
Supporting Aspect Oriented Requirements
Engineering for Large Documents

Arturo Zambrano1, Julian Rousselot2, Johan Fabry3?, and Silvia Gordillo1??

1 LIFIA, Facultad de Informática
Universidad Nacional de La Plata, La Plata, Argentina

[arturo,gordillo]@lifia.info.unlp.edu.ar
2 Facultad de Ingenieŕıa y Ciencias Exactas,

Universidad Argentina de la Empresa,
Ciudad Autónoma de Buenos Aires, Argentina

jrousselot@uade.edu.ar
3 PLEIAD Lab, Computer Science Department (DCC)

University of Chile, Santiago, Chile
jfabry@dcc.uchile.cl

Abstract. Performing Aspect Oriented Requirements Engineering for
large documents is a hard task. This is due to the lack of tools that sup-
port demarcation and tracking of crosscutting concerns for requirements
documents. In this paper we present the requirements and current im-
plementation status of AORE Assistant, a tool aimed at helping the en-
gineer to manage large documents with multiple crosscutting concerns.
This documents are regulations, standard and technical specifications.
Such tool should improve software development cycle by easing the lo-
cation of crosscutting concerns in the documents and helping to avoid
problems derived from neglected concerns interactions.

1 Introduction

Requirements engineering is a key task in the process of understanding how the
system being built should behave. Complex systems involve myriads of require-
ments regarding multiple concerns, both functional and non-functional [13]. For
some systems, sources of requirements are many, resulting in several – in many
cases large – documents. Usually, requirements map straightforwardly to con-
cerns of the application, allowing them to be cleanly encapsulated in different
modules of the resulting system. There are however exceptions to this rule, take
for example the requirement to log all actions of the system. The corresponding
concern, logging, cannot be cleanly encapsulated in one module because it cuts
across all other concerns of the system. In the requirements documents it is as if
crosscutting concerns cut across these documents and across the structure of re-
quirements. For such crosscutting concerns, tracking where these are and which
requirements are affected by them is therefore a complex task.

? Partially funded by FONDECYT project 1090083.
?? Also CIC Pcia. Bs. As.

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 568



Aspect-Oriented Requirements Engineering (AORE) addresses the above re-
quirements engineering problem that some requirements are hard, if not impos-
sible, to isolate into separate modules. Also known as Early Aspects, AORE
performs first-class modeling of these crosscutting concerns as aspects, identi-
fying and characterizing their influence on other requirements in the system [9,
11]. These models enable to better identify and manage requirements conflicts,
irrespective of the crosscutting nature of the requirement. Ideally, the result of
this phase is to have a consistent model of the system early in the software
development life-cycle.

The lack of a modularized structure for crosscutting concerns makes it dif-
ficult to follow them, specially when documents are many and large. Tools for
AORE are needed for this particular regard. Many existing AORE tools are
focused on helping in the application of specific AORE approaches [4, 5]. Even
though navigation of crosscutting concerns might sound as a basic feature for
any AORE tool, as far as we know, there is no support for such functionality.

Having no way of navigating information in a concern based manner poses
a difficult scenario for the requirements engineer. He needs to deal with all this
information in a non-modular way and cannot easily establish which concerns
are present in a single requirement. This is essential for detecting possible in-
teractions of cross-cutting concerns. Interactions between concerns are, in our
experience, a source of difficult to identify and costly bugs.

In this paper we present the requirements and first advances in the develop-
ment of a tool aimed at helping the engineer to manage large documents with
multiple crosscutting concerns. The tool is inspired on the needs observed during
the development of an industry project in the domain of Slot Machines (SM for
short).

This paper is organized as follows: in Sect. 2 we present the domain that
inspired us and some peculiarities regarding requirements sources in it. In Sect.
3 we list the requirements for a useful tool in handling crosscutting concerns
in large requirements documents. In Sect. 4 we present relevant related work.
Sect. 5 presents the current status of our tool for aspect oriented requirement
engineering. Finally, we present in Sect. 6 some preliminary conclusions and
future work.

2 Motivation

This work is inspired in real-world needs derived from a industry project where
we worked for 6 years. For applications in this domain, which we will introduce in
the next subsection, there are several requirements sources and lots of functional
and non-functional interacting crosscutting concerns.

Our experience of working with these requirements is that the lack of concern
track support leaded to costly bugs, detected only once the system was in a
production environment. Providing adequate support for tracking such concerns
should help to avoid these bugs, resulting in a better design and implementation
during the software development life-cycle.

