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Abstract. In the last few years, several millions of high-capable mobile devices
were sold around the globe. Therefore, integrating mobile devices to Grid sys-
tems may increase significantly their resources. However, mobile devices have
more limited resources than personal computers or servers. In particular, min-
imizing energy consumption is very important because mobile devices rely on
battery as energy supply. We propose a novel job scheduler that aims to use the
energy in an efficient way. To implement it, we developed a simple but effective
battery estimation model. In some experiments our energy aware scheduler out-
performed traditional Grid schedulers to effectively address energy constrains in
mobile Grids.

1 Introduction

In the last few years, mobile devices have evolved from being merely data-access de-
vices to being capable of processing and storing significant amounts of data. Addi-
tionally, each new generation of mobile devices has better connectivity technologies,
more storage memory and faster processors than previous generations [12]. In addi-
tion, mobile devices are more common now than ever [23]. For instance, 64.1 millions
of smartphones were sold in 2006 while the number of sold smartphones in 2008 was
139.3 millions. However, as a result of their small displays and difficult input methods,
mobile devices are more suitable for short and unilateral interactions, such as reading
e-mail during a bus trip or sending a short text message (SMS), than for long and com-
plex interactions [19]. In consequence, mobile devices remain unused most part of the
time.

On the other hand, the concept of Grid computing has been gaining relevance since
mid-90s when was introduced by Ian Foster [6]. Basically, Grid computing aims at
combining the computer resources, which are usually unused by their owners, to obtain
a performance similar to a supercomputer. Grid computing is an alternative for orga-
nizations that need intensive computing capabilities, but do not have the budget to buy
and maintain a supercomputer.

Considering that mobile device capabilities are underused most part of the time and
Grid systems always require more capabilities, we think that combining mobile de-
vice with Grid systems may increase its capabilities by taking advantage of underused
mobile devices. In particular, integrating mobile devices into the Grid promises advan-
tages not only for the Grid, but also for mobile device users because a mobile device
can use the Grid to execute tasks it cannot perform otherwise [8]. Furthermore, mobile
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devices can provide several sensors, such as cameras, microphones, GPS among others,
to analyze their environment [13]. Finally, people collecting data in the field, such as
biologists or census takers, can employ mobile devices to upload collected data to the
Grid in real-time [2].

Despite its advantages, integrating mobile devices into the Grid presents a wide va-
riety of challenges that are not present when using desktop or server computers, which
we will call fixed devices. Firstly, mobile devices wireless connections are not as reli-
able as fixed devices wired connections. Basically, a wireless connection can be inter-
rupted for more reasons than a wired connection. For instance, an interference might
result from a wall between the connected devices or because a mobile device moves
away of the wireless connection range [24]. Secondly, compared with fixes devices,
mobile devices computational resources are very limited [1]. Finally, mobile devices
power source rely on battery technology. As a result, a mobile device may fail because
its battery is empty [17,12]; in contrast, fixed devices, which are connected to the power
grid, rarely fail because of its energy source.

The combination of those problems is hindering the adoption of mobile devices as a
part of the Grid. In fact, the integration of mobile devices as Grid resources introduces
more drawbacks than advantages. Although there are several works [1,2,7,8,10,12] that
deal with some of these issues, there are still many open problems.

Nowadays, researchers divided Grid system into several subtypes in accord with
the main purpose of the Grid [1]. The first type, called Computational Grids, con-
sists of Grids designed for high performance computing. Here, each Grid node shares
its computational capabilities to solve a complex problem. Usually, a Computational
Grid is fed with jobs that are task indivisible by the Grid. Therefore, they must be as-
signed to a particular computer in the Grid. For instance, PrimeGrid1 is indented to find
large prime numbers by distributing the computation across volunteer computers. On
the other hand, there are Grids whose purpose is to share large amounts of data; these
Grids are known as Data Grids. Finally, Utility Grids are design not to handle large
amounts of data or computation, but for coordinating the information across a highly
distributed system, such as a disaster management application.

