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Universidad Nacional de Mar del Plata, Argentina.

2Laboratorio de Comunicaciones, Facultad de Ingenieŕıa,
Universidad Nacional de Mar del Plata, Argentina.
{leoarn,casti,cgayoso,cmgonzal,mrabini,

cmgonzal,mrabini}@fi.mdp.edu.ar
http://www.fi.mdp.edu.ar

Abstract. In this paper, we present a low complexity Sum-Subtract de-
coder for non-binary LDPC codes defined over GF (q). The performance
of this decoding algorithm is similar to that of the Fast Fourier Trans-
form Sum-Product algorithm usually utilized for decoding non-binary
LDPC codes. It is a simplified algorithm that can be easily implemented
on programmable logic technology such as FPGA devices because of its
use of only additions and subtractions, avoiding the use of quotients and
products, and of float point arithmetic. The algorithm yields a very low
complexity programmable logic implementation of an NB-LDPC decoder
with an excellent BER performance.

Key words: Galois fields, non-binary LDPC codes, programmable logic
technology

1 Introduction

It is known that binary low density parity check (LDPC) codes achieve rates close
to the channel capacity for very long codeword lengths, and they are nowadays
being implemented in many modern communication standards.

Bit Error Rate (BER) performance of binary LDPC codes are however not
that impressive when the code size is low or moderate, and high order modulation
is used for transmission. For these cases, non binary LDPC (NB-LDPC) codes
designed in high order Galois fields GF (q) have shown great interest [1], [2].
They can be shown to outer perform equivalent LDPC codes defined over the
binary field.

A non-binary LDPC code is simply an LDPC code with a sparse parity check
matrix containing elements that could be defined over a finite field. Of particular
interest are LDPC codes defined over finite fields of the form GF (2m), where m
is a positive integer greater than 1. In 1998, Mackay presented the idea of LDPC
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codes over finite fields [3]. They have shown that non-binary LDPC codes can
achieve increases in performance over their binary counterparts when the size
of the finite field is increased. Mackay also showed how the Sum-Product (SP)
algorithm could be extended to decode non-binary LDPC codes, but the resulting
complexity made this decoding algorithm be unfeasible. Only non-binary LDPC
codes over small finite fields were implemented.

For an NB-LDPC code defined over GF (q), each received symbol can be one
of q different elements in GF (q). Therefore the horizontal step becomes more
complicated as there are now more possible non-binary sequences to satisfy the
parity check equations. Each nonzero element defined over GF (q) in the parity
check matrix H has q probabilities associated with it, instead of two probabili-
ties as in the binary case. These are some reasons for making the extended SP
algorithm be of a very high complexity.

As said above, NB-LDPC codes provide a gain over their binary counter-
part, but this performance gain comes together with a significant increase of the
decoding complexity. NB-LDPC codes are decoded with message passing algo-
rithms as the Sum-Product algorithm, but the size of the messages varies in the
order q of the field. Therefore, an implementation of the SP decoder has com-
plexity in O(q2). A Fourier domain implementation of the SP is possible like in
the binary case, reducing the complexity to O(q log(q)), but this implementation
is only convenient for messages expressed in the probability domain. Details of
this Fast Fourier Transform Sum-Product algorithm, which will be referred to
as the FFT-SP algorithm, can be found in [4].

In the horizontal step of the classic SP algorithm it is necessary to find all
possible binary sequences that satisfy a parity check equation, determining the
probability of each sequence and adding them all together [5]. In general, we
can write this as a convolution operation. This implies that the same result
can be achieved by replacing the convolution operation with Fourier transform.
This is the essential idea behind the FFT-SP algorithm. However, the number
of additions and products involved in the FFT-SP algorithm make difficult the
implementation of optimal NB-LDPC decoders on low complexity programmable
logic.

An NB-LDPC code is defined by a very sparse random parity check matrix H
whose components belong to a finite field GF (q). Decoding algorithms of LDPC
codes are iterative message passing decoders based on a factor (or Tanner) graph
representation of the matrix H.

