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Abstract: We deal here with an exactly solvable N-nucleon system that has been used to mimic typical
features of quantum many-body systems. There is in the literature some controversy regarding the
possible existence of a quantum phase transition in the model. We show here that an appeal to a
suitable statistical quantifier called thermal efficiency puts an end to the controversy.
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1. Introduction

Colloquially, quantum theorists often speak of “phase transitions” with reference
to a particular situation in which a certain system’s parameter slightly varies and, as a
consequence, the ground state experiences a crossover. Such a situation is the subject of the
present considerations.

The degree of understanding of finite, quantum many-body systems has been greatly
augmented recently thanks to new statistical tools derived from information theory. We
mean here information measures and complexity measures. They were fruitfully used
to discuss variegated facets of the physics of atoms, molecules, and atomic nuclei. Now,
nuclear systems rarely permit an exact analytical treatment. As a consequence, most
concomitant theoretical research heavily rests on numerical solutions.

Obviously, exactly solvable models are most welcome to elucidate some theoretical
difficulties. Applying in such instances information-theoretic tools to them yields often
useful insights. Here, we used rather recent information techniques to elucidate the
properties of exactly solvablemany-fermion models of the Lipkin kind, which play in
nuclear physics a role similar to the Hubbard model for solid-state physics [1]. Information
treatments of the many-body behavior at a finite temperature have been recently reported
as very useful ones [2].

We appeal here for the rather novel concepts of disequilibrium D and statistical
complexity C. Statistical-complexity-associated traits were experimentally observed long
ago in microscopic systems (nuclear physics and metal clusters) (see [3–13] and the refer-
ences therein).

Motivated by the above-cited results, we revisit here an exactly solvable (finite) fermion
model of the Lipkin sort (see [14,15] and the references therein). The associated structural
details are well described by the canonical ensemble methodology. At low enough temper-
atures T, we can also glance at the details of the ground state phenomenology.

1.1. Statistical Order

The concomitant (statistical) order–disorder transactions here involved were studied
using Gibbs’ canonical ensemble methodology [16]. In it, the pertinent probability distribu-
tion (PD) is proportional to exp (−βĤ), Ĥ standing of course for the Hamiltonian, while β
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does so for the inverse temperature. Maximal statistical disorder is usually associated with
a uniform distribution (UD), since for it, all micro-states are equi-probable. In the opposite
fashion, the maximal order is associated with systems for which just a very small set of
micro-states displays non-vanishing probabilities.

1.2. Disequilibrium

We call disequilibrium D the distance (in probability space) between the current
probability distribution (PD) and the UD D. D is a statistical quantifier that grows as
the degree of order increases. If S is the thermodynamic entropy, then the product DS is
denominated the statistical complexity [17].

1.3. Exactly Solvable Lipkin-like Models

Lipkin-like models are arguably the simplest non-trivial finite many-fermion systems
that can easily be exactly solved [14,15]. They are excellent testing grounds for devising,
trying, and applying new nuclear physics’ theoretical methodologies. Amongst these, we
focused our attention here on information-theoretic methods. We concentrated our attention on a
Lipkin-associated model called the Abecasis–Faessler–Plastino (AFP) model [18–21] The
AFP model represents two-level nuclei, an extremely simplified nuclear model. Nuclear
spectra display a complex discrete spectrum and also a continuous one. The AFP model
retains only the two lowest lying levels and yields their exact energies and eigenvectors.

2. The AFP Model

The model [19] deals with N = 2 Ω fermions distributed amongst (2 Ω)-fold degener-
ate single-particle (sp) levels. Our two AFP energy levels are separated by an sp energy
gap ε. We have 4 Ω sp micro-states, but just two level-energies, which exhibit degeneration.
Two quantum numbers (µ and p) are attributed to a general sp micro-state. The first adopts
the values µ = −1 (lower level) and µ = +1 (upper level). The remaining quantum number
p, called the quasi-spin or pseudo-spin, singles out a specific micro-state belonging to the
N-fold degeneracy. The pair p, µ is seen as a “site” that is occupied by a fermion or empty.
We have:

N = 2J, (1)

where J stands for a kind of angular momentum. Following Lipkin et al. [14], were appeal
to the quasi-spin operators:

Ĵ+ = ∑
p

C†
p,+Cp,−, (2)

Ĵ− = ∑
p

C†
p,−Cp,+, (3)