Although mobile devices have not the same computational power as other devices,
integrating mobile devices into Computational Grids might be useful because the ever
increasing capabilities and number of mobile devices, such as smartphones, PDAs, and
notebooks, in the market [4,9,23]. Currently, there are in the market smartphones with
1GHz processors and several hundred of RAM, such as the Nexus One2 or the well-
known iPhone 4. As a result of their number and current capabilities, mobile devices
might be a significant source of computational power for a Computational Grids.

This paper focuses on how jobs are scheduled in job-based Computational Grids
when mobile devices are present. We propose a novel technique for scheduling jobs
when nodes that depend on battery are a part of the Grid. This scheduling technique
aims to minimize the energy consumption of the mobile devices while maximize the
throughput of the Grid. To do this, this technique considers not only the performance

1 PrimeGrid: http://www.primegrid.com/
2 Nexus One technical specifications: http://www.google.com/phone/static/en_
US-nexusone_tech_specs.html
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of the mobile node in terms of computational speed, but also what the energy cost of
using a particular node is.

Having introduced the focus of this paper, the rest of it is organized as follows: Sec-
tion 2 presents a brief description of Grid concepts and the problems related with using
mobile devices within a Grid system. Section 3 summarize other proposed scheduling
techniques that consider mobile devices. Then, in Section 4, we introduce our algorithm
to schedule jobs in Grids that integrates mobile devices. Experiments on efficient battery
estimation in real time and simulations to evaluate our algorithms against traditional
Grid scheduling are presented in Section 5. Finally, Section 6 presents the conclusions
of this work as well as future works in the area.

2 Background

Grid computing is a concept that appeared in the mid-90s to describe a new way of im-
plementing distributed applications. Ian Foster defined a computational Grid as: "a sys-
tem that coordinates distributed resources using standard, open, general-purpose proto-
cols and interfaces to deliver nontrivial qualities of service" [6]. The first characteristic
of a Grid is that its resources are in different places and interconnected with a network,
usually the Internet. Furthermore, coordinating those resources implies that there is not
a hierarchical relationship. Therefore, central control should be avoided when possible
because each central control policy must be agreed by all Grid participants. Since there
should not be a central control for Grid resources, each of them might be running dif-
ferent operating systems. As a consequence, open-protocols are required to ensure the
interoperability of those systems. Finally, a Grid system must provide non trivial qual-
ities of service to fulfill the Grid user expectation. For instance, a Grid user should not
be worried about Grid resource faults because the Grid should provide fault-recovery
systems.

Foster [6] also proposed a four-layer architecture to develop Grid systems. Each
layer represents a different abstraction of a Grid. Lower layers treat a Grid system as
a set of components interconnected by a network. While, higher layers shows a Grid
system as a single entity. The layers are:

– Fabric: this layer presents all the resources that a Grid system can use. The function
of this layer is to present in a uniform way resources of the same type. For instance,
a storage system should have the same operations independently if it is a data-base,
a file-system in a machine or a file-system distributed across a local network.

– Resource and connectivity protocols: this layer has the different protocols that Grid
elements in the fabric use to interact with each other.

– Collective services: collective services are operations that show a Grid system as a
single entity. In this layer, there are services like “run in the Grid” or “storage in the
Grid”. These services are a transparent way to interact with a Grid system because
a user does not need to know which particular elements of the Grid is actually
performing the operation.

– User applications: This is the layer where the Grid user deploys their applications
to be executed. These applications can access to the Grid resources through the
services described above.
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The other aspect of this work is related with mobile devices. These devices have the
capacity of being with their users at any time because they are designed to be carried
anywhere. As a result of being designed for mobility, mobile devices must be small
and carry their own energy source. Those constraints result in devices with limited
resources, in comparison with standard desktop computers, because their small size
and limited operation caused by their energy source [16].

Battery is a major concern when using mobile devices because their energy density
has not been increased as the same rate as mobile device capabilities [17]. It has been
pointed out that despite the rapid advances in battery technology, radical changes in
battery technology are needed to meet the current demands of energy [20]. Additionally,
battery consumption is very difficult to be estimated [3] because the battery charge does
not have a linear behavior [3].

3 Related work

Several authors [1,7,8,10,14] have proposed different methods to integrate mobile de-
vices into traditional Grid systems. Those proposals go from simply visualizing a Grid
system and modifying some parameters from a mobile device [8], to a real integration
where mobile devices share their resource as other Grid members do [14].

