IMPRIMACIONES A BASE DE TANINO DE TARA APLICADAS SOBRE ALUMINIO 1050

Christian Byrne^(1,2), Gonzalo Selmi⁽²⁾, Cecilia Deyá^(2,3,*), Oriana D'Alessandro^(1,2)

(1) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina (2) Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT), CIC-CONICET-Facultad de Ingeniería-UNLP, La Plata, Argentina

(3) Facultad de Ingeniería, Universidad Nacional de La Plata, Buenos Aires, Argentina

*Correo Electrónico (autor de contacto): c.deya@cidepint.ing.unlp.edu.ar

1. RESUMEN

A partir de las vainas de la Tara (Caesalpinia spinosa) pueden obtenerse extractos ricos en taninos. Los extractos de los taninos comerciales T40 y T80 de Indunor han demostrado ser efectivos como inhibidores de la corrosión del acero, tanto en solución acuosa como incorporados en la formulación de imprimaciones vinílicas [1]. En el presente trabajo se aplicaron estas imprimaciones sobre paneles de aluminio 1050 y se evaluaron las características de los recubrimientos obtenidos. A efectos comparativos se utilizó también una imprimación que posee tetroxicromato de Zn como pigmento anticorrosivo (imprimación CR), otra en la que el pigmento anticorrosivo es reemplazado por talco (imprimación TAL) y un panel de aluminio sin imprimar (blanco, Bl).

Las imprimaciones se formularon mediante un sistema de dos partes, A y B, las cuales se almacenan por separado y se mezclan (4 partes de A y 1 parte de B, en peso) inmediatamente antes de la aplicación. La parte A incluye el pigmento anticorrosivo (T40, T80 o tetroxicromato de cinc), la carga (talco), el opacante (negro de humo), la resina (material formador de película, en este caso BUTVAR® B-76, una resina termoplástica a base de polivinilbutiral), los solventes orgánicos para ajustar la viscosidad (isopropanol y butanol) y agua, mientras que la parte B contiene isopropanol, agua y ácido fosfórico, el cual resulta fundamental para brindar una buena adhesión al sustrato. Los paneles de Al 1050 se desengrasaron con isopropanol y se aplicó con pincel un capa de la imprimación (espesor $10 \pm 2 \mu m$). Luego se dejaron curar durante 5 días en atmósfera de laboratorio ($20 \pm 2^{\circ}C$; HR 70%).

Los paneles imprimados se caracterizaron electroquímicamente por medidas de conductividad para determinar la resistencia iónica (Ri), por ensayos de polarización lineal para determinar la resistencia a la polarización (Rp) y por medidas del potencial de corrosión (Ec). Los ensayos electroquímicos se realizaron en una serie de celdas que fueron construidas delimitando sobre la superficie imprimada un área circular de 3 cm² mediante un tubo de policloruro de vinilo (PVC). Cada tubo se adhiere con pegamento de tipo epoxídico y luego se sella con cera de abeja por el exterior. Finalmente se adiciona un volumen definido de NaCl 0,1 M como electrolito. La resistencia iónica entre el sustrato pintado y un electrodo de platino fue determinada a través de medidas con un conductímetro (ATI Orion Model 170) a 1000 Hz. Los ensayos de polarización lineal se realizaron con un potenciostato Gamry Interface 1000. El trazado de la curva se efectuó desde -20 hasta +20 mV, respecto al potencial a circuito abierto, empleando un electrodo de referencia de calomel saturado (ECS), y con una velocidad de barrido de potencial de 1 mV/s. Para la medida de potencial de corrosión también se utilizó el ECS como referencia. Por otro lado, se colocó en la cámara de humedad (CH, ASTM D 2247) una serie de paneles pintados con cada imprimación para evaluar, a lo largo del tiempo, el grado de adhesión (ASTM D 3359) y la eventual presencia de corrosión. Para esto último se utilizó la escala de clasificación sugerida por J. R. Davis, e incluida en la Tabla 1 [2].

Los valores de Ri para todos los paneles imprimados se mantuvieron en el orden de los $10^4\,\Omega\cdot\text{cm}^2$ durante las 840 horas de ensayo. Los paneles T40 y T80 presentaron valores de Rp que oscilaron entre $2\cdot10^6$ y $8\cdot10^6$ $\Omega\cdot\text{cm}^2$, los paneles CR presentaron valores del orden de $10^7\Omega\cdot\text{cm}^2$ y los paneles TAL valores entre $1\cdot10^4$ y $2\cdot10^6$ $\Omega\cdot\text{cm}^2$. El Ec de los paneles T40, T80 y CR osciló en torno a los -600 mV durante la mayor parte del ensayo, los paneles TAL presentaron valores entre -700 y -800 mV, mientras que para los paneles Bl el potencial de corrosión se encontró entre los -800 y -1000 mV.

Durante la exposición en CH, los paneles imprimados T40 y T80 presentaron un grado de adhesión comparable a los paneles CR, mientras que paneles TAL presentaron una rápida pérdida de adhesión (Tabla 1). Los paneles T40 y T80 no presentaron ataque apreciable tras 8 días de exposición, a los 14 días se observaron picaduras y a los 21 corrosión general. Los paneles TAL presentaron picaduras a los 8 días, mientras que los paneles CR se mantuvieron inalterados durante todo el ensayo.

Tabla 1. Evaluación de los paneles durante exposición en cámara de humedad y escala de clasificación

Paneles imprimados	Grado de adhesión (ASTM D 3359) Tiempo (días)			Clasificación visual de la corrosión			
				Tiempo (días)			
	0	4	8	4	8	14	21
T40	4B	2B	1B	S	S	P	G
T80	4B	3B	2B	S	S	P	G
CR	4B	3B	2B	S	S	S	S
TAL	4B	1B	0B	S	P	P	G
Bl	-	-	-	G	G	G	G

Escala de clasificación visual de la corrosión del aluminio

Clasificación	Descripción				
Sin ataque apreciable (S)	No hay ataque apreciable; la superficie puede estar descolorida				
Picado (P)	Picaduras discretas				
Filiforme (F)	Aparición de filamentos de corrosión				
General (G)	Corrosión bastante uniforme con acumulación de productos de corrosión pulverulentos				

Se puede concluir que las imprimaciones T40 y T80 presentan un comportamiento anticorrosivo aceptable cuando son aplicadas sobre paneles de aluminio 1050, comparable al proporcionado por la imprimación a base del pigmento tradicional tetroxicromato de Zn.

2. REFERENCIAS

1.D'Alessandro O., Selmi G. J., Deyá C., Di Sarli A., Romagnoli R., Lanthanum derivative from "tara" tannin for Steel temporary protection. Industrial & Engineering Chemistry Research, 2018. 57(9), 3215-3226.

2. Davis J. R., Corrosion testing, en: J. R. Davis (Ed.), Corrosion of aluminum and aluminum alloys, ASM International Materials Park, OH, 219-250, 1999.