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Abstract—In this work, we present a method for calibrating
non-linear variable impedances based on the manifold-learning
technique. This approach circumvents the dependency on the

analytical model of the device, and works under the assumption
that the impedance values come from a ”black box” controlled by
a number of independent parameters. The goal of the calibration
is to recover the unknown control parameters that set the
load into the desired impedance states. We tested the proposed
procedure first on a simulated example and then on the prototype
presented in [1] at a frequency of 1575.42 MHz. The results based
on both simulated and real data showed accurate recovery of the
control parameters.

Index Terms—diffusion map, manifold learning, variable loads.

I. INTRODUCTION

Variable impedances are used in many modern systems

operating at microwave frequencies. For instance, they have

been applied for the automatization of measuring noise in

two-port devices [2], for tuning wireless systems [3], and for

different parts of communication systems including electron-

ically controlled attenuators [4] and modulators [5], phase

shifters [6], reconfigurable antennas [7], and six-port mod-

ulators [8]. In all these examples, the variable impedance

operates as an adaptive device to provide a circuit with a

tunable adjustment or matching. Depending on their design,

most of the variable impedances are controlled through several

nonlinear parameters. Then, a calibration process is required

in order to recover the unknown parameter values which set

the desired impedance states.

In [2], the control parameters are estimated from the syn-

thesis formulas of the specific load circuit. However, this

approach requires a precise model of the device. Most of the

time, a detailed model is not available because of the effect

of parasitic components at high frequency and the lack of ac-

curate characterization provided by the manufacturer. Herein,

we propose a general procedure for calibrating any variable

impedance based on the manifold learning method known as

diffusion map. Instead of exploiting the predefined model of

the circuits, this method provides an intrinsic modeling from

a reparametrization of the load. Diffusion map was applied

by Coifman and Lafon for dimensionality reduction in many

fields [9], and recently, it was showed to be also useful for

modeling systems whose responses are a nonlinear function

of several independent parameters [10].

In this work, we propose a calibration approach based

on manifold learning that does not require the model of

the load. It is a data-driven method that relies on measure-

ments of the load values to build an affinity matrix. The

principal component analysis applied to this matrix generates

the reparametrization. Nevertheless, the new parameters are

not exactly the true parameters of the load, but they are

related through a monotonic transformation. Therefore, the

calibration procedure consists of the following stages. First,

we process training data to compute the optimal diffusion

kernel which represents the concept of affinity among the

observed impedance values and captures the features of the

nonlinear behavior of the load. Then, the eigen-decomposition

of the affinity matrix leads to the inverse mapping from the

observations to the parameters. Finally, we interpolate points

in the reparametrized space to generate the parameters of new

impedance states. Herein, the described procedure is used for

calibrating a variable load at a single frequency. We tested the

proposed method to calibrate the load presented in [1] which

is a complex-valued impedance controlled by two current

sources. We employed the method on both, synthetic and

real data collected from the prototype of this impedance at

a frequency of 1575.42 MHz. Both synthetic and real results

showed accurate recovery of control parameters.

II. PROBLEM FORMULATION

When a transmission line with characteristic impedance Z0

is loaded with an impedance Z , their mismatch is represented

by the reflection coefficient

Γ =
V −

V +
=
Z − Z0

Z + Z0
∈ C. (1)

The reflection coefficient is the ratio between the backward

wave V − generated at the load and the forward wave V +

impinging on the load. In several microwave systems, it is

required to control the complex amplitude V −. For example,

in a six-port modulator [8], variable loads are used to generate

different reflection coefficients on the respective ports of the

six-port network, which in turn modulate an applied carrier

signal.

Herein, we address the calibration of the variable impedance

presented in [1] operating at a frequency of 1575.42 MHz.

It is a termination load that consists of a Wilkinson power

divider connecting two pin diodes through transmission lines



of different electric lengths. Each diode is polarized by means

of a bias current causing a (nonlinear) change of its resistance.

Then, the complex value of the reflection coefficient is set

through a combination of two variables, the pin diode bias

currents. Although the relationship between the input V + and

the output V − is linear with respect to the impedance, we

remark that the value of the impedance is nonlinear with

respect to the two controlling currents; and so is the reflection

coefficient.

Throughout this paper, we use the following notation. Let

Γ̄ =
{

γ̄i
}m

i=1
be a set of m observations of the reflection

coefficient generated by the variable impedance when the

controlling parameters are Θ̄ =
{

θ̄i
}m

i=1
. Each parameter θ̄i is

a d×1 vector. In addition, the set
{

θij
}L

j=1
denotes additional

parameters corresponding to L small perturbations of θ̄i. The

reflection coefficients generated by these additional parameters

are shaped like a “point cloud” around the observation γ̄i. We

assume the set Γ̄ and the corresponding point clouds consist

of the training data available beforehand. Moreover, let Γ =
{

γi
}M

i=1
be the set of M desired reflection coefficients and

Θ =
{

θi
}M

i=1
be the set of corresponding control parameters.

