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Evaluation of ground-state entanglement in spin systems with the random phase approximation
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We discuss a general treatment based on the mean field plus random-phase approximation (RPA) for the
evaluation of subsystem entropies and negativities in ground states of spin systems. The approach leads to a
tractable general method that becomes straightforward in translationally invariant arrays. The method is examined
in arrays of arbitrary spin with XYZ couplings of general range in a uniform transverse field, where the RPA
around both the normal and parity-breaking mean-field state, together with parity-restoration effects, is discussed
in detail. In the case of a uniformly connected XYZ array of arbitrary size, the method is shown to provide simple
analytic expressions for the entanglement entropy of any global bipartition, as well as for the negativity between
any two subsystems, which become exact for large spin. The limit case of a spin s pair is also discussed.
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I. INTRODUCTION

The study of entanglement constitutes one of the most active
and challenging research areas, being of central interest in the
fields of quantum information [1] and many-body physics [2].
The concept of entanglement has provided a new perspective
for analyzing quantum correlations and quantum critical phe-
nomena in many-particle systems and has led to fundamental
results and new insights in the field [2–5]. Nonetheless, the
evaluation of entanglement in general strongly interacting
many-body systems remains a difficult task, particularly in
systems with long-range interactions, high connectivity, and
large dimensionality, where usual treatments such as the
quantum Monte Carlo [6], density-matrix renormalization
group (DMRG) [7], or matrix product states [8] become more
involved or difficult to implement. In previous works [9,10]
we have applied a general mean field plus random-phase
approximation (RPA) treatment to the evaluation of pairwise
entanglement (i.e., that between two elementary components)
in spin systems at zero and finite temperature. The approach
was able to capture the main features of the entanglement
between two spins in arrays with XY and XYZ couplings of
different ranges, including the prediction of full-range pairwise
entanglement in the vicinity of the factorizing field [10–12].
The accuracy of the approach was shown to increase with the
interaction range or connectivity.

The aim of the present work is to examine if the previous
method is capable of predicting, in the ground state of spin
systems, the entanglement properties of general subsystems.
We will focus on the entanglement entropy of arbitrary
bipartitions of the whole system, as well as on the negativity
between any two subsystems, not necessarily complementary,
where the rest of the spins play the role of an environment
and entanglement can no longer be measured through the
subsystem entropy. Other measures, like the negativity (an
entanglement monotone computable for general mixed states
[13,14]), have to be employed. This type of entanglement has
recently received special attention [15–17] since its behavior
can differ from that of global bipartitions. We will show
that the present approximation provides a general tractable
scheme for evaluating these quantities and becomes analytic
in translationally invariant systems.

In Sec. II we present the general RPA formalism and
describe the RPA spin state, the associated bosonic estimation

of subsystem entropies and negativities, the implementation
in translationally invariant systems, and the application to a
general spin s array with XYZ couplings of arbitrary range
in a transverse magnetic field. Symmetry-restoration effects in
the case of parity-breaking mean fields are also discussed. As
an illustration, we derive in Sec. III results for a spin s pair
and for a fully connected finite spin s array, where RPA is
able to provide simple full analytic expressions for subsystem
entropies and negativities, which represent the exact large-spin
limit at any fixed size. Conclusions are drawn in Sec. IV.
Appendix A discusses the equivalence between the spin and
the bosonic RPA treatments, and Appendix B contains details
of the analytic results of Sec. III.

II. FORMALISM

A. RPA for spin systems at T = 0

We will consider a general finite system of spins si =
(six,siy,siz), connected through general quadratic couplings
and immersed in a magnetic field, not necessarily uniform.
The corresponding Hamiltonian is

H =
X
i,µ

Biµsiµ − 1

2

X
i 6=j,µ,ν

J iµjνsiµsjν, (1)

where µ = x,y,z, and Biµ are the field components at site i.
Ising, XY , XYZ (J iµjν = δµνJ

ij
µ ), as well as Dzyaloshinskii-

Moriya (J iµ,jν = −J iν,jµ) couplings of arbitrary range are
particular cases of Eq. (1).

The first step in the RPA [18] is to determine the mean-field
ground state, i.e., the separable state

|0i ≡ ⊗n
i=1|0ii = |01 · · · 0ni,

with the lowest energy hH i0 = h0|H |0i, given by

hH i0 =
X
i,µ

Biµhsiµi0 − 1

2

X
i 6=j,µ,ν

J iµjνhsiµi0hsjνi0, (2)

where hsii0 = h0i |si |0ii. Each local state |0ii can be deter-
mined self-consistently as the lowest eigenstate of the local
mean-field Hamiltonian

hi =
X

µ

∂hH i0

∂hsiµi0
siµ = λi · si , (3)
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being the state with maximum spin si directed along −λi (a
local coherent state). This leads to the self-consistent equations

λiµ = Biµ −
X
j 6=i,ν

J iµjνhsjνi0, hsii0 = −siλ
i/λi, (4)

where λi = |λi |. Equation (4) can be solved iteratively starting
from an initial guess for |0ii or λi , although other procedures
(such as the gradient method) can be employed. Equation (2)
becomes hH i0 = 1

2

P
i(λ

i + Bi) · hsii0.
Since the form (1) is valid for any choice of the local axes,

it is now convenient to choose zi along λi , such that hsiµi0 =
−siδµz and λiµ = λiδµz, with λi > 0. The second step in the
RPA is the approximate bosonization

si+ →
p

2sib
†
i , si− →

p
2sibi, siz → −si + b

†
i bi, (5)

where si± = six ± isiy and bi , b
†
i are considered standard

boson operators ([bi,b
†
j ] = δij , [bi,bj ] = [b†i ,b

†
j ] = 0), with

|0i → |0bi as their vacuum. This bosonization is in agreement
with that implied by the path integral formalism of Refs. [9,10]
for T → 0 and preserves two of the exact spin commutators
exactly ([sz

i ,s
±
j ] = ±δij s

±
i ); the remaining one is preserved as

vacuum average (h[s−
i ,s+

j ]i0 = 2siδij ). It coincides with the
Holstein-Primakoff and other exact bosonizations [18–21] up
to zeroth order in s−1

i .
The third step is to replace Eq. (5) in the original

Hamiltonian (1), neglecting all cubic and quartic terms in bi ,
b
†
i . This leads to the quadratic boson Hamiltonian:

Hb = hH i0 +
X

i

λib
†
i bi −

X
i 6=j

1
ij
+b

†
i bj + 1

2
(1ij

−b
†
i b

†
j + H.c.)