In [18], a scheduling algorithm for mobile Grid is described. Although this algo-
rithm does not directly take into account energy consumption, it is designed considering
that mobile devices tend to frequently disconnect from the Grid. This scheduler consid-
ers that both connection and disconnection are Poisson process. Basically, the scheduler
tries to obtain the node which has more probability of being connected when it finishes
executing the job. This algorithm needs to know the execution time of a job in a node to
calculate the aforementioned probabilities. Therefore, the scheduler determines which
node is the best candidate to execute a job.

In [22], the authors analyze and compare several scheduling algorithms for appli-
cations based on communicating sub-tasks. Basically, an application is composed by
several tasks, and some of these tasks use as input the result of other tasks. Therefore,
an application can be modeled as an acyclic graph of tasks, where dependencies be-
tween tasks are the graph edges. All the schedulers aim to minimize the percentage of
total energy consumed by executing a task. This work considers that several parameters
of the tasks and the devices, such as how much energy a device consumes per execution
time unit, or how many execution time units are needed to complete a task, are known.
In addition to this limitation, the scheduler makes a static assignation. This means that
this scheduler does not consider the possibility of a device failure.

A single-class job scheduler is proposed in [7]. Single-class job means that all the
jobs in the Grid have the same CPU, memory and network requirements, limiting the
Grid to solve only one problem. This work assumes that the assignation of a job to a
mobile device is made by an entity called Job Allocator. Basically, the Job Allocator
and a node play an incomplete information game. This game is a negotiation where the
Job Allocator offers a pay to get the job done and the mobile device wants that pay. Both
the mobile device and the Job Allocator are trying to reach a bargain because each one
needs something that the other has. As time passes, the different players will learn how
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other players negotiate. For instance, a Job Allocator might learn that a particular node
accepts certain type of offer in the 70% of the cases. This knowledge allows the players
to behave in a more intelligent way when they negotiate. In the end, the behavior of all
Grid nodes tends to generate a self-regulated market because if a mobile device wants
to charge too much for executing a job, no Job Allocator will work with that mobile
device. On the other hand, if a Job Allocator offer is low, no mobile device will accept
that offer.

In [14], an energy consumption aware scheduling algorithm is described. This algo-
rithm considers that mobile devices charge for executing jobs. This algorithm aims to
not only maximize the efficiency of energy use, but also minimize the cost of assigning
jobs. Several functions are defined to express the cost of assigning a job to a node and
the energy consumption of a job in a node. Having these functions defined, the problem
is reduced to a maximization and minimization problem. The authors proposed to solve
the problem by applying the Lagrange multipliers method. Therefore, this method as-
sures that the resulting resource assignation will be optimum. However, this scheduler
requires knowing exactly the value of several variables, such as energy capacity of the
resources, computational capacity of the resources, the time required to finish a job in a
particular resource, among others, before assigning the resources. These requirements
make this scheduler difficult to be implemented.

4 SEAS: a simple energy-aware scheduling algorithm

The aforementioned algorithms have the disadvantage that they need to know too much
information that is usually unavailable or difficult to guess, such as battery estimation
or job execution time [1,3]. To deal with this complexity we propose a simple algorithm
that does not try optimize resource allocation, instead it tries to estimate a good resource
allocation based on the current state of the mobile devices. We call this scheduler Simple
Energy-Aware Scheduler (SEAS) because it was designed thinking in simplicity and
fast resource allocation.

The first problem to design an energy-aware scheduler is to have a realistic and prac-
tical battery estimation. However the most realistic battery models consist of many com-
plex differential equations that requires knowing several physical parameters, which
are only known by battery makers. In addition, these equations might require too much
computational time to be solved [3]. As a consequence, we decided to formulate a sim-
pler model that can make not so accurate estimates, but they can be done in real-time
without knowing all technical parameters. The simplest algorithm consists in measur-
ing the current battery charge (bc) and the current time (ct), and wait for a change
in the battery charge. When a change happens, the algorithm measures the new battery
charge (nbc) and the current time (nct) and uses this information to calculate the current
discharge rate (dr) as follows:

dr =
bc−nbc
nct− ct

By assuming that discharge rate is constant, the remaining time (rt) can be calcu-
lated as:
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rt =
nbc
dr

Unfortunately, the discharge rate changes over the time [21]. Therefore, this process
must be repeated every time the battery charge change to keep the estimation updated.
We found out that estimations made with this algorithm have significant variations in
subsequents updates. Thus, we modified this algorithm to return an average remain-
ing time instead of returning the previously defined remaining time. This average is
calculated using the estimated uptime, which is defined as the current uptime plus the
estimated remaining time as defined above. Therefore, the new estimated remaining
time is the average estimated uptime minus the current uptime. Algorithm 1 describes
how the remaining time is calculated.