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 569



2.1 Slot Machine Domain

A slot machine (SM for short) is a gambling device. It has five reels which
spin when a play button is pressed. An SM includes some means for entering
money, which is mapped to credits. The player bets an amount of credits on each
play, the SM randomly selects the displayed symbol for each reel, and pays the
corresponding prize, if any. Credits can be extracted (called cashout) by different
mechanisms such as coins, tickets or electronic transfers.

The SM game concept is developed by the game designers and its implemen-
tation must obey a set of regulations that control both hardware and software.
The game concept is always a slot machine, what varies is the skin around the
slots. The regulations that apply to slot machine can be divided in three main
groups:

Government Regulations: Government regulations cover a broad spec-
trum of characteristics of gambling devices: payout, randomness, connectivity,
shared prizes, etc. One example of these are the Nevada Regulations [10].

Standards: To ensure proper behavior of SMs, there are certification insti-
tutes that perform severals tests and quality checks on the SMs. The expected
behavior of an SM is defined in documents called standards, one example is the
GLI standard [7].

Technical Specifications: Some requirements are related to the SM connec-
tivity with reporting systems (RS) and the underlying communication protocol.
This is the case, for example, of the G2S [8] (Game to Server) protocol, an open
standard for communication of the SM with a backend.

Requirements for the SM domain are therefore defined in different documents
(regulations, standards, protocol specifications) written by different stakehold-
ers, with diverse interests and backgrounds. This results in a large set of docu-
ments using multiple terms for describing the same object, action or event. In
our experience documents size range from 90 pages (Nevada regulation [10]) to
1500 pages (G2S protocol specification [8]).

The large base of requirements sources, whose organization and structure is
out of the control of the engineer makes it hard to reorganize the information
so that requirements are grouped by concerns. Moreover, modifying the orig-
inal documentation is unfeasible, as documents are under the control of their
respective owners.

2.2 Concerns in the Slot Machine Domain

Several documents deal with almost the same concerns, but from a different
perspective. Consider for example meters, which must be updated upon game
actions (eg. a play) and are also the base for accounting and reporting. The first
action (update after a play) could be stated in a regulation such as Nevada.
The latter is part of the protocol specifications (when to report such meters).
This means that elements from one concern are treated in different documents,
according to the stakeholders’ interest.

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 570



Additionally, regulations from different states and countries treat common
concerns such as: metering, communication protocols, etc. We briefly explain
some of them here.

– The Game concern includes the requirements related to the basic function-
ality of a SM, being able to perform a play, where some credits are bet by
the player and he is rewarded according to an outcome which is randomly
determined.

– The Meters concern refers to counters that must be maintained. They mea-
sure many aspects of the SM activity for auditing purposes – for example:
the number of plays, total bet, total won, etc.

– G2S concern encompasses those requirements referred to the communication
protocol used for monitoring SM behavior remotely. This concern establishes
which, when, and how information must be reported. Part of the information
is stored in meters.

– Error Conditions concern define how the SM must behave under certain
circumstances, such us door open, stacker full, bill jam, reverse coin in, etc.
This behavior often include to lock up the machine and require attendant
intervention.

– Game Recall refers to a local audit functionality. Each game play must be
stored along with the parameters and outcomes generated for it. This is
useful for resolving disputes with the player. At least the last 10 plays must
be stored.

– Program Resumption is analogous to a persistence non-functional require-
ment. In this domain there is set of data that needs to be recovered after a
game reset or a power outage. This information includes: meters, SM status
(such as error conditions), queues associated to communication protocols
and game recall data.

The reader can think about the Game concern as being the base concern
(using the jargon of AO community). All the others are crosscutting concerns
which cut across Game and sometimes the other crosscutting concerns. Consider
for example Program Resumption which cut across all the others.

3 Requirements for Tool Support for Managing Concerns

The scenario presented in Sect. 2 lead us to generate the following list of re-
quirements for a tool that helps handling crosscutting concerns in several large
requirements documents.

3.1 Importing Existing Documents

Requirements for SM come generally from external institutions, the only ex-
ception is game design document. The content of these documents is under the

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 571



control of the corresponding institution and requirements engineers are not al-
lowed to edit them. Therefore, our tools need no authoring capabilities. Instead,
regulations, standards and other documents shall be imported into the tool.