= hH i0 − 1

2

X
i

λi + 1

2
Z†HZ, (6)

Z =
µ

b

b†

¶
, H =

µ
3 − 1+ −1−
−1̄− 3 − 1̄+

¶
, (7)

1
ij
± = 1

2
√

sisj [J ixjx ± J iyjy − i(J iyjx ∓ J ixjy)], (8)

where Z† = (b†,b) and 3ij = λiδij . The choice of the mean-
field axes for the bosonization (5) ensures that no linear terms
in bi , b

†
i appear in Hb; this reflects the stability of the mean-

field state |0i with respect to one-site excitations.
The last step is the diagonalization of the bosonic quadratic

form (6), which is always possible when the Hermitian matrix
H in Eq. (7) is positive definite, i.e., when |0i is a stable
vacuum [18]. Hb can then be rewritten as

Hb = hH i0 +
X

α

ωαb0†
αb0

α + 1

2
(ωα − λα), (9)

where λα stands for λi , ωα are the symplectic eigenvalues of
H, i.e., the positive eigenvalues of the matrix

MH =
µ

3 − 1+ −1−
1̄− −3 + 1̄+

¶
, M =

µ
1 0

0 −1

¶
,

(10)

whose eigenvalues come in pairs of opposite sign (and which
is diagonalizable with real nonzero eigenvalues when H is

positive definite), and b0
α , b0†

α are “collective” boson operators
related to the local ones by a Bogoliubov transformation Z =
WZ 0, i.e.,µ

b

b†

¶
= W

Ã
b0

b0†

!
, W =

µ
U V

V̄ Ū

¶
, (11)

with (U
V̄

)α and (V
Ū

)α being the eigenvectors of MH associ-
ated with the eigenvalues ωα and −ωα , respectively (such
that W−1MHW = MÄ, with Äαα0 = |ωα|δαα0 ). In order to
preserve the boson commutation relations, which can be cast
as ZZ† − [(Z†)trZ tr]tr = M, W should satisfy

WMW† = M, (12)

which also implies W†MW = M and hence W†HW =
Ä. This means that U †V − V trŪ = 0, U †U − V trV̄ = I ,
which are the natural orthogonality relations fulfilled by the
eigenvectors of Eq. (10) with normalization (U

V̄
)†αM(U

V̄
)α = 1.

The RPA matrix (7) is of dimension 2n × 2n, with n being
the number of spins. The RPA then involves an exponential
reduction in the dimension [from (2s + 1)n to 2n for n identical
spins]. Moreover, in a translationally invariant system (see
Sec. II D), it can be further reduced to n 2 × 2 matrices and
become fully analytic.

B. The RPA ground state

The vacuum of the new bosons b0 (b0
α|00

bi = 0) is [18]

|00
bi = Cb exp

⎛
⎝1

2

X
i,j

Zij b
†
i b

†
j

⎞
⎠ |0bi, Z = V Ū−1, (13)

where Cb = h0b|00
bi = det[(Ū )]−

1
2 is a normalization factor,

and Z is a symmetric matrix. The associated RPA spin state
can then be defined as

|0RPAi = Cs exp

⎛
⎝1

2

X
i 6=j

Zij

2
√

sisj

si+sj+

⎞
⎠ |0i. (14)

The expectation values generated by Eq. (14) will be close to
those obtained with the mapping (5), coinciding exactly up
to second order in V (Appendix A). In contrast with |0i, the
state (14) is entangled (unless V = 0).

Let us note the following for the quadratic Hamiltonian (1):
(i) |0RPAi = |0i if and only if |0i is an exact eigenstate of

H , since Hb contains the exact matrix elements connecting
|0i with the rest of the Hilbert space:

H |0i = hH i0|0i − 1

2

X
i,j

1
ij
−|1i1j i, (15)

where |1i1j i = si+sj+
2
√

si sj
|0i, and we have used the mean-field

condition h1i |H |0i = h1i |hi |0ii = 0 [Eqs. (3) and (4)]. Thus,
if |0RPAi = |0i, Z = 0 and hence V = 0 in W , which implies
that 1− = 0. Hence, |0i is an exact eigenstate by Eq. (15).
Conversely, if |0i is an exact eigenstate, it is a solution of the
mean-field equations leading to 1− = 0, which implies that
|0RPAi = |0i (although 1+ may be nonzero and ωα 6= λα). In
particular, when H has an exactly separable ground state |0i
(i.e., at the factorizing field [12,22,23]), |0RPAi = |0i.
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(ii) |0RPAi is always exact for sufficiently strong fields
(|B| À J ). In this limit |0i is the state with all spins si fully
aligned along −Bi plus small corrections (λi ≈ Bi + sJ ·
Bi/|B|i). Up to first order in 1±/λ, Eqs. (10)–(13) lead to

Zij ≈ Vij ≈ 1
ij
−

λi+λj
, which means that

|0RPAi ≈ |0i +
X
i<j

1
ij
−

λi + λj

|1i1j i, (16)

which, by Eq. (15), is just the first-order expansion (in 1−/3)
of the exact ground state.

In the case of a symmetry-breaking mean field, the RPA
spin state allows us to implement the necessary rotations for
symmetry restoration: The exact ground state will actually
be close to the superposition with the correct symmetry of
the degenerate RPA ground states (rather than to a particular
RPA state), as will be discussed in Sec. II E in the context
of parity breaking. This restoration enlarges considerably the
capabilities of the RPA.

C. Bosonic evaluation of subsystem entropy and negativity

The direct evaluation of many-body correlations and en-
tanglement measures from the RPA spin state (14) is, in
general, difficult. However, the values of these quantities in
the associated bosonic vacuum (13), which will be close
to those obtained from Eq. (14), can be straightforwardly
evaluated using the general Gaussian state formalism [24,25].
The reduced density matrix of any subsystem is just a
Gaussian state, i.e., a canonical thermal state of an effective
quadratic bosonic Hamiltonian, since Wick’s theorem holds
for the evaluation of the mean value of any observable and in
particular those of the subsystem. We may then evaluate its
entropy and other invariants through standard expressions for
independent boson systems.

Let us formalize the previous scheme. We will use a
generalized contraction matrix formalism, equivalent to that
based on covariance matrices [24,25], which is more natural
for the present RPA formulation. In the new vacuum |00

bi,
hb0†

αb0
α0 i00 = hb0

αb0
α0 i00 = 0, which implies that

Fij ≡ hb†j bii00 = (V V †)ij , (17a)

Gij ≡ hbjbii00 = (V U tr)ij . (17b)

Equations (5)–(17) determine the basic RPA spin averages and
correlations, i.e., hsiµi00 = δµz(Fii − si) and, for i 6= j ,

hsi+sj−i00 = 2
√

sisjFji, hsi−sj−i00 = 2
√

sisjGji, (18)

with hsi±sjzi00 = 0, which coincide exactly with the averages
derived from Eq. (14) up to second order in V , i.e., first order
in the average occupation V V † (which is normally very small
outside critical regions). Through the use of Wick’s theorem,
we also obtain hsizsjzi00 = hsizi00 hsjzi00 + |Fij |2 + |Gij |2 for
i 6= j .

