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Abstract. In this work’ we conceive centralized data fusion as a de- 

terministic parameter estimation problem. Two different criterions are 

compared: best affine unbiased fusion rule (BAUE), and Maximum Like- 
lihood for Gaussian measurement noise. Estimates are described in terms 

of their covariance matrices, the Cramer-Rao lower bound and simula- 

tions. The developed fusion rules are suited to two different image fusion 
cases: noise reduction under differently exposed images, and blur reduc- 

tion based on lens response knowledge. 
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1 Introduction 

Data fusion techniques deal with the problem of combining information obtained 

from several sensing devices, with the purpose of making an optimal estimation 

of some process characteristic by using all available information. This estimation 

should be more precise than the observation available in each individual device. 

In the development of any data fusion scheme, the first step is to define how 

the individual measurements are modelled. In the literature, the most adopted 

observation model gives a linear relationship between the observations and the 

estimated variables 

y =Ax+n, (1) 

where x € # is the process characteristic to be estimated, A € R™’* repre- 

sents the observation system, and 7 € R™ is an observation aditive noise. One 

question that should arise is whether our model considers x a deterministic or a 

random variable. The most common assumption is that x is a random variable, 

and the problem of data fusion is to find an optimal estimation, or fuszon rule, 
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for x given the measurements y. However, this work deals with an alternate 

approach, in which x is considered to be deterministic and only the noise vector 

n is random. The fusion is thus stated in terms of a deterministic parameter 

estimation problem. 

In order to recover information of all the components of vector x, the observation 

matrix A should represent a good observation of the characteristic to be esti- 

mated. This means that among all M components of y there must be at least N 

linearly independent equations involving the components of x, in other words, 

Rg(A) = N. However, if M = N, there’s no redundancy in the measurements, 

no data fusion occurs and the solution is trivial. Consequently, our attention will 

be put in the problem with M > N and Rg(A) =N. 

The next step is to choose an optimization criterion. The most widely adopted 

criterion is minimum mean square error (MMSE), and during the last two 

decades, extensive research has been done on fusion according to this criterion, 

specially on the multiple sensor target tracking [1], [2], Decentralized Kalman 
Filters fusion [3], [4], [5], etc. These approaches consider x to be a random pro- 

cess, and its time dependency is modelled by a linear system equation. Apart 

from MMSE, other criterions were proposed, such as minimum entropy [6] and 

maximum likelihoood [7], [8]. This paper deals with two different criterions, both 
under the assumption that x is deterministic. In section 2, an unbiased affine 

MMSE fusion rule will be developed. In section 3, a Maximum Likelihood fusion 

rule will be obtained for the case of Gaussian noise. Descriptions of the results 

will be given, in terms of covariance matrices and the Cramer-Rao lower bound, 

and performance curves will be presented in section 4. 

Under these hypothesis, two image fusion schemes will be presented, in section 

4, by which several pictures with different exposure and noise conditions will 

lead to a noise reduced fused image, and also a blur reduction method will be 

presented. In section 5, conclusions of this work will be sumarized. 

2 MMSE fusion rule 

Under the hypothesis that x is deterministic, the minimum mean squared error 

fusion rule, xp, is obtained as a result of minimizing the following measure: 

MSE = ||\xp —x|?| (2) 
In this section, a Mahalanobis norm will be adopted, by using some positive- 

definite symmetrical matrix M: 

Z|, =2 Mz 

This norm defines which components of z are more heavily weighted, and thus 

adds generality to our optimization results. The problem will be stated for the 
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case where xp is an unbiased estimate of x, and our study will be limited to 

affine fusion rules. 

2.1 Unbiased affine rule (BAUE) 

Considering an observation model such as (1), where noise moments of first and 
second order are known, 

E({n]}=0 and E [nn* | =D, 

the aim is to develop an unbiased affine fusion rule of the form 

xp =By+u (3) 

with Be RN” and uc RN, such that the mean squared error is minimum: 

trp= By +a= arg min F lesa — x||%, | 

In order to achieve an unbiased fusion rule, the following condition must be 

imposed: 

E|xr] =x, 

and substituting equations (1) and (3) we obtain 

BAx+ BE[n] +u=BAx+u=x. 