Ĵz = ∑
p,µ

µ C†
p,µCp,µ, (4)

Ĵ2 = Ĵ2
z +

1
2
( Ĵ+ Ĵ− + Ĵ− Ĵ+), (5)

where the eigenvalues of Ĵ2 are of the form J(J + 1). It is useful to introduce also the
operators [14,18]:

Ĝij =
2Ω

∑
p=1

C†
p,iCp,j. (6)

The AFP Hamiltonian was devised by AFP [18,19]. We call v the coupling constant for
the pertinent two-body interaction. v is the control parameter of the system and plays a
central role in our statistical considerations below.
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The all-important AFP feature is that the AFP model displays a level-crossing in
the ground-state energy (see [19]). The lowest lying of the Hamiltonian’s eigenvalues is,
of course, the ground state level (gsl). As v increases, one encounters, suddenly, the Hamil-
tonian’s eigenvalue representing the gsl moves. The v-value at which the level-crossing
takes place is called a “critical coupling constant” (CCC). There are several CCCs. The larger
N, the larger the CCC number is [19]. These level-crossings are colloquially called phase
transitions. The Hamiltonian reads:

ĤAFP = ε
N

∑
i

Ĝii + v( Ĵx − Ĵ2
x), (7)

where Ĵx is the well-known sum [ Ĵ+ + Ĵ−]/2. ĤAFP commutes with all the Ĵ operators.
Whenever we state that v is large or small, this is always in relation to the ε-value.

3. Hamiltonian Matrices

For the AFP, one deals (see Equation (6) of [19]) with the Hamiltonian matrix:

〈n′|HAFP|n〉 = (n− J)δn′ ,n +
1
2

v{2(2J2 + J + n2 − 2Jn)δn′ ,n (8)

+2
√
(2J − n)(n + 1)δn′ ,n+1 + 2

√
(2J − n + 1)nδn′ ,n−1

−
√
(2J − n− 1)(n + 2)(2J − n)(n + 1)δn′ ,n+2

−
√
(2J − n + 2)(n− 1)(2J − n + 1)nδn′ ,n−2.

For comparison, we sometimes use Lipkin results below. The pertinent Lipkin Hamil-
tonian matrix is [15]:

〈n′|HL|n〉 =

{
N
2
− n + 1−

(
Nn− N

2
− n2 + 2n− 1

)
ω

}
δn′ ,n

−v
2

√
(N − n)(N − n + 1)(n + 1)n δn′ ,n+2 (9)

−v
2

√
(N − n)(N − n + 1)(n + 1)n δn′ ,n−2,

with n = 0, 1, . . . , N for N = 2, 4, 6, . . . and J = N/2. After numerically diagonalizing the
matrices, we found energy-eigenvalues En(v, J) for both Hamiltonians. With them, we can
perform statistical mechanics calculations in the canonical ensemble.

4. Thermal Quantifiers

The main thermal quantifiers were obtained from the partition function Z [16]. Z is
built up using the probabilities associated with the concomitant microscopic states, which
have energies Ei [16]. The most important quantifiers are the mean energy U, the entropy
S, and the free energy F [16]. Z [16] and its associated quantifiers are obtained from the
canonical probability distributions [16] Pn(v, Jβ), where beta is the inverse temperature.
The pertinent quantifier expressions are:

Pn(v, J, β) =
1

Z(v, J, β)
e−βEn(v,J) (10)

Z(v, J, β) =
N

∑
n=0

e−βEn(v,J) (11)
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U(v, J, β) = 〈E〉 = −∂lnZ(v, J, β)

∂β
(12)

=
N

∑
n=0

En(v, J)Pn(v, J, β)

=
1

Z(v, J, β)

N

∑
n=0

En(v, J)e−βEn(v,J)

S(v, J, β) = −
N

∑
n=0

Pn(v, J, β) ln[Pn(v, J, β)] (13)

F(v, J, β) = U(v, J, β)− T S(v, J, β). (14)

4.1. Complexity-Associated Quantum Quantifiers

Other quantifiers were advanced some 25 y ago [17,22–26]. We discuss them in the
context of them being specialized for the AFP model. We remark that they depend on the
coupling constant of the concomitant two-body interaction. We refer to the disequilibrium
DAFP and the statistical complexity CAFP (quantities with sub-index “L” refer to the Lipkin
model). One deals with:

DAFP(v, J, β) =
N

∑
n=0

(
PAFP

n (v, J, β)− Pu
n

)2
(15)