Algorithm 1 Battery time estimation
1: procedure BATTERYESTIMATIONTHREAD(battery,clock)
2: startTime← clock.getTime
3: oldTime← clock.getTime
4: oldCharge← battery.getCharge
5: previusEstimations← new Vector . Empty Array
6: while true do . Never ends
7: WAITFORBATTERYCHARGEUPDATE

8: newTime← clock.getTime
9: newCharge← battery.getCharge

10: dischargeRate← (newTime−oldTime)/(oldCharge−newCharge)
11: estimatedU ptimeTime← newTime− startTime+newCharge∗dischargeRate
12: ADD(estimatedU ptimeTime, previusEstimations)
13: newEstimatedU ptimeTime ← AVERAGE(previusEstimations) − (newTime −

startTime)
14: UPDATEESTIMATEDUPTIMETIME(newEstimatedU ptimeTime)
15: oldTime← newTime
16: oldCharge← newTime
17: end while
18: end procedure

With regard to our scheduling algorithm, it was conceived to map an indivisible
computational task, called job, to a particular mobile device. Although not necessarily
true, we assume that those jobs have similar requirements, being similar to a single-
class job Grid [7]. In addition, we assume that all mobile devices have the capability of
measuring their remaining battery capacity.

To design the SEAS, we considered that mobile devices are connected to the Grid
through proxies. As Figure 1 shows, a proxy is a server whose purpose is to hide mobile
devices from the rest of the Grid [1,7,14]. Therefore, mobile devices and their proxy are
seen by the Grid as a single resource. As a result, the SEAS is independent form the
rest of the Grid scheduling policies.
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Fig. 1: Mobile devices connected using a proxy

The algorithm consists in two parts: measuring mobile devices capabilities and as-
signing a resource to a job. Every mobile device is responsible for measuring not only
its performance, but also its estimated remaining up-time based on the remaining bat-
tery. Firstly, measuring the performance of a system is not a simple task and there are
many ways to do it [15]. We used a simple benchmarking approach that aims to estimate
how many floating-point operations per second (flops) can be performed by a system. In
addition, we considered that modern microprocessors have a better performance when
running multi-thread application [5]. Therefore, we run several times our benchmark,
increasing the number of threads until the performance does not increase any further to
determine the optimal number of threads.

For an efficient resource assignation, it is necessary that each mobile device informs
its estimated battery time to the proxy. The proxy has a registry of all mobile devices
connected with battery, benchmark and assigned job information. When a new job ar-
rives to the proxy, the proxy uses the stored mobile device data to calculate how many
resources per job are, and based on that value the proxy creates a ranked list of the
mobile devices to assign the job to the best ranked one. The assigned resource per job
in the ith mobile device is calculated as follows:

resources per jobi =
estimated Timei×benchmarki

number jobsi +1

It is worth noting that a node with a high benchmark value and a low estimated time
value might have fewer resources than other mobile device with a lower benchmark
value, but a higher estimated time. This is because, although the first mobile device
is expected to finish jobs faster than the second one, it has the capability of executing
more jobs. Basically, the mobile device that has more resources per job is considered to
be the best option to solve the new job because it has more available resources. When
a job is assigned to a node, it is responsible for scheduling the job. The current SEAS
version uses a First Come First Served (FCFS) scheduling policy.
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5 Experiments and Simulations

We evaluated this work from two different points of view: the effectiveness of the bat-
tery estimation algorithm, and the effectiveness of the scheduler. To evaluate the battery
estimation algorithm, we profiled the battery usage from different notebooks while they
were being used by real users. The data of the profile was obtained using the Advanced
Configuration & Power Interface (ACPI)3. Table 1 describes the characteristic of the
profiled notebooks and their batteries.