We may now define the generalized contraction matrix

D ≡ hZZ†i00 − M =
µ

F G

Ḡ I + F̄

¶
, (19)

which exhibits the correct transformation rule under Bogoli-
ubov transformations: If Z = WZ 0, then

D = WD0W†, (20)

withD0 = hZ 0Z 0†i00 − M. Equation (17) can in fact be written
in the form (20) if W is the diagonalizing Bogoliubov
matrix (11) and D0 is the vacuum density (F 0 = G0 = 0).
We may also obtain W and D0 through the symplectic
diagonalization of D, i.e., through the diagonalization of

DM =
µ

F −G

Ḡ −I − F̄

¶
(21)

such that W−1DMW = D0M, with D0 diagonal.
Let us consider now a subsystem A of m < n sites. It will

be characterized by a truncated contraction matrix

DA = hZAZ†
Ai00 − MA =

µ
FA GA

ḠA I + F̄A

¶
, (22)

where ZA contains just the bosons of sites in A. A symplectic
diagonalization of DA will lead to

DA = WAD0
AW†

A, D0
A =

µ
fA 0

0 I + fA

¶
, (23)

where f αα0
A = f α

Aδαα0
with f α

A = hb0†
αA

b0
αA

i00 > 0 (where

DAMA has eigenvalues f α
A and −1 − f α

A ) and WAMAW†
A =

MA, with ZA = WAZ 0
A. The entanglement between A and its

complement Ā is then given by the associated bosonic entropy:

S
¡
ρb

A

¢ = −Trρb
A log2 ρb

A (24)

= −
X

α

f α
A log2 f α

A − ¡
1 + f α

A

¢
log2

¡
1 + f α

A

¢
. (25)

Here ρb
A ≡ TrĀ|00

bih00
b| is the bosonic reduced density of

subsystem A, which can be explicitly written as

ρb
A = C exp

µ
−1

2
Z†

AHAZA

¶
= C 0 exp

Ã
−

X
α

ωα
Ab0†

αA
b0

αA

!
,

(26)

where C 0 = Ce− P
α ωα/2 = Q

α(1 + f A
α )−1, and HA, DA are

related by

DAMA = [exp(MAHA) − I ]−1. (27)

Here HA represents an effective “Hamiltonian” matrix for
subsystem A with symplectic eigenvalues ωα

A such that f α
A =

(eωα
A − 1)−1 [and hence −1 − f α

A = (e−ωα
A − 1)−1]. Equa-

tion (26) leads to the contraction matrix (22) and hence to
the same expectation values as the full vacuum |00

bih00
b| for

any operator of subsystem A.
Equation (25) provides a tractable RPA estimation of

the entanglement entropy of any subsystem. It is shown in
Appendix A that a direct spin evaluation of the subsystem
entropy based on the RPA state (14) coincides with Eq. (25)
up to second order in V .

On the other hand, the internal entanglement of subsystem
A with respect to a partition (B,C) of A (where the complement
Ā plays the role of an environment) can be measured through
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the corresponding negativity [13], defined as minus the sum
of the negative eigenvalues of the partial transpose ρ

tC
A of ρA:

NBC = 1
2

¡
Tr

¯̄
ρ

tC
A

¯̄ − 1
¢
. (28)

Expectation values with respect to (ρb
A)tC of an observable Ob

A

correspond to those of the partial transpose (Ob
A)tC with respect

to ρb
A. This implies the replacements Fij ↔ Gij , Fj 0j ↔ Fjj 0 ,

and Gj 0j ↔ Ḡj 0j , in the contraction matrix for j,j 0 ∈ C, i ∈
B, leading to a matrix D̃A with symplectic eigenvalues f̃ α

A .
The latter can now be negative. We may still write (ρb

A)tC as
in Eq. (26) in terms of an effective matrix H̃A with symplectic
eigenvalues ω̃α

A such that f̃ α
A = (eω̃α

A − 1)−1.
Since the trace remains unchanged [Tr(ρb

A)tC = 1],
|e−ω̃α

A | < 1, which implies that f̃ α
A > − 1

2 . A negative f̃ α
A >

− 1
2 corresponds to e−ω̃α

A < 0 and hence to a nonpositive (ρb
A)tC ,

which indicates an entangled ρb
A with respect to this bipartition.

Noting that (1 + e−ω̃α
A )−1 = (1 + f̃ α

A )/(1 + 2f̃ α
A ), we obtain

the final result [13,24,25]:

Tr
¯̄¡

ρb
A

¢tc
¯̄ =

Y
f̃ α

A <0

1

1 + 2f̃ α
A

, (29)

which allows the evaluation of the negativity (28). Negativities
obtained from the spin density matrices coincide with this
result up to first order in V (Appendix A).

In the case of a global bipartition (A,Ā), NAĀ becomes a
function of the reduced density ρA, namely [17],

NAĀ = 1
2 (Tr||0ih0|tĀ | − 1) = 1

2 [(Tr
√

ρA)2 − 1]. (30)

In a boson system, this implies that NAĀ, a limit case of
Eqs. (28) and (29), can also be expressed just in terms of
the symplectic eigenvalues f α

A of the contraction matrix DA:

NAĀ = 1

2

"Y
α

¡p
f α

A + p
1 + f α

A

¢2 − 1

#
. (31)

D. Translationally invariant systems

The only quantities required in the bosonic RPA scheme
are, therefore, the basic contractions (17). Their evaluation be-
comes remarkably simple in translationally invariant systems,
in either one or d dimensions, i.e., systems with a common spin
si = s in a uniform field Bi = B with couplings dependent just
on separation:

J iµjν = Jµν(i − j ), (32)

where Jµν(l) = J νµ(−l), and Jµν(−l) = Jµν(n − l) in a finite
cyclic chain or system (in d dimensions, i,j,l,n stand for
d-dimensional vectors). We will also assume a uniform mean
field λi = λ, which should then satisfy

λµ = Bµ −
X

ν

J
µν

0 hsνi0, J
µν

0 ≡
X

l

J µν(l), (33)

with hsi0 = −sλ/λ [Eq. (4)]. The uniform mean field is thus
determined just by the total strengths J