DL(v, J, β) =
N

∑
n=0

(
PL

n (v, J, β)− Pu
n

)2
(16)

CAFP(v, J, β) = S(v, J, β)D(v, J, β), (17)

with an identical expression for CL(v, J, β). Remember that the J-multiplets contain
2J + 1 = N + 1 possible micro-states. Thus,

Pu
n =

1
N + 1

∀ n = 0, 1, . . . N. (18)

The disequilibrium D measures the statistical order [17,22–27]. D = 0 entails total
r (randomization) [17]. C vanishes both for the total order and the total disorder [17]. It
is maximal if the system attains particular sorts of states, amongst them, those linked to
“phase transitions” or crossing levels.

4.2. Thermal Efficiency

In addition, we employed here still another, new, thermal quantifier. It is called the
thermal efficiency η [28,29] with reference to the control parameter v, our coupling constant
(kB is Boltzmann’s constant):

η = − 1
kB

∂S/∂v
∂F/∂v

, (19)

which represents the work one needs to perform to change the coupling constant value
from v to v + dv for positive η and received from the system for a negative one [29].

5. The Controversy

It was affirmed in [21] that the AFP model exhibits a phase transition (PT) or crossover
at a critical value for v that depends on N. However, this was contradicted in [18,20], who
declared that this PT disappears if we replace v with v/N. This is the controversy that we
resolve below with the help of the thermal efficiency η(v).

We depict the behavior of some of our information-theoretic quantifiers (vertical axis)
vs. the interaction strength v (horizontal axis), with β = 5.0 and several values for N. We deal
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in Figure 1 with ηAFP (red) and, for comparison, its Lipkin counterpart ηL (blue). Figure 2 is
identical to Figure 1, except for the fact that it displays the disequilibrium D. DAFP displays
a minimum at the critical v value. The physical explanation is clear enough. In between
two different micro-states, the ground state becomes disordered.

β=5 - N=6

ηAFP

ηL

0.0 0.5 1.0 1.5 2.0
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Figure 1. ηAFP (red) and Lipkin’s ηL (blue) vs. v, for N = 6 and the low temperature β = 5. Note
that ηAFP (red) clearly detects a phase transition. There is none for the Lipkin model.

β=5 - N=6

DAFP

DL

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

v

Figure 2. Vertical axis: DAFP (red) and Lipkin’s DL (blue) versus v (horizontal axis). The remaining
details are as in Figure 1.

Figure 3 depicts the N-dependence of the phase transition by displaying ηAFP vs. v
at β = 5 for several N values. We see that the critical v values diminish with N. This is a
typical quantum many-body effect. The interaction among fermions increases its effect the
larger the N value is.

Renormalized Coupling v/N

We pass now to our central theme. It was argued in [18] that the above-described
phase transitions are an artifice of not replacing v with v/N. We show below that this is not
so. We start by reminding the reader of a well-known behavior of the statistical complexity
C in the presence of a phase transition. It exhibits in that case a double peak with a small
valley between the two peaks [30]. Such is that which one observes in Figures 4 and 5
for the AFP model. We plot in them, for a coupling constant of the form v/N, both the
statistical complexity C (Figure 4) and the efficiency η (Figure 5) versus v for several values
of N and β = 5.
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β=5 - ηAFP
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Figure 3. Critical v values versus N. Note that N > 250 does not make sense in a nuclear context.

β=5

CAFP N=10

CAFP N=15

ηAFP N=10

ηAFP N=15
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Figure 4. Complexity C (continuous line) and ηAFP (dashed) plotted versus v. The effective coupling
constant is v/N. Two N values are used.

β=5 - ηAFP
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Figure 5. ηAFP plotted versus v. The effective coupling constant is v/N. Eight different N values
are used. A different color is assigned to each value, as indicated in the graph.
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6. Conclusions

We discussed the quantum statistics of a well-known exactly solvable and finite many-
nucleon system. We worked at a low enough temperature to enable the statistical picture to
adequately represent the features of the lowest-keyingenergy levels. Our main protagonists
were the thermal efficiency η and the statistical complexity C.

With C-η’s help, we were able to show that the AFP model displays ground-state
crossovers (phase transitions) independently of the fact of using or not employing N-
renormalized coupling constants.

In particular, that C exhibited double peaks is irrefutable proof of the presence of
phase transitions.

This resolves the old controversy between [18,21].
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