Most of these documents are delivered in PDF format or as MS Word docu-
ments. Both formats (as well as many others) can be easily converted to HTML.
Therefore, we decided to take as input of our tool HTML documents containing
the requirements. We decided for HTML with the aim of keeping the documents
appearance as close as possible to the original one.

3.2 Demarcation

Input documents contain the requirements but no explicit information about
what are the different concerns result from these requirements. While the re-
quirements engineer works with the document he/she will identify concerns and
where they apply.

So our tool must provide the ability to define concerns and to demarcate
in the text of the requirements which parts of the document belongs to which
concern.

3.3 Per Concern Navigation

Once the documents have been processed and information regarding existing
concerns has been added, it is desirable to have navigation capabilities that
allow us to explore only those requirements that belongs to a specific concern.

Consider the use case of an engineer that wants to know how to deal with
performance constraints given the corresponding regulations and standards. In
this case it is necessary to easily locate all those requirements which impose
performance constraints or affect performance of the system.

3.4 Scalability

Having a lot of potentially big documents makes scalability of the tool a key point
for it successful application. It is necessary to be able to see the big picture
of requirements and its concerns. Presenting this information using graphical
metaphors helps for quick understanding of how documents are composed and
where to search specific information.

We require our tool to be able to provide high abstraction views of the
documentation. The user should be able to easily relate this overall view with
the specific details of the documents. Therefore it should be possible to zoom in
on specific parts, revealing the actual text of the requirements.

3.5 Document Evolution

In the course of our project, every requirements document we used passed
through several revisions, where their contents changed. Although at a slow

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 572



pace, as standards, regulations are subject to the approval of the respective or-
ganizations, they nonetheless evolve to cope with new scenarios, technologies
and other needs.

It is then necessary to migrate concern information added from one version
of a document to a newer revision, in order to avoid duplicated work between
revisions. To achieve this objective it is necessary to keep concern related infor-
mation from the original document, and for new versions locate those parts of
the document that remain unchanged.

4 Related Work

4.1 Modeling Approaches

There are multiple approaches for aspect oriented requirement engineering [5,
6, 9]. We have analyzed some of them in [13]. A general characteristic of these
approaches and their supporting tools (where available) is that they demand to
manually introduce the requirements. Some of them work on XML, but there
is no way of automatically convert requirement documents to the needed XML
structures. Some approaches attempt to solve this by doing automatic analysis
of textual information. These approaches brings all the complexity derived from
analysis of natural language. Given our experience with requirement documents
in an industrial case we doubt that this is feasible with current textual analysis
technology. Instead, it is our opinion that requirements must be analyzed by
engineers with knowledge in the field. The role of the tools is to help these
engineers dealing with scalability problems and tracking crosscutting concerns.

4.2 Tools

There are many powerful tools for managing software requirements. One example
is Enterprise Architect [2], a UML 2.1 analysis and design tool that covers soft-
ware development from requirements gathering, through to the analysis stages,
design models, testing and maintenance. Other recognized tools are Accompa [1]
and Lighthouse [3], generally speaking they perform the same tasks EA does.

All these tools do a great job providing traceability and requirements manage-
ment, but no one provides support for management, demarcation or visualization
of concern related information.

5 Our tool: AORE Assistant

This paper reports on the ongoing work on our tool: AORE Assistant. The
goal of AORE Assistant is to provide support for aspect oriented requirements
engineering where a large set of requirements are stated, following the needs
outlined in Sect. 3.

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 573



Development of our tool is based on Java Standard Edition, using a standard
JTextPane component for HTML document rendering and Java Graphics2D li-
brary for rendering visual representation of concerns in the domain view. Con-
cerns related information is handled separately and stored in XML documents,
specifying all the associations between requirements and concerns.

5.1 Importing documents and demarcating concerns

Existing requirements documents must be converted to HTML and AORE As-
sistant works using those HTML files, maintaining the original formatting. Cur-
rently we use one HTML per original document so no hyperlinks are used, but
our HTML renderer is capable of handling them anyway.

Demarcation is implemented and it is part of our textual requirements view
as shown in Fig. 1, which we discuss next.

Fig. 1. Requirements View where concerns can be marked in the text.

5.2 Requirements View

In the Requirements view the engineer can read the actual text of document and,
as he/she detects parts of the requirements as belonging one concern, he/she
can select the text and mark it as part of the mentioned concern. Concern
demarcation is performed during the exploration of requirements, and AORE
Assistant supports this being done incrementally, by saving information from
one session and loading it automatically in the next one. Also, the tool allows

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 574



to edit the list of concerns and the associated colors. Information regarding the
concerns to which each part of the document belongs to is stored in a separate
file, so that when requirements evolve the demarcation work is not lost.