As in the case of binary decoders, there are two possible representations
for the passing messages: probability weights vectors or log-density-ratio (LDR)
vectors. The use of the LDR form for messages has been advised by many authors
who proposed practical LDPC decoders. Indeed, LDR values which represent real
reliability measures on the bits or the symbols are less sensitive to quantization
errors due to finite precision coding of the messages [6].

In this paper we propose a very low complexity Sum-Subtract decoding algo-
rithm for NB-LDPC codes. This algorithm is based on a transformation of the
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representation of variables of the FFT-SP decoding algorithm, and involves the
use of additions and subtracts, and also uses two look-up tables.

A comparison is done between the BER performance of the proposed decod-
ing algorithm, and the BER performance of the FFT-SP decoding algorithm,
for a given NB-LDPC code.

Results show that there is no significant difference in BER performance be-
tween the optimal and the proposed algorithm. The proposed algorithm is char-
acterized by a very low complexity implementation, thus becoming a better alter-
native for its programmable logic implementation than the traditional FFT-SP
algorithm.

2 Decoding Non-Binary LDPC Codes over GF (q)
with Fast Fourier Transform Sum-Product algorithm
(FFT-SP)

LDPC codes are a powerful class of linear block codes characterized by a parity
check matrix H, which fits the condition H◦c = 0 for any codeword c. An LDPC
decoder is essentially a decoding algorithm designed for finding a codeword ĉ
(an estimate of the codeword c), able to fit the condition:

H ◦ ĉ = 0. (1)

The LDPC decoding algorithm is described over a bipartite graph depicted con-
sidering the relationship between the symbol nodes j, which represent the bits
or symbols of the code vector c, and the parity check nodes i, which represent
the parity equations described in matrix H. In this iterative process, each sym-
bol node j sends to a parity check node i the estimation Qi,j(x) that this node
generates with the information provided by all others parity check nodes con-
nected to it, based on the fact that the parity check node j is in state x, with
x =

'
0, 1, α · · · αq−2

“
for NB-LDPC codes.

Then, each parity check node i sends the estimation Ri,j(x) to each symbol
node j generated with the information provided by the other symbol nodes con-
nected to it, based on the fact that the parity check node i condition is satisfied,
if the symbol node j is in state x. This is an iterative process in which informa-
tion is interchanged between these two types of nodes. This iterative process is
stopped when the condition described by Eqn (1) is satisfied. In this case the
corresponding decoded codeword is considered a valid codeword. Otherwise, the
decoding algorithm stops after a given number of iterations are performed. In
this case the decoded word may or may not be a codeword.

Another difference in the Tanner graph of an NB-LDPC code is that non-zero
elements of the parity check matrix H are in the set

'
0, 1, α · · · αq−2

“
and this

leads to a modified graph that takes into account this representation. Circulant
shift operations over the tensors of probabilities or estimates in the decoding
algorithm take into account this structural difference [4], [5].

The FFT-SP decoding algorithm for NB-LDPC codes involves the evaluation
of the following steps:
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2.1 Initialization

The initialization process is done by setting the values of estimations Qi,j(x) to
the a priori probabilities of the symbols Pj(x). The a priori probability Pj(x)
is the probability of the jth-symbol node adopting the value of x, with x ='

0, 1, α · · · αq−2
“
. These values depend on the samples of the received signal

from the channel [5].

2.2 Horizontal Step

The horizontal step determines the probability Ri,j(x), defined as [4], [5]:

Ri,j(x) = F−1


 Y

k∈N(i)\j
F (Qi,k(x))


 (2)

The set of indexes of all the symbol nodes j related to the parity check node
i will be denoted as N (i), and N (i) \j will be the same set but excluding the
index j. F is the Fourier transform and F−1 is the inverse Fourier transform. For
NB-LDPC codes defined over GF (q), F and F−1 are obtained by multiplying
the tensors products by Hadamard matrices [4], [5].

2.3 Vertical Step

For each i,j the quantities Qi,j(x) are evaluated. Then the pseudo posterior
probabilities Qj(x) are updated.

