
ARTICLE

Integration of machine learning with neutron
scattering for the Hamiltonian tuning of spin
ice under pressure
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Quantum materials research requires co-design of theory with experiments and involves

demanding simulations and the analysis of vast quantities of data, usually including pattern

recognition and clustering. Artificial intelligence is a natural route to optimise these processes

and bring theory and experiments together. Here, we propose a scheme that integrates

machine learning with high-performance simulations and scattering measurements, covering

the pipeline of typical neutron experiments. Our approach uses nonlinear autoencoders

trained on realistic simulations along with a fast surrogate for the calculation of scattering in

the form of a generative model. We demonstrate this approach in a highly frustrated magnet,

Dy2Ti2O7, using machine learning predictions to guide the neutron scattering experiment

under hydrostatic pressure, extract material parameters and construct a phase diagram. Our

scheme provides a comprehensive set of capabilities that allows direct integration of theory

along with automated data processing and provides on a rapid timescale direct insight into a

challenging condensed matter system.
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Artificial Intelligence holds the promise of profound and far
reaching impact on experimental science by integrating
theory and experiment in new ways1. Neutron scattering

on quantum materials is an area where much progress can be
expected1–3 which would impact co-design of theory and
experiment as well as materials discovery and optimization. To
achieve this requires the integration of simulations, data treat-
ment and analysis, and theoretical interpretation3. Data science,
and in particular machine learning (ML), have been proposed as
ways to integrate scattering experiments with demanding state-
of-the art simulations2,4, however effective schemes to do this
remain to be demonstrated. Here, we deploy ML across the
experimental pipeline, closely integrating theory and experiment
in a way that could be used more widely for materials research.
We apply it to a highly frustrated magnet that provides challenges
representative of current state-of-the-art materials.

Traditionally, experiment planning, data treatment, and ana-
lysis have taken major efforts involving months of detailed
work2,3,5. They have relied on often crude analytic approxima-
tions due to the difficulty in matching time consuming and highly
specialized simulations with experiment. Recently we have shown
that machine learning, and in particular the application of Non-
Linear Autoencoders (NLAEs) can be used to create automated
capabilities for Hamiltonian extraction from diffuse neutron
scattering data4,5. Further, this approach was demonstrated to
provide robust parameter optimization, automated denoising and
data treatment, as well as phase diagram mapping and
categorization.

Here we show how a complete integration could be achieved and
present a scheme that integrates the experiments with theory and
modelling on the experiment timescales. The approach in ref. 4 is
augmented with generative models to provide fast surrogates for
expensive materials’ simulations. This facilitates analysis to be
conducted during experiments with the results feeding back into
choices made by the experimenter. We demonstrate the key ele-
ments of ML that enable neutron experiments on the highly fru-
strated magnet Dy2Ti2O7

4,5. This material shows complex physical
behavior that requires sophisticated simulations to understand and
thus stands as an ideal test case. While our approach can be more
closely integrated into experiment by connecting to the data col-
lection and experimental steering, the capabilities are not yet in
place to do this at the Spallation Neutron Source, Oak Ridge
National Laboratory, and a number of steps are still carried out
manually. However, the study here provides a proof-of-principle
for deeper integration of machine learning into neutron scattering
pipelines as well as allowing us to understand a complex condensed
matter system on a rapid timescale.

Results
Neutron scattering experiments. The experimental neutron
scattering pipeline can be abstracted into four aspects2, shown
schematically in Fig. 1a. The first one, (I), consists in the mod-
elling of the material under study and the design of the scattering
experiment and its optimisation. In this stage the underlying
hypothesis and possible theoretical models of the material to be
studied are considered, and the experiments are planned
accordingly. This determines the specific type of experiment that
is going to be performed, (elastic/inelastic scattering, Small angle
scattering, etc.), the environment (temperature, pressure, external
magnetic field, etc.) and guides the choice of specific instrument
and sample environment (cryostats, pressure cells, magnets, etc.).
The experiment is conducted in this stage and the output––the
scattering data––is transferred to the next stage together with the
specific instrument parameters and the set of possible relevant
model parameters. The second stage of this pipeline, (II), is the