As demarcation can be done even at word level, a paragraph dealing with
multiple concerns will be colored according to all participating concerns colors. A
multi-colored sentence helps the engineer to locate potential interacting concerns.
Aspect or concern interactions [12] are usually neglected, and they are potential
sources of complex bugs.

5.3 Domain View

Fig. 2. Domain View showing the requirements documents for our domain.

The Domain View, shown in Fig. 2, presents the documents from a high ab-
straction perspective. Each document is represented by an icon colored according
to the concerns treated in it. The surface covered is in direct relation with the
amount of text devoted to this concern for the given document. Also the location
of the colored surface is derived from the actual position of that concern in the
requirements document. This view also summarizes some information regarding
the concerns and how much they occupy in all the documents. The slider in the
upper part allows to filter and shows only the concerns whose size surpasses the
specified threshold for each document.

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 575



6 Conclusions and Future Work

In this work we have presented a particular domain where many large require-
ment documents cover several crosscutting functional and non-functional con-
cerns. From our experience in this domain we listed requirements for a tool we
believe is useful to the requirements engineer dealing with such scenario. We
reported the current implemented features of our tool which include: import-
ing and rendering of requirements documents, demarcation of concerns, high
abstraction visualization of documents and their concerns.

As a preliminary validation, we have used this application in some of our
real-world documents, even in its current prototype state, it proved to be useful
to navigate quickly these large documents based on the concern information
added by the engineer.

As future work we plan to implement all the mentioned requirements. After
that, our objective is to extend it to assist the engineer in locating and keeping
track of concern interactions. Interactions between concerns are, in our experi-
ence, a source of difficult to identify and costly bugs, so the final goal of our tool
is to avoid such problems.

References

1. Accompa. http://www.accompa.com.
2. Enterprise architect. http://www.sparxsystems.com/.
3. Lighthouse. http://www.artifactsoftware.com/products/Requirements-

Management.html.
4. E. Baniassad and S. Clarke. Theme: An approach for aspect-oriented analysis and

design. In ICSE ’04: Proceedings of the 26th International Conference on Software
Engineering, pages 158–167, Washington, DC, USA, 2004. IEEE Computer Society.

5. R. Chitchyan, A. Rashid, P. Rayson, and R. Waters. Semantics-based composition
for aspect-oriented requirements engineering. In AOSD ’07: Proceedings of the 6th
international conference on Aspect-oriented software development, pages 36–48,
New York, NY, USA, 2007. ACM.

6. S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design. The Theme
Approach. Object Technology Series. Addison-Wesley, Boston, USA, 2005.

7. Gaming Laboratories International. Gaming Devices in Casinos, 2007. Available
at: http://www.gaminglabs.com/.

8. Gaming Standard Association. Game to Server (G2S) Protocol Specification, 2008.
Available at: http://www.gamingstandards.com/.

9. A. Moreira, A. Rashid, and J. Araujo. Multi-dimensional separation of concerns
in requirements engineering. In Proc. 13th IEEE International Conference on
Requirements Engineering, pages 285–296, 29 Aug.–2 Sept. 2005.

10. Nevada Gaming Commission. Technical Standards For Gaming Devices And On-
Line Slot Systems, 2008. Available at: http://gaming.nv.gov/stats regs.htm.

11. A. Rashid and A. Moreira. Domain models are NOT aspect free. In ACM/IEEE
9th International Conference on Model Driven Engineering Languages and Systems
(MODELS06), volume 4199 of Lecture Notes in Computer Science, pages 155–169.
Springer Verlag, October 2006.

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 576



12. F. Sanen, E. Truyen, B. D. Win, W. Joosen, N. Loughran, G. Coulson, A. Rashid,
A. Nedos, A. Jackson, and S. Clarke. Study on interaction issues. Technical Re-
port AOSD-Europe Deliverable D44, AOSD-Europe-KUL-7, Katholieke Univer-
siteit Leuven, 28 February 2006 2006.

13. A. Zambrano, J. Fabry, G. Jacobson, and S. Gordillo. Expressing aspectual in-
teractions in requirements engineering: experiences in the slot machine domain.
In Proceedings of the 2010 ACM Symposium on Applied Computing (SAC 2010),
pages 2161–2168. ACM Press, 2010.

39JAIIO - ASSE 2010 - ISSN:1850-2792 - Página 577