µν

0 .
By choosing again the z axis in the direction of λ, such

that hsiµi = −sδµz and Bµ + sJ
µz

0 = λδµz, with λ > 0, the
bosonized Hamiltonian will have the form (6) with couplings

1
ij
± = 1±(i − j ). By means of a discrete Fourier transform of

the boson operators, we can rewrite it as

Hb = hH i0 +
X

k

(λ − 1k
+)b†kbk − 1

2
(1k

−b
†
kb

†
−k + H.c.),

(34)

1k
± =

n−1X
l=0

ei2πkl/n1±(l), (35)

where k = 0, . . . ,n − 1 and bk = 1√
n

Pn
j=1 ei2πkj/nbj are bo-

son operators in momentum space, with b−k = bn−k . Diago-
nalization of (34) is straightforward and leads to

Hb = hH i0 +
X

k

ωkb0†
kb

0
k + 1

2
(ωk − λ + 1k

+), (36)

where ωk = ω̃k − 1
2 (1k

+ − 1−k
+ ), b0†

k = ukb
†
k − v̄kb−k , and

ω̃k =
q

(λ − 1̃k+)2 − |1k−|2, (37)

uk =
s

λ − 1̃k+ + ω̃k

2ω̃k
, vk = 1k

−
|1k−|

s
λ − 1̃k+ − ω̃k

2ω̃k
, (38)

with 1̃k
+ = 1

2 (1k
+ + 1−k

+ ), u2
k − |vk|2 = 1, and uk = u−k ,

vk = v−k . All ωk should be real and positive for a stable mean
field, which implies the stability conditions 1k

+ < λ and

|1k
−| <

q
(λ − 1k+)(λ − 1−k

+ ), k = 0, . . . ,n − 1. (39)

We can now obtain the basic contractions explicitly:

hb†kbk0 i00 = δkk0
¯̄
v2

k

¯̄
, hbkb−k0 i00 = δkk0ukvk = 1k

−
2ω̃k

, (40)

which lead finally to [see Eq. (17)]:

Fij = F (i − j ) = 1

n

X
k

e−i2πk(i−j )/n
¯̄
v2

k

¯̄
, (41a)

Gij = G(i − j ) = 1

n

X
k

e−i2πk(i−j )/nukvk. (41b)

For strong fields |B| such that λ À |1±|, ukvk ≈ 1
21k

−/λ and
|v2

k | ≈ 1
4 |1k

−|2/λ2. The RPA vacuum (13) becomes

|00
bi = Cb exp

⎡
⎣1

2

X
i,j

Z(i − j )b†i b
†
j

⎤
⎦ |0bi, (42)

where Cb = Q
k u

− 1
2

k and Z(l) = 1
n

P
k e−i2πlk/n vk

uk
.

Thus, these systems allow an analytic evaluation of the
contractions (17). Both the mean-field equations (33) and the
RPA Hamiltonian (34) become independent of the common
spin s after a rescaling Jµν(l) → Jµν(l)/s, which we will
adopt in what follows and which indicates that the RPA is
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describing the large-spin limit of the system, as is apparent
from Eq. (5).

E. XY Z systems

Let us now examine in more detail the previous formalism
in a translationally invariant spin s array with XYZ couplings
of arbitrary range in a uniform transverse field:

H = B
X

i

siz − 1

2s

X
i 6=j

X
µ=x,y,z

Jµ(i − j )siµsjµ. (43)

Equation (43) commutes with the Sz spin-parity,

[H,Pz] = 0, Pz = exp

"
iπ

X
i

(siz + s)

#
,

for any value of its parameters, such that the exact ground
state in a finite array will always have a definite parity outside
degeneracy points. We will focus here on the ferromagnetic-
type case where Jx(l) > 0 ∀ l with

|Jy(l)| 6 Jx(l), (44)

which exhibits a normal and a parity-breaking phase at the
mean-field level.

1. RPA around the normal state

For the Hamiltonian (43), the state |0i with all spins fully
aligned along the −z axis is always a solution of the mean-field
equation (33), being the lowest solution for a sufficiently strong
field B. It leads to λi = λδµz, with

λ = |B| + J 0
z > 0, J 0

z ≡
X

l

Jz(l). (45)

All previous equations can then be directly applied. Now
1±(l) = Jx (l)±Jy (l)

2 = 1±(−l), which implies that 1k
± = 1−k

±
and

ωk =
q¡

λ − J k
x

¢¡
λ − J k

y

¢
, (46)

where J k
µ = P

l e
i2πkl/nJµ(l) (1k

± = J k
x ±J k

y

2 ). This solution is
therefore stable provided that J k

µ 6 λ ∀ k and µ = x,y, i.e.,
for |B| above a certain critical field Bc. In the case (44), the
strongest condition is obtained for k = 0, i.e.,

|B| > Bc ≡ J 0
x − J 0

z . (47)

2. RPA around the parity-breaking state

For |B| 6 Bc, the normal state becomes unstable: The
lowest normal RPA frequency ω0 vanishes for |B| → Bc and
becomes imaginary for |B| < Bc. The lowest mean field for
|B| < Bc corresponds instead to a parity-breaking state with
all spins aligned along an axis in the xz plane forming an angle
θ with the z axis:

|0i → |2i ≡ |θ1 · · · θni, |θj i = exp(−iθsjy)|0j i. (48)

This leads to hsj i0 = −s(sin θ,0, cos θ ) = −sλ/λ, with

λ = J 0
x , cos θ = B

Bc

, (49)

as determined by Eq. (33). We should now express the original
spin operators in terms of the rotated operators, i.e.,

six = six 0 cos θ + siz0 sin θ, siz = siz0 cos θ − six 0 sin θ,

(50)

with siy = siy 0 . The RPA around this state therefore amounts
to the replacements

λ → J 0
x , J k

x → J 0k
x = J k

x cos2 θ + J k
z sin2 θ, (51)

in Eq. (46), with J k
y unchanged and 1k

± = 1
2 (J 0k

x ± J k
y ).

Correlations hsiµ0sjµ0 iRPA of rotated spin operators have the
same previous expressions (17), whereas those of the original
operators must be obtained using Eq. (50). It should be noted,
however, that in a finite system, the associated RPA spin state
will no longer be a good approximation to the actual ground
state because of parity breaking. Parity restoration, at least
approximately, must be implemented before obtaining final
results. We will not discuss here the case of a continuous
broken symmetry (arising, for instance, in the XXZ case),
which can be treated through the RPA formalism of Ref. [9].