The goal of the calibration is to recover the unavailable set of

control parameters in Θ from Γ.

III. CALIBRATION METHOD

This section describes the calibration method that is con-

structed from the diffusion map algorithm proposed by Coif-

man and Singer in [10]. At first, the behavior of the training

observations is picked up building the diffusion kernel. Then,

its eigen-decomposition leads to an inverse mapping from

the observations to the parametric (current values) space.

The fit of the kernel is then optimized iteratively. We divide

the method in three parts: the computation of the diffusion

kernel; the eigen-decomposition of the kernel matrix; and the

computation of the optimal kernel parameter. A summary of

the implementation of the calibration method is presented at

the end of this section.

A. Diffusion kernel

Following [10], the kernel is computed from a secund-order

approximation of the Euclidean distance between parameters,

given by

‖ θi − θj ‖2≈ 2(γi − γj)T
[

C−1
γi + C−1

γj

]

(γi − γj) (2)

where Cγi is the covariance which represents the distortion

around the observation γi due to small perturbations of θi.
The additional information of the local distortion is available

from perturbations of the corresponding control parameters in

Θ̄. Then, we are able to empirically estimate the covariance

matrix for only the training observations in Γ̄ with

Cγ̄i =
1

L

L
∑

j=1

(γ̄ij − µi)(γ̄
ij − µi)

T (3)

where µi = 1
L

∑L
j=1 γ̄

ij , and
{

γ̄ij
}L

j=1
is the point cloud

around γ̄i given by the set of parameters
{

θij
}

.

We build the M×m affinity matrix A between observations

in γ̄ and the desired values γ. The affinity is based on the

Gaussian kernel with scale parameter ε as follows

Aji = exp

{

−
‖ C−1

γ̄i (γ̄
i − γj) ‖2
ε

}

(4)

where the index j and i denote the row and the column of the

matrix A, respectively. From matrix A we compute the m×m
kernel matrix W which represents the affinity among training

observations in Γ̄, and is given by

W = S− 1

2ATAS− 1

2 (5)

where S is a diagonal matrix containing the sum of ATA
along rows. Alternatively, W can be also be computed as

Wji = π√
det(Cγ̃)

× exp







−
(γ̄i−γ̄j)T

[

C
−1

γ̄i
+C

−1

γ̄j

]

(γ̄i−γ̄j)

ε







(6)

where γ̃ =
(

γ̄i + γ̄j
)

/2.

B. Kernel eigen-decomposition

From the normalized matrix Ã = AS− 1

2 we compute its

singular values decomposition. Let {λi}mi=1, {ϕi}mi=1, and

{ψi}Mi=1 be the singular values and the left and right singular

vectors of Ã, respectively. Note that
{

λ2i
}

and {ϕi} are the

eigenvalues and eigenvectors of the matrix (5), and establish

the reparametrization of the observations in Γ̄. Then, the

embedding of Γ̄ into the parametric space formed by the

eigenvectors of W is given by

Φd : γ̄i →
[

λ21ϕ1(γ̄
i), ..., λ2dϕd(γ̄

i)
]T
. (7)

The dimension of the space, d, is established by taking the d
eigenvectors corresponding to the largest eigenvalues. By the

same token, {ψi} are the eigenvectors of ÃÃT and establish

the reparametrization of desired values of Γ. They can be

calculated from ϕi as follows

ψi =
1

λi
Ãϕi. (8)

The mapping function from observations in Γ to the

reparametrization space formed by d eigenvectors denoted in

descending order, is

Ψd : γi →
[

ψ1(γ
i), ..., ψd(γ

i)
]T
. (9)

In order to obtain the unavailable control parameters in Θ we

compute the following weighted sum of training parameters

in Θ̄
θ̂i =

∑

j:Ψ(γ̄i)∈Ni

ρj(γ
i)θ̄j (10)

where Ni consists of k-nearest neighbors of Ψ(γi) in the train-

ing samples, and ρj(γ
i) are the linear interpolation coefficients

which result from solving the linear system given by
{

θ̄j
}

j:Ψ(γ̄i)∈Ni
=

{

ρj(γ
i)Ψd

{

γ̄j
}}

j:Ψ(γ̄i)∈Ni
. (11)



In [10] a different interpolation between points in Ψd is

proposed. We applied the calibration method in the simu-

lated example presented in Sec. IV, computing (11) for both

interpolation alternatives. By using the linear interpolation,

the method recovered the controlling parameters with more

accuracy.

