimental results are based
on the average of them. The cluster environment is exclusively used by our
experiments and only one experiment was performed at the same time.

4.4 Impact Assessment on Parallel Performance

We have performed an analysis according to the previously proposed classifica-
tion, considering both the increasing of the dataset sizes and the increasing of the

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3373



12

number of processors. The impact assessment involves to determine the impact
of node-core combinations on the parallel performance, focused on the scala-
bility. The previous fact implies to identify the behavior pattern and how the
scalability is influenced by the obtained workload distribution, for each number
of p and particular node-core combination. Table 3 shows the obtained parallel
performance, in terms of speed-up, for the values of number of processors p and
dataset sizes m introduced in Table 2.

In the scattered combinations, the amount of extra-node communications
increases as the number of nodes increases, such a way the throughput of mes-
sages generated by the algorithm will reach a point which the network perfor-
mance does not allow to keep scaling when the number of nodes is increased.
According to our results, scattered combinations become the best choice when
(2 ≤ p ≤ 4, 2 ≤ n ≤ 4, c = 1), ∀m ∈ {250, 500, ..., 2500}, without matter if
the combination generates a balanced or unbalanced workload distribution, due
to the strong dependence of network capabilities. From six nodes, the parallel
performance decreases due to the increasing of extra-node communications.

In coupled combinations using only one node, all communications of the λ
parallel tasks are to and from the same node, which produces a bottleneck in
the network, increasing the overhead.

In the case of p = 6, combined combination has better performance than
scattered due to the high dependence respect on the network capabilities and
the amount of extra-node communications, even though both of these combina-
tions are unbalanced. Given that combined combination is unbalanced and has
more extra-node communications than coupled, its performance is negatively af-
fected by those factors, and for this reason the coupled combination has the best
performance.

The case of p = 8 shows that coupled combination is the best choice, due to
it has less extra-node communications, and intra-node communications are not
enough to produce a bottleneck inside each node as seen in coupled combinations
with 2 ≤ p ≤ 4; additionally, the workload is balanced. This result reveals the
fact that the use of one node overstresses the network reducing the parallel
performance, and reinforces the previous result which shows that the network
and the workload balance are key factors, nevertheless, the network capabilities
has a stronger influence on the parallel performance.

For p = 12, all combinations are unbalanced, such the workload balance af-
fects the performance of all node-core combinations in this case. From 1000 data
samples, combined combination shows the best results, due to this combination
compensates the drawbacks of scattered combination, that shows an analogous
behavior to p = 6, and of coupled combination, which tends to increase the
intra-node communications in each node. By the other hand, for m < 1000
the message passing frequency increases, thereby coupled combination is better
suited to these dataset sizes. Nevertheless the obtained performance is slightly
better to the obtained using combined combination.

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3374



13

p m
Speed-up

p m
Speed-up

Coupled Combined Scattered Coupled Combined Scattered

2

250 1.901 – 1.972

6

250 5.231 5.187 5.101
500 1.944 – 1.996 500 5.526 5.471 5.349
750 1.915 – 1.991 750 5.647 5.500 5.437
1000 1.928 – 1.990 1000 5.614 5.526 5.477
1250 1.891 – 1.985 1250 5.668 5.462 5.453
1500 1.902 – 1.990 1500 5.547 5.430 5.488
1750 1.865 – 1.997 1750 5.632 5.401 5.508
2000 1.892 – 1.997 2000 5.530 5.406 5.511
2250 1.846 – 1.987 2250 5.540 5.361 5.473
2500 1.899 – 1.998 2500 5.583 5.509 5.552

3

250 2.691 – 2.851

8

250 6.538 – 6.513
500 2.867 – 2.906 500 7.096 – 7.006
750 2.870 – 2.921 750 7.294 – 7.107
1000 2.887 – 2.919 1000 7.273 – 7.141
1250 2.876 – 2.922 1250 7.345 – 7.097
1500 2.869 – 2.908 1500 7.167 – 7.009
1750 2.858 – 2.935 1750 7.288 – 7.041
2000 2.872 – 2.937 2000 7.124 – 6.963
2250 2.815 – 2.922 2250 7.170 – 6.981
2500 2.869 – 2.945 2500 7.194 – 7.056