parameter space exploration and treatment of information. Here,
one part involves identifying the relevant information contained
in the experimental scattering data, eliminating experimental
artefacts (such as extraneous scattering signal from the environ-
ment), de-noising the signal, and removing signals not relevant
for the specific study (e.g. nuclear Bragg scattering in a diffuse
scattering experiment). During this process, the model, if avail-
able, is also explored at length, identifying relevant sectors in
parameter space. The pipeline then branches into two parallel
aspects: one outcome of the experiment, (III), is the determina-
tion and prediction of structure and properties of the system
under study; the other, (IV), involves refining a theoretical
description of the system that allows for wide parameter space
predictions and the construction of phase diagrams, maps that
distinguish regions with distinctive properties.

Machine learning can play a significant role in all these stages,
closely integrating data handling and analysis with modelling and
theoretical phase space exploration, allowing for high-level on-
site feedback during the experiment. The scheme presented here
introduces an element into this pipeline, the latent space, LS, that
forms the backbone of the ML operation. This is a space of
reduced dimensionality into which experimental data, simula-
tions and predictions feed and from which structure, property
and model parameters are predicted (see Fig. 1a). The choice of
the characteristics of this space is crucial: its dimensional
reduction drives data compression, a central concept of this
design, as it is designed to reduce experimental noise and remove
artefacts. The experimental data and simulations are encoded into
LS; its representations are then either decoded for human-
readable comparison between experiments and modelling or
directly used by ML modules to construct a phase diagram of the
system or determine model parameters that best fit experimental
conditions. Processed results and improved modelling and
predictions are fed back into instrument and experimental
parameters. In the present implementation this feedback still
requires some human intervention (indicated in the figure with
human silhouettes), but the introduction of ML already enables
real-time high-level prediction that would not be achieved
otherwise. Parameter space exploration can be a formidable task,
as models required to understand technologically relevant
materials increase in complexity. In the example presented here
a conventional simulation for a single set of parameters can take
about 330 CPU hours. In the ML implementation the generative
network model (Fig. 1b) takes a set of parameters and directly
returns an element of LS. In the current example this reduced the
time to a maximum of 0.1 CPU seconds per point. This enables
real-time exhaustive phase space exploration with the usual
computer power available for users at a neutron scattering
instrument: a normal laptop or desktop computer.

In our scheme, the characteristics of the latent space are
determined as an outcome of the training of the NLAE modules.
Autoencoders were originally developed as effective tools for
image compression and denoising in the context of computer
vision. The aim of the NLAE here is to return a version of the
original input where noise is reduced and some experimental
artefacts removed. This is achieved by putting the information
through a "double funnel” : first the data is encoded into a space
of reduced dimensionality, with the consequent loss of informa-
tion, and subsequently, it is decoded back into the original
representation. The dimension of the intermediate space is
minimised such that no relevant information is lost, the training
ensures the lost information corresponds to the noise and
artefacts. The intermediate representation thus obtained defines
the latent space LS, and the NLAE encoder and decoder
networks become the input/output interfaces with it.
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As it stands, the scheme with the integrated ML modules
presented here, summarised in table 1, allows for qualitative
change in the efficiency of neutron experiments. Fast calculations
and parameter determination open up the possibility of wide
parameter space exploration that feedback in real time into the
experimental parameters. The on-site categorization of theoretical
phase diagrams and identification of experimental phases
provides unprecedented information during the experiment that
guides experimental choices of instrument parameters and
sample environment. It is possible to envisage full automation
for some preliminary investigations, where some of the feedback
from stages III and IV to I are done autonomously. In its current
implementation it is ideally suited for investigation of complex
materials, where direct scientific input is still required, delivering
a qualitative change of efficiency and breath to the neutron
scattering experiment.