C. Scale parameter

The scale parameter ε is a measure of similarity between

points in the observation space. The computation of the

affinity matrix (4) and the performance of the algorithm are

sensitive to its value. In order to find the optimal value of the

scale parameter, we define a validation error which will be

minimized as function of ε.
First, in [10] is defined Φ−1 as the inverse mapping from

the available parameters to the observable space, which ap-

proximates the training observations in Γ̄

Φ−1(θ̄) =
∑

i:θ̄i∈Bθ

βi(θ̄)γ̄
i (12)

where Bθ is a set of the neighbors of θ̄, and βi are interpolation

coefficients given by

βi(θ̄) =
exp

(

−‖θ̄−θ̄i‖2

σβi

)

∑

i:θ̄i∈Bθ
exp

(

−‖θ̄−θ̄i‖2

σβi

) (13)

where σβi
denotes the minimal distance between θ̄i and its

nearest neighbor. Then, the validation error is defined as

follows

EV (γ̄
i) = ‖γ̄i − Φ−1(θ̄i)‖2, (14)

and measures the accuracy of the function Φ−1 in estimating

γ̄i. We compute the mean validation error by averaging (14)

for all training observations. Then, we use a procedure to

obtain the optimal value of the scale, which minimizes the

mean error. The said procedure is represented by the training

stage in the following section.

D. Implementation of the method

The proposed calibration method is employed in two

stages: first, a training stage based on the optimization of

the Gaussian kernel scale ε; second, an estimation stage

where the unknown control parameters in Θ are recovered.

=============================================

Training stage:

1) Obtain m observations corresponding to the training

samples of the controlling parameters Θ̄
2) Given clouds of the additional observations correspond-

ing to perturbations of the training parameters, compute

the local covariance C of each training observation by

(3).

3) Compute the Kernel matrix W from (6), by using an

arbitrary kernel scale ε.
4) Employ the eigenvalues decomposition of W and obtain

the eigenvalues
{

λ2i
}

and eigenvectors {ϕi}.

5) Construct the map Φd according to (7) from the eigen-

values and eigenvectors of W .

6) Construct the inverse map Φ−1
d from (12).

7) Repeat 3 - 6 for different scale ε, and find the optimal

value that minimizes the mean validation error (14).

=============================================

Estimation stage:

1) Given all the desired values Γ, compute the normalized

affinity matrix Ã according to (4) using the optimal

value of ε.
2) Calculate ψi as a weighted combination of ϕi via (8).

3) Construct the map Ψd according to (9), to obtain the

reparametrization of the controlling parameters.

4) Recovered the unknown control parameters via (10).

IV. SIMULATED EXAMPLE

Following the description of the variable impedance in [1],

we built a model to synthesize observations of the impedance

of the load as function of the bias currents, which are the con-

trol parameters. By sweeping both current values in the range

of [0,40] mA we obtain the coverage area of the impedance,

which is mapped on the Smith chart by normalizing the

values through the characteristic impedance Z0 = 50Ω, as

shown in Fig. 1. Worthwhile to mention that the model is

a simplification of the real response of the load because its

parameters are considered constant and independent of the

frequency and the bias currents. Such assumptions are not true

in practice.

Fig. 1. Simulated response of the variable impedance [1] mapped on the
Smith chart. Coverage area along with training observations Γ̄ and desired
observations in Γ

In order to calibrate this simulated device, we selected

the training parameters Θ̄ to generate the observations Γ̄ as

follows: both currents were swept in the range of [0,40] mA,

taking 20 logarithmically spaced values per current source.

The combination of the current values produce m = 400
training impedance values. In addition, the desired values

are selected to form a spiral in the Smith chart. Fig. 1

shows the desired and the training reflection coefficients in the
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Fig. 2. Mean validation error obtained from training observations as function
of the scale ε, from different values of the variance constant k.

Smith chart computed by (1) with the characteristic impedance

Z0 = 50Ω.

Following on the method, each training parameter in Θ̄ is

used to generate the additional parameters
{

θij
}

obtaining the

clouds around the observations in Γ̄. Specifically, we generated

L = 20 Gaussian distributed values around the current values
{

θ̄i1
}

and
{

θ̄i2
}

in the following way

θ
ij
1 = θ̄i1 + nj(θ̄

i
1) (15)

θ
ij
2 = θ̄i2 + nj(θ̄

i
2) (16)

where nj(θ̄
i) ∼ N (0, θ̄ik) is a random variable and k ∈ R

is a constant. By using both sets
{

θ
ij
1

}L

j=1
and

{

θ
ij
2

}L

j=1
we

produce the point cloud around the observation γ̄i. Note that

the variance of the Gaussian distribution of nj(θ̄
i) depends on

the value of θ̄i, in this way, we aim that the clouds around

training observations present similar sizes. Thus, the non-

linearity between the parameters and the observations around

the entire coverage area is explored.