Since neither B nor u depend upon x (i.e. it’s an affine rule) it is necessary that: 

BA=I and u=0 (4) 

In order to find the optimum value for B, the mean squared error norm is written 

in terms of this matrix, and both conditions from (4) are used: 

B ||xp —x\3,] = £ [xp — x)" M(xp —x)| 
= E|(By +u-x)"M(By+u-x)| 

= B | (( ((BA —I)x + Bn) "M ((BA ~1)x + Bn)| 

=F |(Bn)" M(Bn)| = B [Pr (MBnn"B")| 

=Tr ian nt =Tr [a B'MBS;| (5) 

In the above expressions, 7'r(-) represents the matrix trace operation. Its cyclic 

permutation property (7’r(CDE) = Tr(DEC) = Tr(ECD)) is used, and also 
its linearity allows interchanging the order between T'r(-) and E|-|]. Now, a cost 
function J(-) can be defined, which includes both the mean squared error and 
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the N x N equations represented by BA = I, by using a Lagrange multiplier 

matrix A: , , 

J(B, A) = Tr[537 B’ MBS? ] + Tr[A(BA — I)] (6) 

The minimum of this cost function can be found diferentiating with respect to 

B: 
OJ “ 
— =2MBY,,+ (AA)? =0 

After solving for B, and applying the condition associated to the Lagrange mul- 

tiplier, we obtain 
5S (AT y—1la\-laT yl B= (A’ XA) ACY, (7) 

and hence, the optimum unbiased affine fusion rule is given by: 

Ty—-la\ t aT yl = (A ay A) A’ Sy XFpaur 

which is independent on the choice of the norm matrix M, and is the same for any 

noise distribution. This result is equivalent to the minimum variance result pub- 

lished in [6], where the scalar estimate case, with N = 1 and A? =[1,1,...,1], 

is solved. 

In the development of this fusion rule, it was assumed that the matrix 2), l 

exists. This is a reasonable assumption, since it represents the fact that the adi- 

tive noise in any measurement is statistically different from the noise in every 

other measurement. If det(’,,) = 0, some noise component is a linear combina- 
tion of the others, which in practice does not occur. It was also assumed that 

(ATET1A) e RY** exists. This is true since Rg(A’S,'A) = Rg(A) =N, 
for ),, being positive-definite. 

In order to measure the performance of our estimate, the covariance matrix of 

XPpapyy, 8 analysed. 

. » T 
“Fpave = (ee a x) (XFpave a x) | 

. . . . T 
= 6 | (BAx + By—x) (BAx + By — x) | 

A a \P A A 
—F (Bn) (Bn) | = By,B? (8) 

Then, by replacing the matrix B in accordance to (7) we obtain: 

UFpavue = (ATSPIA) (9) 

This covariance matrix is a measure of the dispersion, or perturbation, of the 

estimate as a consequence of the observation noise. 

The results in this section are also equivalent to those in [5], referred as “State 
fusion based on trace of covariance matrix”, where an affine unbiased fusion rule 

is developed for state vectors, supposing independent observations. 
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3 ML fusion rule 

In this section, the problem of developing a fusion rule is stated in terms of the 

Maximum Likelihood criterion. This criterion, differently from MMSE, considers 

that the estimated variable is a deterministic parameter of a particular proba- 

bility distribution, and seeks for the value of x that maximizes the probability 

of occurence of the set of observations y, this is: 

Xp = argmax p(y|x) 
x 

The development of a fusion rule under this criterion, is now subject to the 

distribution of the noise 7. The case of Gaussian noise will be analized, and no 

further assumption will be made on the fusion rule. 

3.1 Gaussian noise 

Considering, again, an observation model such as (1) and under the Gaussian 
hypothesis, 

y=Ax+y7 with n~ N(O0, 2) 

a fusion rule xp (not necessarily unbiased and affine) that is optimum under the 
ML criterion is desired. Since x is a deterministic parameter, the observations y 

are distributed according to VV(Ax, 2’). 

Firstly, the likelihood function is defined: 

Lx(y) = ply|x) = 
1 1 T -—1 — ne (CY AX)* E (y— AX) (10) e€ 

(Qn) M/2| 3), |1/2 

which maximum can be found by maximizing the Log-Likelihood 

le(y)=In (Lx(y)) =k sly — Ax)" D5 My — Ax) 

Hence, after imposing oy) = 0, the following equation is found 

—2A7 XO (y — A&pr) = 0 

which leads to the optimal fusion rule: 

a _ -1 _ Rp, =(ATL,'A) ATL ty (11) 

This result shows that the Maximum Likelihood fusion rule for the case of Gaus- 
sian noise is the same as the unbiased MSE affine fusion rule (section 2.1). 
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Conclusion 1 The fact that this ML fusion rule is unbiased and also has the 

minimum MSE among all affine unbiased estimates, leads to the conclusion that 

it is the Minimum Variance Unbiased Estimate (MVUE) for the Gaussian case. 
This can be easily proved by noticing that the ML estimate depends upon the 

sufficient statistic [9]: 

s(y) =A‘, y (12) 
which ensures that the Cramer-Rao lower bound is attained: 

  

ron {5 [("ae") (52) ]} - 
=(ATZ>1A)™ (13) 

In other words, the affine fusion rule (11) is an efficient estimation under the 
Gaussian assumption. 