Qi,j(x) = βi,j Pj(x)
Y

k∈M(j)\i
Rk,j(x) (3)

M (j) is the set of sub indexes of all parity check nodes i related to the symbol
node j, and M (j) \i will be the same set but excluding the index i. βi,j is a nor-
malizing constant such that

P
Qi,j(x) = 1. The pseudo posterior probabilities

Qj(x)are determined by:

Qj(x) = βj Pj(x)
Y

M(j)

Ri,j(x) (4)

where again βj is a normalizing constant such that
P

Qj(x) = 1. Finally, from
these pseudo posterior probabilities estimates of the transmitted code word can
by found by:

ĉj = arg max
x


βj Pj(x)

Y

M(j)

Ri,j(x)


 (5)
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3 Proposed Sum-Subtract Decoding Algorithm (SSD)

The proposed simplification makes this algorithm operate using only additions
and subtractions. This simplification makes use of a logarithmic version of the
calculations involved in the FFT-SP algorithm described in the previous Section.

We define P j(x) = epj(x), Qi,j(x) = eq i,j(x), Ri,j(x) = eri,j(x) and Qj(x) =
eqj(x). The NB-LDPC Sum-Subtract decoding algorithm involves the evaluation
of the following steps:

3.1 Initialization

It is only necessary to initialize variables qi,j(x) with the values pj(x).

3.2 Horizontal Step

The Hadamard transform is used to implement the Fourier transform of the
product of estimates, which are then multiplied as tensors to obtain a given final
tensor, which is then operated by using the inverse Fourier transform, also imple-
mented by performing a Hadamard transform. By applying the proposed expo-
nential operation, the Hadamard Transform operation F (Qi,j (x)) = F

¡
eqi,j(x)

¢
of the horizontal step involves the use of additions and subtractions of terms of
the form:

eq(0) ± eq(1) ± eq(α) ± · · · ± eq(αq−2) (6)

Additions and subtractions are determined by the operations defined in each row
of the corresponding Hadamard matrix, which is used to perform the Fast Fourier
transform. Form and size of the corresponding Hadamard matrix depends on the
size of the finite field q that is used, but operations in all the cases adopt the
form of Eqn. (6).

In order to solve calculations of the form of Eqn. (6), we resort to a recursive
application of a basic two-term operation ec = ea±eb, where c can be calculated
by using the expression c = f(a, b) = max(a, b) + ln

¡
1 + (−1)s

e−|a−b|¢. Here,
s = 0 for an addition and s = 1 for a subtraction. Function f is iteratively applied
to give solution to the Hadamard transform operations in the exponential form,
usually present in the horizontal step of the algorithm:

fH(i,j) = f
¡
qi,j(0), f

¡
qi,j(1), f

¡
qi,j(α), f(· · · , qi,j(αq−2)

¢¢¢
(7)

Thus,

ri,j(x) = fH(i,j)


 X

k∈N(i)\j
fH(i,k)


 (8)

Function f can be implemented in practice by means of two look-up tables of
the form:

f+(a, b) = max(a, b) + ln
¡
1 + e−|a−b|¢ (s = 0)

f−(a, b) = max(a, b) + ln
¡
1− e−|a−b|¢ (s = 1)

(9)
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3.3 Vertical Step

Eqn (3) used in the FFT-SP algorithm can be performed in the exponential
mode as:

eqi,j(x) = βi,j epj(x)
Y

k∈M(j)\i
erk,j(x) = βi,je

pj(x)+
P

k∈M(j)\i

rk,j(x)

(10)

We define an auxiliary variable:

ci,j(x) = pj(x) +
X

k∈M(j) \i
rk,j(x) (11)

so that,
eqi,j(x) = βi,je

ci,j(x) (12)

In order to fit the normalization condition
P

Qi,j(x) =
P

eqi,j(x) = 1, βi,j should
be equal to:

βi,j =
‡
eci,j(0) + eci,j(1) + eci,j(α) + · · ·+ eci,j(α

q−2)
·−1

(13)

then:

eqi,j(x) =
eci,j(x)

eci,j(0) + eci,j(1) + eci,j(α) + · · ·+ eci,j(αq−2)
(14)

and thus:

qi,j(x) = ci,j(x)− f
¡
ci,j(0), f

¡
ci,j(1), f

¡
ci,j(α), f(· · · , ci,j(αq−2)