3. Definite parity RPA ground states

Since [H,Pz] = 0, the parity-breaking mean-field state |2i
is degenerate: Both |2i and | − 2i = Pz|2i are mean-field
ground states. In order to describe the definite parity ground
states, the correct RPA ground state should be taken as the
definite parity combinations

|2±
RPAi = |2RPAi ± | − 2RPAi√

2(1 ± h−2RPA|2RPAi) , (52)

where | ± 2RPAi are the RPA states around each mean field.
The overlap h−2RPA|2RPAi = h2RPA|Pz|2RPAi is propor-
tional to the overlap between the two mean-field states,

h−2|2i = cos2ns θ =
µ

B

Bc

¶2ns

, (53)

which is small except for B → Bc or small ns.
By neglecting the previous overlap, Eq. (52) will lead to

reduced densities:

ρ±
A ≈ 1

2 [ρA(θ ) + ρA(−θ )] (54)

provided that the complementary overlap h−2Ā
RPA|2Ā

RPAi ∝
(B/Bc)2(n−nA)s can also be neglected. Here ρA(±2) are the
reduced spin densities determined by each RPA state, given up
to O(V 2) by the expressions of Appendix A.

The restoration (54) is essential to achieving a good
description of the actual subsystem entropy, although its main
effect for a subsystem A that is not too small is actually quite
simple: If the product ρA(2)ρA(−2) ∝ (B/Bc)2nAs can be
neglected, then Eq. (54) can be considered as the sum of two
densities with orthogonal support and identical distributions,
leading to

S(ρ±
A ) ≈ S[ρA(θ )] + 1, (55)

where S[ρA(2)] can be evaluated through the boson approx-
imation (25). Under the same assumptions, the effect on the
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global negativity (30) is just

NAĀ(ρ±
A ) ≈ 2NAĀ[ρA(θ )] + 1

2 , (56)

as Tr
q

ρ±
A ≈ √

2Tr
√

ρA(θ ), while the subsystem negativity
NBC of a bipartition (B,C) of A remains approximately
unchanged: NBC(ρ±

A ) ≈ NBC[ρA(θ )].
When the product ρA(2)ρA(−2) cannot be neglected (as in

a subsystem of two spins), we should in principle construct the
spin density (54). This can be done by rotating ρA(θ ) [Eq. (A2)
in the mean-field frame] to the original z axis and removing all
parity-breaking elements [which is the final effect of Eq. (54)].
For instance, the reduced two-spin density for s = 1

2 has the
blocked form (A2) in the standard basis of sizsjz eigenstates
in the normal phase as well as in the parity-breaking phase
after parity restoration [12]. The final effect on S(ρA) is
the replacement of the term +1 in Eq. (55) by the entropy
of the reduced mean-field mixture −P

ν=± qν log2 qν ,
with q± = 1

2 [1 ± (B/Bc)2sA ], plus smaller RPA
corrections.

Although ρ±
A are both identical in the approximation (54),

the actual ρ±
A derived from (52) will depend on parity. The

correct parity in such a case should be chosen as that leading
to the lowest energy E±

RPA = h2±
RPA|H |2±

RPAi.

4. Factorizing field

The explicit value of the basic RPA couplings 1k
± in the

parity-breaking phase are, using Eqs. (49)–(51),

1k
± = 1

2

£¡
J k

x − J k
z

¢
(B/Bc)2 + ¡

J k
z ± J k

y

¢¤
. (57)

In the case of a common anisotropy, such that the ratio

χ = Jy(l) − Jz(l)

Jx(l) − Jz(l)
(58)

is independent of the separation l, we have J k
y − J k

z = χ (J k
x −

J k
z ) and hence 1k

− = 1
2 (J k

x − J k
z )[(B/Bc)2 − χ ]. It is then seen

that if χ ∈ [0,1], then 1k
− = 0 ∀ k when

|B| = Bs ≡ Bc

√
χ, (59)

with all 1k
− changing sign at |B| = Bs . Here Bs is the fac-

torizing field [2,12,22,23,26]: At B = Bs the parity-breaking
mean-field state becomes an exact ground state, since the RPA
corrections vanish (see Sec. II B). This effect is independent
of the number of spins n (as long as χ is constant) and
spin s (with the present scaling). Nonetheless, the actual
side limits at B = Bs will be given by the definite parity
states (52), which are still entangled. As a consequence,
the subsystem entropy S(ρA) and the negativity NAĀ will
actually approach a finite value for B → Bs [1 and 1

2 ,
respectively, in the approximations given by (55) and (56)],
while the entanglement between two spins will reach an infinite
range [10–12]. Note finally that at B = Bs , 1k

+ = J k
y and,

hence,

ωk = J 0
x − J k

y . (60)

III. APPLICATION

A. Spin s pair

As a first example, let us consider a system of two spins
s coupled through the Hamiltonian (43). We can obviously
always set Jx > |Jy | (44), since the sign of Jx can be changed
by a π rotation around the z axis of one of the spins (and we can
always set |Jx | > |Jy | by a proper choice of axes). The Fourier
transform of Jµ(l) = δl1Jµ reduces here to J k

µ = (−1)kJµ, k =
0,1, leading to an attractive and a repulsive normal mode:

ω0 = p
(λ − Jx)(λ − Jy), ω1 = p

(λ + Jx)(λ + Jy).

The contractions (41) become Fij = λ−1+
4ω0

− λ+1+
4ω1

(1 −
2δij ) − 1

2δij , Gij = 1−
4ω0

+ 1−
4ω1

(1 − 2δij ), where 1± = 1
2 (Jx ±

Jy) and replacements (51) are to be applied for |B| < Bc.
The ensuing entanglement entropy of the pair in the bosonic
approximation (25) is just

S(ρ1) = −f log2 f + (1 + f ) log2(1 + f ) + δ, (61)

f = 1

2

⎛
⎝

s
1 + λ2 − ω2

ω0ω1
− 1

⎞
⎠ , ω = ω0 + ω1

2
, (62)

where f =
q

(F11 + 1
2 )2 − (G11)2 − 1

2 is the positive sym-
plectic eigenvalue of the 2 × 2 contraction matrix for one spin
and δ = 0 (1) for |B| > Bc (< Bc) in the approximation (55),
which is valid for (B/Bc)2s ¿ 1. For small f , we may just use
S(ρ1) ≈ f (log2 e − log2 f ), with f ≈ F11, in agreement with
the results of Appendix A.

Thus, at the RPA level entanglement is determined by the
average local occupation f and driven by the ratio λ2−ω2

ω0ω1
, which

is small away from Bc and vanishes at B = Bs [where ω =
λ = J 0

x by Eq. (60), and hence f = 0]. For |B| À Bc, f ≈
( Jx−Jy

4B
)2, while in the vicinity of Bs , f ∝ (B − Bs)2. For B →

Bc, f ≈ 1
2

q
λ2−ω2

ω0ω1
∝ |B − Bc|−1/4, with S(ρ1) ≈ log2 f e.