4 Image fusion 

In the observation model described by equation (1), x can represent the set of 

light intensities of some original image, and y may thus represent an observation 

of such image, for example a filtered or noisy version of x. Two fusion techniques 

are presented along this section, both of which are modelled and solved according 

to the previously developed unbiased affine fusion rule. 

4.1 Image noise reduction 

In order to be M > N, such as explained in the introduction, y must contain 

more than one complete observation of x, so as to have some redundancy and 

also represent a good observation scheme. In our case, an amount of k different 

observations will be stacked in vector y: 

y= | (14) 

where each observation will be related to the original image by 

yi =AX+N, (15) 

with A; € RY*<%. These matrices, A;, contain the models of the the cameras 

that took each photograph, or any parameter that represents the kind of distor- 

tion present on each observation. A widely used linear camera model (“pinhole 

camera”) is described in [10]. 

In our first simulation, different exposure snapshots are modelled by fixing ma- 

trices A; = a,I, being a; brightness factors. Several uncorrelated noise conditions 
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(Ln, = E[nin{ ] = 07,1) are modelled, by fixing different standard deviation lev- 
els, and by including some images corrupted by Gaussian noise and others by 

uniform noise. Figure 1 shows three different observed images: l(a) is an over- 
exposed version, 1(b) is a subexposed one, and 1(c) has normal light exposure. 

In all cases, uniformly distributed noise is present, with o,, = 20, o,, = 20 and 

On, = 30, respectively (in a 256 grayscale image). In the fusion scheme, other 

three images with same exposure and noise deviations, but with Gaussian noise, 

were included, summing a total of six observed images. The resulting fused im- 

age is that of Fig.1(d), where considerable noise reduction (standard deviation 
or ~ 9) and detail recovery are observed. 

   
  

      

  

  
(a) Overexposed version, with uniform (b) Subexposed version, with uniform 
noise, standard deviation o,, = 20 noise, standard deviation 0, = 20 

            
(c) Normal exposure image, with uniform (d) BAUE fused image 
noise, standard deviation o,, = 30 

Fig. 1. Observed images and fused image 
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In order to measure the performance of the above developed fusion rule, dif- 

ferent simulations are performed. Parameters, such as number of sensors (/) 
and observation noise levels (c,,,) are swept so as to compare how this technique 
responds. 

Number of sensors It is expected that by increasing the number of sensors 

M (higher redundancy), for a fixed vector x € R and noise condition, an 
improvement in precision will be gained. For instance, let N = 4 and x = 

s (1, 1,1,1]*, and let M change. A first scenario would be that in which noise is 

independently distributed as n; ~ N(0, o7), and hence 7, = orl. Under such 
assumption, the minimum variance unbiased fusion rule is (11). Accordingly, in 
Fig.2(a) (“4.id. Gaussian”) the MSE is plotted as a function of the number of 
sensors M. 

    
MSE with unbiased rule - Gaussian vs. Uniform noise MSE with unbiased rule - Gaussian noise 

: pT —e—iid, Gaussian ff 10 es Pf id. Ge ———e 
. . | . . . . . . LL. aussian | —euncorr. Gaussian JP soca 

—~uncorr, Gaussian 
—— {i.d. Uniform 

10 -== ee . H 2 WN —— corr, Gaussian 
“f ——uncorr. Uniform 10 

SJ | | LEAS 

      

              

    

                                
0 1 2 3 4 10 10 10 10 10 15-10 5 0 5 10 15 

SNR gp         Number of measurements {Mi 

(a) MSE vs. M, Gaussian and Uniform (b) MSE vs. SNR, Gaussian noise 
noise 

    

Fig. 2. Performance analysis 

Another case, in which noises are still uncorrelated and Gaussian but with differ- 

ent variances, 3, = diag(o?, , oF. a Tos is also plotted in Fig.2(a) (“uncorr. 

Gaussian’). 