Notebook Technical description Battery

Notebook-1

Intel Core 2 Duo T5300 (1.73GHz)

2 GB Ram DDR2
Hard Drive: 160Gb SATA

DVD +/- RW

6 Cells 4400 mAh

Notebook-2

Intel Core 2 Duo T7100 (1.80GHz)

4 Gb Ram DDR2

Hard Drive: 250GB SATA

DVD +/- RW

6 Cells 4800 mAh

Notebook-3

Intel Core 2 Duo T2400 (1.83 GHz)

4 Gb Ram DDR2

Hard Drive: 100 GB SATA

DVD +/- RW

6 Cells 4800 mAh

Notebook-4

Intel Core 2 Duo P7350 (2.00GHz)

4 Gb Ram DDR3

Hard Drive: 360 GB SATA

DVD +/- RW

8 Cells 4000 mAh

Netbook-1

Intel ATOM processor N270 (1.60 GHz)

1GB Ram DDR2

Hard Drive: 160 GB

6 Cells 5900 mAh

Table 1: Profiled notebooks

Based on these profiles, the two values of estimated time were calculated: the sim-
ple one, which is based on current energy consumption; and the one based on an av-
erage of estimated uptime. Figure 2 depicts how the estimated uptime changed when
the notebooks were used. There are two lines in each figure, one for each of the pro-
posed methods. Since it is desirable that estimated uptime does not change during one
execution, the flatter the line is the better the estimation. In all the cases, the measures
taken using the simple estimation method had an standard deviation greater than 5%
of the average value, while the measures taken using the average estimation method
had a standard deviation minor than 3%. Comparing these methods with other pro-
posed methods was not possible because the other methods require knowing technical

3 ACPI: http://www.acpi.info/
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Fig. 2: Estimated uptime
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information about the batteries that cannot be obtained by using ACPI. In addition, the
other methods also need to exactly know how many energy will be consumed during a
job execution. However, the energy consumption may vary as a result of the hardware
use, such as disk, DVD or CPU, turning difficult to make a good prediction. Besides,
since mobile devices run not only Grid applications, but also other user applications,
hardware utilization varies independently of the Grid job that is running on the mobile
device.

For evaluating the SEAS paradigm we implemented it as a load balancing service
provider for GridGain4, which is a well-known extensible Grid middleware. Addition-
ally, GridGain comes with different load balancers that were compared with our sched-
uler. In order to evaluate the SEAS algorithm, several simulations based on the profiles
taken from the notebooks where executed. First, a benchmark was executed on all the
machines to determine the speed of each machine. The fastest notebook was Notebook-
4, however, Notebook-2 was able to execute more operations because it can operate for
extended periods of time when working on battery. It is worth noting that we consider
that nodes disconnect from the Grid only because of battery depletion.

Second, several possible battery profiles were generated to simulate each machine.
In the simulation, each node has the capability of running up to 4 jobs at the same
time without performance penalties. In regard to jobs, the execution time represent the
time that takes to execute the job on an Grid average node. Besides, the number and
execution time of the jobs in each simulation were adjusted to require all Grid capacity.
This means that ideally the 100% of the jobs can be executed before the last node runs
out of battery. However, since each job computation cannot be divided, it is possible
that not all the jobs can be completed. Besides, even though we assumed similar jobs,
we simulated several cases where this assumption is not true. In particular, in some
simulation the largest job execution time could be three times the shortest job execution
time.

The different simulations are described in Table 2. The first 5 simulations consider
that the Grid execute jobs that require long time, taking into account the battery dura-
tion, to be executed. Sim-1 stands for a small Grid composed by 7 nodes. The second
simulation (Sim-2) is a Grid that consists of 400 nodes of different capabilities. Sim-
3, Sim-4 and Sim-5 are different cases of Grids integrated by very dissimilar devices.
Notebook-2 is a fast device, but with limited battery. On the other hand, Netbook-1 is
a slow device that can execute more operations than the Notebook-2 because it has a
better battery. Finally, the three last simulations are Grids similar to the three previous
Grids, but executing jobs that require less processor time (8 minutes in average).