We follow the steps of the training stage of the method by

using training observations in Γ̄ and the corresponding point

clouds. By repeating steps 2 for different constants k and 3
for different scale values, we obtain the mean validation error

(14) by averaging over all training observations as function

of k and ε, as shown in Fig. 2. We stress the following

points: when increasing the value of k, the minimal value of

the mean validation error appears on a smaller scale ε, and

viceversa. On the other hand, for values of k larger than 0.27,

the minimal error value begins to get worse. Thus, we choose

an intermediate value of k = 0.05, which obtains the minimum

error, on the scale ε = 1000 approximately. Now, we are able

to compute the estimation stage, where the control currents

of the desired impedance states are recovered. Thus, from the

normalized matrix Ã, computed with the optimal parameter

values of k and ε, we construct the mapping function Ψ2 by

Fig. 3. Simulated response of the variable impedance [1] mapped on the
Smith chart. Desired observations compared with estimated observations.

(8). In order to obtain the unavailable control parameters in

Θ, we compute (10). Finally, we use the recovered control

currents θ̂ into the simulated model of the load to obtain an

estimate of the desired reflection coefficients. To quantify the

accuracy of the method, we defined the following estimation

error

EM =
1

M

M
∑

i=1

‖γie − γi‖
‖γi‖ (17)

where γe is the estimated value of the desired reflection

coefficient γ. In this case, the estimation error (17) results

EM = 0.038%, exhibiting great match between the points in

the Smith chart, as shown in Fig. 3.

V. MEASURED EXAMPLE

Herein we consider the prototype of the variable impedance

[1] implemented at 1575.42 MHz. This prototype is an

impedance termination controlled by two digital current

sources whose values can vary between [0, 40] mA with a

resolution of ∆I = 9.76 µA. To establish the impedance

states of the load, a computer controls the current sources

transmitting 12-bit words through a serial peripheral interface.

Then, the digital words generate quantized values of the

currents, which are the controlling parameters. In this work,

the estimated parameters in (10) take any value between [0, 40]

mA because the parameters in (9) does not include information

about the quantized values of the currents, and this issue will

be reflected in the estimation error of the results. We used

the method for calibrating the prototype by taking the same

training parameters Θ̄ defined in the simulated example. Each

training parameter θ̄i is used to generate L = 20 perturbations

computed by (17) with k = 0.05. Therefore, we measured the

impedance response to these current values and obtained the

400 training observations and the corresponding point clouds.

Then, we considered the set of desired impedance values,

which forms a spiral in the Smith chart. Fig. 4 shows the



Fig. 4. Measured response of the variable impedance [1] at 1575.42 MHz.
Coverage area along with training observations Γ̄ and desired observations in
Γ.

training reflection coefficients of the prototype along with

the desired spiral in the Smith chart, all computed with a

characteristic impedance Z0 = 50Ω.

Once all training data are measured, we repeat the steps

3− 7 of the training stage for different values of the scale ε,
and we find the optimal value of the scale corresponding to the

minimum value of the mean validation error. Fig. 5 shows the

mean validation error as function of the scale ε. The optimal

value of ε results near to 1000.

Finally, we compute the estimation stage and obtain the

mapping Ψ2. We found the unavailable control currents from

(10) and measured the response of the prototype to these

values. The estimation error (17) results EM = 7%. The

estimated and the desired observations are shown in Fig. 6.
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Fig. 5. Mean validation error as a function of the scale ε of the Gaussian
kernel computed for all training data of the prototype

Fig. 6. Measured response of the variable impedance [1] at 1575.42 MHz.
Desired observations compared with estimated observations.

These results show great match among points in the Smith

chart.

VI. CONCLUSION

In this work, a method for calibrating non-linear variable

impedances based on the manifold-learning technique was

proposed. This calibration approach, instead of exploiting the

analytical model of the device whose parameters are somewhat

uncertain, , is based on a supervised algorithm that learns the

intrinsic model of the load through a set of training data. Based

on the assumption that variable impedances are controlled

by several independent parameters, the goal of the method

is the recovery of those control parameters to establish a

set of desired impedance values at the operating frequency.

We utilized the method on both synthetic and real data. The

latter was a prototype of the variable load presented in [1]

that consists of a complex-valued impedance controlled by

two current sources polarizing two pin diodes in ports of a

Wilkinson divider. For both examples, we showed that the

calibration method can accurately recover the desired control

currents of the load, even in the practical example that results

difficult modeling the response of the load.

For future research, we plan to extend the calibration

procedure to the frequency domain. We aim to determine

the controlling bias current that set the variable load to pro-

duce a desired impedance at different operating frequencies.

Therefore, the training data must include observations of the

reflection coefficients at different frequencies.
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