The bosonic RPA negativity [Eqs. (28), (29), and (31)]
becomes

N12 = −f̃

1 + 2f̃
= f +

p
f (f + 1), (63)

where f̃ = f − √
f (f + 1) is the negative symplectic eigen-

value of the 4 × 4 contraction matrix. The correction of
Eq. (56) (N21 → 2N21 + 1

2 ) should be applied for |B| < Bc.
For small f , we have simply N12 ≈ −f̃ ≈ √

f . This will lead
to a slope discontinuity of N12 at the factorizing field Bs (see
Fig. 1), as f vanishes there quadratically (N12 − 1

2 ∝ |B − Bs |
for B ≈ Bs). On the other hand, for f → ∞ (|B| → Bc),
f̃ → − 1

2 , with f̃ ≈ − 1
2 + 1

8f
and N12 ≈ 2f . Both S(ρ1) and

N12 are concave increasing functions of f and measure the
entanglement of the pair.

Comparison with exact numerical results, obtained through
the diagonalization of H [a (2s + 1)2 × (2s + 1)2 matrix], is
shown in Fig. 1 for the XY case (Jz = 0) with anisotropy
χ = Jy/Jx = 0.5. Exact results are seen to rapidly approach
the RPA values [Eqs. (61)–(63)] as the spin s increases, the
discrepancy for finite s arising just in the vicinity of Bc or
for very small s, i.e., where tunneling effects arising from the
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FIG. 1. (Color online) Entanglement between two spins s as a
function of the transverse field B for an XY coupling with Jy/Jx =
0.5. The exact entanglement entropy SE = S(ρ1) (top) and negativity
(bottom) for different values of the spin s and the bosonic RPA results
[(61) and (63)] are depicted. The exact results approach those of RPA
as s increases, with differences for not-too-small s arising just for B

close to Bc = Jx . At the factorizing field Bs ≈ Bc/
√

2, SE = 1 while
N12 = 1

2 .

nonzero overlap (53) between the degenerate parity-breaking
states become appreciable.

Nonetheless, this overlap can be taken into account using
the full definite parity RPA spin state (52) with lowest energy,

which for finite s improves results for B close to Bc (but
otherwise yields results almost coincident with those of the
corrected bosonic RPA), as seen in Fig. 2. Equation (52)
also yields the exact side limits at the factorizing field [12]
for any s, although for χ = 0.5 these limits rapidly approach
the high spin values S(ρ1) = 1 and N12 = 1

2 predicted by the
approximations of Eqs. (55) and (56).

Figure 2 also depicts the behavior of the average occupa-
tions f and f̃ . The former is seen to be quite small (f <∼ 0.05)
except in the vicinity of Bc, which implies that, away from Bc,
all bosonic RPA results can be reproduced by the spin densities
of Appendix A, with f̃ ≈ √

f . In the bottom panels we
depict the RPA energies ω0,ω1 and the RPA state coefficients
Zk ≡ vk/uk used in Eq. (42). Although ω0 vanishes at Bc,
the difference λ − ω, which is responsible for entanglement,
remains quite small everywhere. Both Zk vanish and change
sign at the factorizing field Bs , which indicates a qualitative
change in the type of correlations at this point: It is well
known that entanglement between two spins 1

2 changes from
antiparallel to parallel (in the original frame) at Bs [11,12], an
effect that arises within the RPA from this sign change.

B. Fully connected spin system

Let us now consider a fully and uniformly connected XYZ

array of n spins, where

Jµ(l) = (1 − δl0)Jµ/(n − 1), (64)

in Eq. (43). This scaling ensures a finite intensive energy
hH i/n for large n and finite Jµ. Entanglement properties
of this well-known model [18,27] for s = 1

2 in the large-n
limit have been previously analyzed [28], including recently

0

0.5

1.0

1.5

S E

s 10
RPA

RPA

0

0.1

0.2

0.3

f

f
f
∼

0 0.5 1.0 1.5

B/Jx

0

1

2

ω ω1

ω0

ω
λ

0 0.5 1.0 1.5

B/Jx

0.0

0.5Z
k

Z1

Z0

FIG. 2. (Color online) Top left: The entanglement entropy obtained from the definite parity RPA spin state (52) (dashed-dotted line),
compared with the bosonic RPA result (61) and the exact value, for s = 10 at the same parameters as in Fig. 1. The result from the RPA spin
state improves the bosonic RPA for B just below Bc. Top right: The average local boson occupation f (62), which is small away from Bc, and
the negative eigenvalue f̃ of the partial transpose of the contraction matrix (f̃ ≈ √

f for small f ). Bottom left: RPA energies ω0, ω1, together
with the mean-field energy λ and the mean RPA energy ω in Eq. (62). Bottom right: The quantities Zk = vk/uk for k = 0,1, which determine
the RPA state (42) and vanish at the factorizing field Bs .
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Holstein-Primakoff-based bosonization [16,21,29,30]. Direct
application of the present RPA formalism will be shown to
yield full analytic expressions for any size n and spin s.
The Fourier transform of Eq. (64) is J 0

µ = Jµ and J k
µ =

−Jµ/(n − 1) for k = 1, . . . ,n − 1, which leads again to two
distinct RPA energies: one associated with a fundamental
attractive mode (ω0) and n − 1 degenerate weak repulsive
modes ωk = ω1, k 6= 0, which add a small repulsive correction,
nonzero for finite n, accounting for the absence of self-energy
terms ∝ s2

iµ in H :

ω0 = p
(λ − Jx)(λ − Jy),

ω1 =
sµ

λ + Jx

n − 1

¶ µ
λ + Jy

n − 1

¶
,

where the replacements (51) are to be used for B < Bc. The
ensuing contractions (41) here become obviously independent
of separation for i 6= j :

Fij = 1

2n

·
λ − 10

+
ω0

− λ − 11
+

ω1
(1 − nδij )

¸
− 1

2
δij , (65a)

Gij = 1

2n

·
10

−
ω0

− 11
−

ω1
(1 − nδij )

¸
, (65b)

and imply that, for any bipartition (L,n − L), the entanglement
entropy S(ρL) will depend just on L. Moreover, there is again
a single nonzero eigenvalue fL of the reduced matrix DL of
L spins for any L (see Appendix B), such that, in the bosonic
approximation (25)–(55),