Figure 3 shows the result of the simulation. From these results it can be seen that
SEAS performed better than the other two algorithms in all the cases. Moreover, all
algorithms performed better with the smaller jobs, probably because the schedulers can
distribute the calculations in a more fair way. In addition, the random scheduler tends
to behave similarly to the Round-Robin scheduler when the number of jobs is higher
and its execution time is shorter. This result probably stems form the fact that the ran-
dom scheduler assigns a job to a node with a uniform probability. Therefore, when the
number of jobs is considerable bigger than the number of nodes, the number of jobs

4 GridGain: http://GridGain.com/
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Simulation Nodes in the Grid Jobs to be executed

Sim-1

3 Notebook-1
1 Notebook-2
1 Notebook-3
1 Notebook-4
1 Netbook-1

110 jobs of 24 minutes
+/-24%

Sim-2

100 Notebook-2
100 Notebook-3
100 Notebook-4
100 Netbook-1

5999 jobs of 24 minutes
+/-24%

Sim-3
100 Notebook-2
100 Netbook-1

3560 jobs of 24 minutes
+/-24%

Sim-4
150 Notebook-2
50 Netbook-1

3856 jobs of 24 minutes
+/-24%

Sim-5
50 Notebook-2
150 Netbook-1

3490 jobs of 24 minutes
+/-24%

Sim-6
100 Notebook-2
100 Netbook-1

11033 jobs of 8 minutes
+/-50%

Sim-7
150 Notebook-2
50 Netbook-1

11569 jobs of 8 minutes
+/-50%

Sim-8
50 Notebook-2
150 Netbook-1

10497 jobs of 8 minutes
+/-50%

Table 2: Configuration of the simulations
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assigned to a node converge to the number of jobs divided by the number of nodes,
which is the Round-Robin scheduler expected behavior. Another important factor is
scheduler speed. Our scheduler was executed on an AMD Phemon X3 and needed on
average 234.06 ms to schedule 11569 jobs in 200 nodes, while the Round-Robin sched-
uler needed 53.9 ms and the random scheduler needed 22.99 ms.

6 Conclusions

As several authors have stated [1,7,10,8,14], integrating mobile devices into Grid sys-
tems will significantly increase Grid systems capacities. Grid schedulers that take into
consideration energy are required to properly integrate mobile devices. This work presents
a novel energy-aware Grid scheduler that has proved to perform better than traditional
Grid schedulers in simulations.

Furthermore, the simulations also put in evidence that all the evaluated scheduling
algorithms are more effective when jobs are small. This is probably because the sched-
uler can perform a finer assignation when jobs are shorter. For instance, if there is a
job that requires 400 minutes to be executed in a particular device and there are two
of those devices with enough battery to execute for 300 minutes, the job cannot be fin-
ished because it cannot be split. However, if there are two jobs that need 200 minutes
of execution, each job can be assigned to a different device for execution.

From this work it is evident that there are a range of complex issues that if properly
solved would enable the development of a more effective scheduler for Grid systems
that use mobile devices. One of the problems is to estimate the capacity of a mobile
device. This problem is related not only with estimating the remaining battery time,
which already is a complex problem [3,20,21], but also estimating the amount of work
that a mobile device can do in that time. Another problem is to estimate how complex a
job is, because better estimations allow the scheduler to calculate how many resources
a particular work will consume, allowing a better resource assignation [11].

Future work related with Grid scheduling will focus on creating better battery es-
timation models, different benchmarking techniques and methods for estimating job
complexity. For the battery estimations, we will develop algorithms for estimating how
mobile devices will be used based on their users’ context [24,20,23]. Since energy
consumption is directly affected by the mobile device usage, we think user profiles
may help estimating battery life. With regard to benchmarking, we are studying sev-
eral benchmarking techniques that have been proved in other domains [15], such as
traditional servers. These benchmarks are essential to know how a mobile device will
behave when a new job arrives. Finally, knowing a job complexity will help the sched-
uler to calculate how many resources should be assigned in a mobile device, instead
of our current assumption that all jobs consume about the same amount of resources.
Finally, we are adapting the approach to execute experiments using data obtained from
Android-based smartphones.
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