4

250 3.395 3.627 3.665

12

250 9.007 8.943 8.833
500 3.705 3.768 3.786 500 9.461 9.935 9.636
750 3.724 3.770 3.798 750 10.562 10.494 10.070
1000 3.761 3.776 3.832 1000 10.069 10.487 10.102
1250 3.730 3.713 3.816 1250 10.718 10.766 10.150
1500 3.718 3.700 3.794 1500 9.964 10.446 10.001
1750 3.700 3.682 3.807 1750 10.717 10.775 10.083
2000 3.715 3.702 3.834 2000 10.221 10.545 10.091
2250 3.632 3.641 3.809 2250 10.565 10.641 10.022
2500 3.754 3.766 3.838 2500 10.443 10.621 10.017

Table 3. Impact of node-core combinations on speed-up

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3375



14

5 Conclusions and Future Work

In this work we studied the impacts of node-core combinations on parallel perfor-
mance of the RLNC algorithm using synthetic data, using a multi-core computer
cluster. Our results were obtained using a fine-grained algorithm, whose kind of
algorithm is hard to parallelize according to the features of them, described in
the literature [6], [16]; despite of this fact, results show that optimizations on the
RLNC algorithm structure reduce the overhead impact on parallel performance.

The algorithm behavior exhibits a relationship between the workload dis-
tribution and the selected node-core combination. This algorithm requires to
consider both the number of parallel tasks λ and the number of nodes n, be-
cause an unbalanced combination obtains a lower scalability than a balanced
one when two or more nodes are used. In the case of all combinations have un-
balanced workload, it is necessary to compensate the amount of intra-node and
extra-node communications.

Our network interconnection can support the extra-node communication in
scattered combinations using up to four nodes, the extra-node communications
does not allow to keep scaling as the number of nodes is increased.

Coupled combinations tend to encourage intra-node communications over
extra-node, which might reduce the parallel performance due to communications,
because of the bottlenecks that appear in the network, which enhances when the
algorithm is run in one node. This drawback can be mitigated by increasing the
number of nodes, thus the number of intra-node communications is reduced.

We observed that running experiments in a multi-core cluster – particularly,
the RLNC algorithm – implies to take a decision about the selection of a node-
core combination that compensates the number of intra-node and extra-node
communications, trying to obtain a balanced workload distribution as possible.
Moreover, it is necessary to evaluate the network capabilities in order to de-
terminate which is the maximum number of nodes that can be used without
negatively affecting the parallel performance.

It would be interesting as future work to perform an analysis using a different
network architecture, which will allow to determine the influence of the network
on the parallel performance, because our results reveal a clear dependence on
the network capabilities, such a way the increasing of the amount of nodes in
the cluster environment must have a narrow relationship with the increasing of
the network capabilities, to keep the algorithm scalability.

To improve the parallel approach for RLNC it would be interesting to im-
plement a hybrid approach composed by a shared memory approach – such as
openMP or Pthreads – that handles the intra-node communications without re-
sorting the network layer, preserving the distributed memory approach only for
extra-node communications.

Acknowledgements

This work was supported in part by Research Grant Fondecyt (Chile) 1070220.
This work was also supported by CONICYT (Chile) Phd. Grant 21080414 and

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3376



15

by MECESUP2 Phd. Grant and UTFSM-DGIP Phd. Grant. This research uses
the resources of Advanced Computing Laboratory of the Informatics Depart-
ment at Universidad Técnico Federico Santa Maŕıa, which is supported by the
strengthening program of Phd in chile MECESUP2.