S(ρL) = −fL log2 fL + (1 + fL) log2(1 + fL) + δ,
(66)

fL = 1
2 [

p
1 + 2αL1 − 1], αL = L(n − L)/n2,

where δ = 0 (1) for |B| < Bc [(B/Bc)2Ls ¿ 1] and

1 = n2(λ2 − ω2)

2(n − 1)ω0ω1
, ω = ω0 + (n − 1)ω1

n
. (67)

For n = 2 we recover Eqs. (61) and (62), while for large n,

1 ≈ λ−10
+

ω0
− 1. Entanglement is then driven again by the ratio

λ2−ω2

ω0ω1
, which is small away from Bc and vanishes at Bs . For

small 1, fL ≈ 1
2αL1, with 1 ≈ 1

2 [ n
(n−1)

Jx−Jy

2B
]2 for |B| À Bc

and 1 ∝ (B − Bs)2 in the vicinity of Bs . For B → Bc, fL ∝√
αL(B − Bc)−1/4 and S(ρL) ≈ log2 fLe.
The bosonic negativity of a bipartition (m,L − m) of

a subsystem of L 6 n spins can again be explicitly ob-
tained, since there is also a single negative eigenvalue
f̃Lm of the partial transpose of the contraction matrix
(see Appendix B):

Nm,L−m = −f̃Lm

1 + 2f̃Lm

, (68)

f̃Lm = 1

2

r
1 + γLm1 −

q
8βLm1 + γ 2

Lm12 − 1

2
, (69)

γLm = αL + 4βLm, βLm = m(L − m)/n2. (70)

For a global partition (L = n), αn = 0 while βnm = αm, and
f̃nL = fL − √

fL(fL + 1), with NnL = fL + √
fL(fL + 1),

as in Eq. (63). In general, for small 1,

f̃Lm ≈ −
q

1
2βLm1 ≈ −√

(βLm/αL)fL, (71)

such that for strong fields, f̃Lm ≈ −√
βLm

n
n−1

Jx−Jy

4B
, while for

B close to Bs , f̃Lm ∝ √
βLm|B − Bs |. On the other hand,

for B → Bc, f̃Lm → − 1
2 (1 −

q
αl

αL+4βLm
) + O(|B − Bc| 1

2 ) if

αL 6= 0, which implies that subsystem negativities Nm,L−m

with L < n remain finite at Bc (in agreement with the results
of Ref. [16]), as f̃Lm remains above − 1

2 .
In the parity-breaking phase, the replacement (56) (N →

2N + 1
2 ) should be used for global negativities Nn,L−n,

whereas subsystem negativities Nm,L−m remain unchanged
after parity restoration if (B/Bc)2s(n−L) and (B/Bc)2sL can
both be neglected.

Equations (66)–(69) represent essentially the exact expres-
sions for the subsystem entropy and negativity for large spin
at finite n, as well as for large n at finite spin, as verified
by exact numerical calculations. For instance, exact (obtained
through diagonalization of H ) and RPA results for a spin 1

2
XY array of n = 100 spins are shown in Figs. 3 and 4. RPA
results for the entanglement entropy are quite accurate except
in the vicinity of Bc, where differences decrease as n or s

increases. For large L they were obtained with the previous
expression (66), whereas for small L (like the L = 2 case),
we have used the proper spin state (54), whose main effect
is to take into account the correct overlap for B below but
close to Bc (roughly, δ replaced by the entropy of the reduced
mean-field superposition).

The variation of S(ρL) with L at fixed field (bottom left
panel in Fig. 3) is also correctly predicted, being quite accurate
in both the normal and parity-breaking phase for fields not too
close to Bc. The bottom right panel shows that fL remains
small except for B around Bc, while f̃Lm also becomes small
as L decreases, in full agreement with Eq. (71). RPA results
for global (Nn,L−n) and in particular subsystem negativities
(Nm,L−m for L < n), which are much smaller and vanish
at Bs , are also very accurate, as seen in Fig. 4. Subsystem
negativities were directly obtained with Eq. (68), whereas
global negativities were corrected with Eq. (56) for B < Bc

and large L and using Eq. (54) for L = 2.

IV. DISCUSSION

We have shown that the mean field plus RPA method is
able to provide, through the bosonic representation, a general
tractable method for estimating, in the ground state of general
spin arrays, the entanglement entropy of any bipartition of
the whole system as well as the negativity associated with
any bipartition of any subsystem. The approach becomes fully
analytic in systems with translational invariance, where no
numerical diagonalization is required for obtaining the basic
contraction matrices.

The bosonic treatment provides essentially the exact behav-
ior of the system in the large-spin limit. Finite spin corrections
can be taken into account through the corresponding RPA
spin state, which allows us in particular to implement the

052332-8



EVALUATION OF GROUND-STATE ENTANGLEMENT IN . . . PHYSICAL REVIEW A 82, 052332 (2010)

0 0.5 1.0 1.5
B Jx

0

0.5

1.0

S E
L

L 1

L 50

0 0.5 1.0 1.5
B Jx

0

0.5

1.0

S E
L L 2

L 25

Exact

RPA

0 10 20 30 40
L

0

0.5

1.0

S E
L

0.9

0.5

1.1
1.5

Exact

RPA

0 0.5 1.0 1.5
B Jx

0

0.1

0.2

f L

f25

fn,25
∼

fn,10
∼

f 20,10
∼

FIG. 3. (Color online) Results for a fully connected spin 1
2 XY array of n = 100 spins with Jy/Jx = 0.5. Top left: Exact entanglement

entropies SE(L) = S(ρL) of subsystems with L 6 n/2 spins as a function of the magnetic field. Top right: Comparison between exact and RPA
results for S(ρL). Bottom left: Exact and RPA results for S(ρL) as a function of the subsystem size L at four different field ratios B/Bc. Bottom
right: Magnetic behavior of the average boson occupation number (66) for L = 25 and the negative symplectic eigenvalue (69) of the partial
transposed contraction matrix for different L, m.

nonnegligible symmetry-restoration effects in the case of the
parity-breaking mean field, but which otherwise yields results
that are in full agreement with the bosonic treatment at first
order in the average local boson occupation. The latter is
normally very low away from critical regions.

Through direct application of the present method, simple
analytic expressions for the entanglement entropy and negativ-
ities for a spin s pair and for a fully connected array of n spins
s in a uniform field have been straightforwardly obtained, and

these depend explicitly on the RPA energies. The agreement
with exact numerical results is confirmed to improve as the
spin s increases at fixed size and in the fully connected case
as well as when n increases at fixed s. Differences in fact are
negligible away from the critical region if the spin s or the size
n are not too small.