It was proved that the affine rule (11) is the MVUE in the case of Gaussian noise, 
but for other noise distributions this affine rule (same as in section 2.1) might 
not lead to the minimum variance estimate. However, since the affine fusion rule 

developed in section 2.1 only depends on first and second order noise moments, 

it is expected that for any noise distribution with same mean and covariance 

matrix, the same performance will be attained. Hence, an equivalent scenario is 

now simulated, for a uniform noise distribution with same covariance matrices 

as in the Gaussian case, see Fig.2(a) (‘4.i.d. Uniform” and “uncorr. Uniform”). A 
common characteristic is observed for all the traces: 

1 
MSE x = for M>N=4 (16) 
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and MSE levels under uniform noise are equal to those under Gaussian noise, as 

was previously mentioned. These characteristics are also observed for different 

choices of N and x. In all cases, a randomly generated observation matrix A € 

RMXN with Rg(A) = N was used. Cases with arbitrary noise covariance matrix 
were not simulated due to numerical instability while inverting », for high values 

of M. 

Signal to noise ratio It is also expected that the MSE varies depending on 

the signal to noise ratio (SNR) of the measurements. So, for fixed M = 12, and 

same N, x and A as in section 4.1, different noise conditions are simulated. Our 

definition of SNR is: 

  2x2 
SNR = ——— = 17 

BllnP] ~ Tr (Za 0) 
and 

An example involving Gaussian noise is presented, considering three different 

noise correlation conditions, Fig.2(b). Such as in the previous section, two traces 

are shown in correspondence with ,, = o71 (iid. Gaussian’) and Y, = 
. 2 2 2 “6 + an? : . diag lon, Cn eng Onnt) (“uncorr. Gaussian”), and a third one corresponding to 

an arbitrary noise covariance matrix. The same tendency is observed for all three 

cases: 
1 

and, again, same MSE levels are attained, independently of the correlation con- 

dition. Equivalent results have been obtained under uniformly distributed noise, 

and other fixed values for M, N and x. 

4.2 Image blur reduction 

Under the same observation model as in equation (1), a blurring process can be 
described. The fact that optical lenses have a low pass characteristic, given by 

their Modulation Transfer Function (MTF, |11]), means that the light intensity 
of each observed pixel in y is influenced by the light in the surrounding pixels, 

and such phenomenon is perceived as blur. Such influence can be considered to 

be linear and shift invariant, in a first approach: 

Vij = S- Ok, 1Li—k,j— (20) 
k,lew 

where W represents a window with the size of the impulsive response of the lens, 

ax, If an amount of Ny coefficients are taken into account, then, by taking at 

least Ny independent observations of the same pixel, yi...yn,,, the original 

light intensity x;,; can be estimated using the BAUE fusion rule. Under this 

approach, the observation model of equation (1) is applied to each pixel in the 

image, where x represents the light intensity of the pixel being fused and those of 
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the surrounding ones, the observation vector y includes IM > Ny independent 

observations of the same pixel, and the matrix A contains the coefficients of 

the impulsive response of the lens in each observation. The fact that we need at 

least Ny independent observations means that the available photographs must 

be taken with different lens characteristics: by using different lenses, or by using 

the same lens with different relative apertures. 

Simulations have been made for Ny = 5, which means that the most significant 

pixels involved in the blurring process are those adyacent to x; ; (above, below, 

right and left), and different blurring levels were set by fixing the rows of matrix 

A. Considering a noiseless scenario, when M = Nw the BAUE estimate is noth- 

ing but the solution to a linear compatible system, and when M > Ny it is the 

solution via a least squares approximation. Under such condition, the original 

image can be recovered completely. Now, when the observations are perturbed 

by additive noise the BAUE estimate is consequently perturbed, according to 

equation (9), however the blur reduction is also completely achieved. For each 

of the lens responses a;1, eight noisy photographs were included in the fusion 

scheme, with independent and identically distributed Gaussian additive noise, 

with o, = 20. Figures 3(a), 3(b) and 3(c) show three blurred and noisy images, 
and 3(d) shows the BAUE fused image using all available images. The stan- 
dard deviation of the error in the fused image is op,,,,,. ~ 12.7, and further 
simulations show the same performance tendency as in Fig.2(a). 

5 Conclusions 

In this paper, an affine unbiased fusion rule has been developed, according to 

the minimum mean square error criterion. Same results as those for the BAUE 

fusion rule have been obtained by adopting the Maximum Likelihood criterion 

for the Gaussian noise case, and the efficiency of the estimate was proved. 

The unbiased affine rule was suited to two different image fusion cases: one in 

which differently exposed and noisy images lead to a noise reduced estimation, 

and another one in which knowledge of the lens response is used in a blur re- 

duction method. Simulations results show how the performance of the developed 

fusion rules depends upon the number of sensors and the signal to noise ratio. 

Further research is being done on the modelling of the blurring response, ax, 

based on MTF curves of lenses, which in practice are nonlinear and highly shift 

variant. 
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(c) Blurred image #3 (d) Recovered image 

Fig. 3. Observed images and fused image 
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