¢¢¢
(15)

where f
¡
ci,j(0), f

¡
ci,j(1), f

¡
ci,j(α), f(· · · , ci,j(αq−2)

¢¢¢
allows the normaliza-

tion condition
P

Qi,j(x) =
P

eqi,j(x) = 1 to be fulfilled.
The pseudo posterior probability qj(x) is similarly evaluated as in the previ-

ous step, by defining an auxiliary variable:

cj(x) = pj(x) +
X

i∈M(j)

ri,j(x) (16)

such that qj(x) is equal to:

qj(x) = cj(x)− f
¡
cj(0), f

¡
cj(1), f

¡
cj(α), f(· · · , cj(αq−2)

¢¢¢
(17)

As in the previous case, f
¡
cj(0), f

¡
cj(1), f

¡
cj(α), f(· · · , cj(αq−2)

¢¢¢
allows the

normalization condition
P

Qj(x) =
P

eqj(x) = 1 to be fulfilled.
Finally estimate of the decoded output ĉj(x) is calculated as:

ĉj(x) = max
x

(qj(x)) (18)
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4 Look-Up Tables Implementation

The performance of the proposed decoding algorithm is set by the characteristics
of the look-up tables f+ and f− Eqn(9). Assuming that the maximum number
of bits used to construct these tables is n, the maximum number of entries of
these tables is of size 2n.

5 Complexity Analysis

In order to do an analysis of the complexity of the proposed algorithm, we
define t = M(j)av as the average number of non-zero elements per column, and
u = N(i)av as the average number of non-zero elements per row, in the parity-
check matrix of the code. Typically we have u = Nt/M , such that for an 1/2-rate
NB-LDPC code for instance, M = N/2, and u = 2t.

Using t = 3, u = 6 and GF (4), the FFT-SP decoding algorithm involves the
calculation of 108N products, 54N sums-subtracts and 24N quotients (average).

The proposed SSD algorithm requires 132N sums-subtracts, 144N accesses
to the look-up tables and 144N comparisons. In spite of requiring more sums-
subtracts than the traditional decoding algorithm, the complexity of the pro-
posed algorithm implementation is highly reduced due to the fact of operating
with neither quotients nor products.

6 Simulations Results

Figure 1 shows results obtained by doing a simulation with the NB-LDPC code
CLDPC(12, 8) defined over GF (4) in a transmission of 1000 blocks of 12 mes-
sage non-binary each, decoded using either the proposed Sum-Subtract decoding
algorithm (SSD) or the FFT-Sum-Product decoding algorithm (FFT-SP).

Decoding in all the cases uses 5 and 20 iterations. The BER performance
of the proposed SSD is also the same as the FFT-SP algorithm. Figure 1 also
shows results for the NB-LDPC code CLDPC(12, 8) defined over GF (256).

The BER performance of the schemes that use tables of size 256 or 512 for
implementing function f (briefly described in Fig. 1 as SSD GF (q) Table 256 or
512) do not show differences with respect to those which use the ideal function
f (briefly described in Fig. 1 as SSD GF (q) Ideal). Therefore, it is possible
to implement a low complexity decoding algorithm without significant BER
performance loss, by using the proposed logarithmic decoder with two look-up
tables of reasonable size.

7 Conclusions

In this paper a low complexity decoder for NB-LDPC codes is proposed. The
algorithm has the advantage of significantly reducing the complexity of the orig-
inal FFT-SP decoding algorithm [4], [5]. The reduction in complexity is because
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Fig. 1. Simulation of the BER performance of NB-LDPC codes, using the SSD or
FFT-SP algorithms, for different look-up tables and numbers of iterations.

the proposed algorithm uses only sums and subtracts, and two look-up tables,
avoiding the use of quotients and products, operations that are of high com-
plexity in practical implementations, especially using Field Programmable Logic
Arrays (FPGA) technology [7].
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