An important general prediction that arises from the present
treatment is that entanglement from elementary excitations
approaches a nonvanishing spin-independent limit as the spin

0
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FIG. 4. (Color online) Top left:
Exact global negativities N (L) =
NL,n−L between L and n − L spins
in the fully connected array of Fig. 3
(n = 100 spins). Top right: Compari-
son between exact and RPA results for
N (L) for two values of L. Bottom left:
Exact subsystem negativities Nm,L−m

between m and L − m spins in a
subsystem of L = 20 spins. Bottom
right: Comparison between exact and
RPA results for Nm,L−m.
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increases. An RPA quantum regime, characterized by weak
entanglement, then emerges between strictly classical and
strongly quantum regimes.
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APPENDIX A: RPA SPIN DENSITIES

Here we will construct the spin density matrices compatible
with the RPA spin state (14) and the contractions (17) up to
second order in V , i.e., first order in the average occupation
V V † (implying zero or one boson per site). At this order,
F ≈ GG† [Eqs. (17)], and the support of ρ = |0RPAih0RPA| is
just the subspace spanned by the mean-field state |0i plus the
two-site excitations |1i1j i [Eq. (15)], leading to

ρ ≈
Ã

GG† G

G† 1 − G†G

!
, (A1)

where G denotes a column matrix of elements Gij , i < j .
At this order, ρ2 = ρ. The ensuing reduced density matrix
ρA = TrĀρ of a subsystem A of L spins becomes

ρA ≈

⎛
⎜⎜⎝

GAG†
A 0 GA

0 FA − GAG
†
A 0

G†
A 0 1 − TrFA + G†

AGA

⎞
⎟⎟⎠ ,

(A2)

where FA, GA are the L × L contraction matrices of subsystem
A, and GA is the concomitant column vector [of length L(L −
1)/2]. The central block contains the one-site elements |1iih1j |
arising from the partial trace of GG†. Here we have used the
approximate identity

P
k∈Ā GikG

†
kj ≈ Fij − P

k∈A GikG
†
kj for

i,j ∈ A (and neglected diagonal elements Gii , of higher order
due to the absence of self-energy terms), which allows us
to write ρA entirely in terms of local contractions. Equa-
tion (A2) is then in agreement with direct state tomography
at this order [for i,j,k,l ∈ A, hb†j bi

Q
k 6=i,j (1 − b

†
kbk)i00 ≈

(FA − GAG
†
A)ij , hb†i b†j bkbli00 ≈ GklḠij ]. Up to O(V 2), ρA is

a positive matrix with TrρA = 1 but is no longer pure.
Its entropy S(ρA) = −TrρA log2 ρA is determined, at this

order, by the central block ρ1
A = FA − GAG

†
A,

S(ρA) ≈ Trρ1
A

¡
log2 e − log2 ρ1

A

¢
, (A3)

which coincides with Eq. (25) up to second order in V [at this
order f α

A coincides with the eigenvalues of ρ1
A, and Eq. (25)

becomes ≈ P
α f α

A (log2 e − log2 f α
A )].

On the other hand, the leading term in the negativity arising
from a bipartition (B,C) of A is of first order in V and is just the
sum of the singular values of the submatrix GBC (of elements
Gij , i ∈ B, j ∈ C), whence NBC ≈ Tr[GBCG

†
BC]

1
2 . At this

order, the negative symplectic eigenvalues f̃ α
A in Eq. (29)

are again minus the singular values of GBC , while Eq. (28)
becomes NBC ≈ −P

α f̃ ᾱ
A , leading again to the previous

result.

Let us finally note that Eq. (A2) always commutes with
the Sz parity (along the mean-field axis) of subsystem A, i.e.,
[ρA,PzA] = 0, PzA = exp[iπ

P
i∈A(siz + si)]. In the case of

two spins i,j , GA has length 1 and Eq. (A2) is just a 4 × 4
blocked matrix, while in the case of a single spin i, GA has
length 0 and Eq. (A2) becomes just ρi ≈ Fii |1iih1i | + (1 −
Fii)|0iih0i |.

APPENDIX B: FULLY CONNECTED SYSTEM

In the fully connected XYZ spin system, the contractions
(65) are of the form Fij = F0δij + F1, Gij = G0δij + G1, with
F0,F1, G0,G1 real. The ensuing contraction matrix DL for a
subsystem of L spins will then have symplectic eigenvalues
(see also Ref. [25])

fL =
q¡

F0 + LF1 + 1
2

¢2 − (G0 + LG1)2 − 1
2 , (B1)

f0 =
q¡

F0 + 1
2

¢2 − G2
0 − 1

2 , (B2)

plus their partners 1 + fL, 1 + f0, where fL is nondegenerate
while f0 has L − 1 degeneracy. Equations (B1) and (B2) can be
obtained either by a Fourier transform of the local operators
or by noticing that the L × L contraction matrix FL can be
written as FL = F0IL + F11L1t

L (and similarly for GL), with
IL the L × L identity and 1L a column L × 1 vector with unit
elements. FL and GL will then be diagonal in the same local
basis with eigenvalues F0 + LF1 and F0 (L − 1 degenerate)
and similarly for GL, which leads to Eqs. (B1) and (B2). In
the case of a global vacuum, f0 = 0 (since for L = n, we
should have fL=n = f0 = 0), which implies a single positive
eigenvalue fL for any L < n. Equation (B1) leads then to
Eq. (66).

For evaluating the negativity Nmp of a bipartition (m,p) of a
subsystem of L spins (m + p = L), we may first note that FL

will be composed of blocks Fmm = F0Im + F11m1t
m, Fmp =

F11m1t
p = F t

pm, and Fpp = F0Ip + F11p1t
p, and similarly for

GL. A local transformation allows us to write FL as a
direct sum of a (L − 2) × (L − 2) diagonal block F0IL−2

plus the block F0I2 + F1(
m

√
mp√

mp p
), and similarly for GL. The

ensuing partially transposed contraction matrix will then have
symplectic eigenvalues f̃0 = f0 [Eq. (B2)], L − 2 degenerate
(with f̃0 = 0 for a global vacuum), and

f̃ ±
Lm = 1

2

q
TrA2 ±

p
(TrA2)2 − 16detA − 1

2 , (B3)

together with their partners 1 + f̃0, 1 + f̃ ±
Lm, where A =

(AFG −AGF

AGF −AFG
) is a 4 × 4 matrix with blocks AFG = ( 1

2 + F0)I2 +
( mF1

√
mpG1√

mpG1 pF1
) and similarly for AGF . Here f̃ +

Lm > 0 but

f̃ −
Lm < 0. The latter is the single negative symplectic eigen-

value given in Eq. (69).
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