References

1. Delve datasets (2008), http://www.cs.toronto.edu/~delve/data/datasets.

html

2. Intel high performance computing tools (2010), http://software.intel.com/

en-us/intel-hpc-home

3. Top 500 supercomputing site (2010), http://www.top500.org/
4. Alam, S., Barrett, R., Kuehn, J., Roth, P., Vetter, J.: Characterization of scientific

workloads on systems with multi-core processors. In: In IISWC. pp. 225–236 (2006)
5. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press

(1995)
6. Breshears, C.: The Art of Concurrency: A Thread Monkey’s Guide to Writing

Parallel Applications. O’Reilly Media (2009)
7. Brown, G.: Diversity in Neural Network Ensembles. Ph.D. thesis, School of Com-

puter Science, University of Birmingham (2003)
8. Brown, G., Wyatt, J., Tiňo, P.: Managing diversity in regression ensembles. J.

Mach. Learn. Res. 6, 1621–1650 (2005)
9. Chai, L., Gao, Q., Panda, D.: Understanding the impact of multi-core architecture

in cluster computing: A case study with intel dual-core system. In: Cluster Com-
puting and the Grid, 2007. CCGRID 2007. Seventh IEEE International Symposium
on. pp. 471–478 (2007)

10. Erdem, Z., Polikar, R., Gurgen, F., Yumusak, N.: Ensemble of svms for incremental
learning. Multiple Classifier Systems pp. 246–256 (2005)

11. Friedman, J.: Multivariate adaptive regression splines (1991)
12. Gepner, P., Kowalik, M.: Multi-core processors: New way to achieve high system

performance. In: PARELEC ’06: Proceedings of the international symposium on
Parallel Computing in Electrical Engineering. pp. 9–13. IEEE Computer Society,
Washington, DC, USA (2006)

13. Gochman, S., Mendelson, A., Naveh, A., Rotem, E.: Introduction to intel core duo
processor architecture. Intel Technology Journal 10(2), 89–98 (2006)

14. Gropp, W., Lusk, E., Skjellum, A.: Using MPI - 2nd Edition: Portable Paral-
lel Programming with the Message Passing Interface (Scientific and Engineering
Computation). The MIT Press (1999)

15. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer (2001)

16. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Comput-
ing: Design and Analysis of Algorithms. Pearson Education 2003, Redwood City,
CA (2003)

17. Muhlbaier, M., Polikar, R.: An ensemble approach for incremental learning in non-
stationary environments. Multiple Classifier Systems pp. 490–500 (2007)

18. Ñanculef, R., Valle, C., Allende, H., Moraga, C.: Ensemble learning with local
diversity. In: ICANN (1). pp. 264–273 (2006)

19. Ñanculef, R., Valle, C., Allende, H., Moraga, C.: Local negative correlation with
resampling. In: IDEAL. pp. 570–577 (2006)

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3377



16

20. Netzer, M., Millonig, G., Osl, M., Pfeifer, B., Praun, S., Villinger, J., Vogel,
W., Baumgartner, C.: A new ensemble-based algorithm for identifying breath gas
marker candidates in liver disease using ion molecule reaction mass spectrometry.
Bioinformatics 25(7), 941–947 (2009)

21. Nguyen, L., Shimazu, A., Phan, X.: Semantic parsing with structured svm ensem-
ble classification models. In: Proceedings of the COLING/ACL on Main conference
poster sessions. pp. 619–626. Association for Computational Linguistics, Morris-
town, NJ, USA (2006)

22. Quinn, M.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill Sci-
ence/Engineering/Math (2003)

23. Rokach, L.: Taxonomy for characterizing ensemble methods in classification tasks:
A review and annotated bibliography. Comput. Stat. Data Anal. 53(12), 4046–4072
(2009)

24. Schapire, R.: The boosting approach to machine learning: An overview (2001)
25. Tumer, K., Agogino, A.: Ensemble clustering with voting active clusters. Pattern

Recogn. Lett. 29(14), 1947–1953 (2008)
26. Zhang, C., Yuan, X., Srinivasan, A.: Processor affinity and mpi performance on

smp-cmp clusters (to appear) (2010)

39JAIIO - HPC 2010 - ISSN: 1851-9326 - Página 3378