We will showcase the ML aided approach by studying the
behaviour under hydrostatic pressure of Dy2Ti2O7, a notable
example of a magnetically frustrated material.

In geometrically frustrated materials, the dominant pairwise
interactions cannot be simultaneously minimized due to
constraints dictated by the arrangement of spins on the lattice.

Intricate correlations as a result of the mutually struggling
ordering tendencies become manifest in the ground states. Real
materials are rich systems, with multiple magnetic interactions
covering a broad range of energies and length-scales. The
neutralisation of the dominant forces leave the ground open for
minor players to determine the outcome. Frustration can thus be
an avenue towards subtler, more exotic types of order at low
temperatures, such as exponentially degenerate ground states6,
fractionalized magnetic excitations7, gigantic anomalous Hall
effect8, spin-glasses and spin-liquid phases9.

Spin-ices can be described as classical ferromagnetic Ising spins
on the cubic pyrochlore lattice (see Fig. 2a). The ground state of
the system is an exponentially degenerate disordered state: a three
dimensional spin-liquid with an emergent gauge field and
fractionalised excitations10. In real materials, such as Dy2Ti2O7

(DTO) and Ho2Ti2O7 (HTO), the situation is more complicated
and several magnetic interactions are necessary to account for
experimental observations11,12.

The material of our choice, Dy2Ti2O7, is perhaps the cleanest
spin-ice material, and as such it has been heavily studied. The
system is under a delicate balance of interactions. Fits to
experimental data result in a complex empirical Hamiltonian,

Fig. 1 Schematic overview of machine-learning integration into the direct and inverse scattering problem. a The ML workflow used here to drive the
scattering experiment with automated data analysis and feeding back vital information. The workflow is split into four main sections: (I) scattering
experiment design and optimization; (II) parameter space exploration and information compression; (III) structure or property predictions; and (IV)
parameter space predictions. Section II links to both III and IV via latent space, LS, a compressed version of the large pixel space. Dashed lines with a
silhouette indicate parts of the flow that currently still require some human intervention. The latent space representations, S(L), are used in surrogates that
bypass expensive calculations. b Schematic design of the surrogate model used to predict S(L) and S(Q) for a model with a given set of parameters,HðpÞ. It
comprises a radial basis network, mapping parameter space to latent space and a decoder to reconstruct S(Q) from latent space representations. The
training of the surrogate is done based on a set of S(L) obtained from a set of models at different parameters, fHðpÞg, using Monte Carlo simulations and
NLAE encoding. These surrogates are used for exhaustive searches of parameter space, identifying phases and phase transitions, and predicting optimal
regions for experimental study. More simulations are done iteratively in the areas of interest, and the surrogates are trained accordingly to improve their
prediction accuracy.
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HðpÞ, where the parameters, p ¼ ðJ1; J2; J3; J30 ;DÞ, are: a nearest
neighbour, next nearest neighbour, two inequivalent third nearest
neighbour exchange interactions, (see Fig. 2 a), and a magnetic
dipolar interaction term13,14,

HðpÞ ¼ ∑
α¼1;2;3;30

Jα ∑
<i;j > α

Si � Sj þDr31 ∑
i;j

Si � Sj
jrijj3

� 3ðSi � rijÞðSj � rijÞ
jrijj5

" #
:

ð1Þ
As expected for a frustrated system, even within a restricted
region of parameter space there is an abundance of competing
phases. Experimentally, the control of external parameters such as
pressure, both uniaxial15,16 and hydrostatic17,18, doping19,20, and
magnetic field can be used as a powerful tool to search for new
ordered states in frustrated systems (see Fig. 2b). This opens a
vast multi-dimensional space to be explored and one where ML
enabled neutron scattering experiments can be groundbreaking.

Machine learning integration scheme. We now analyse in detail
how machine learning can be integrated in the different stages of
a neutron scattering experiment as represented in Fig. 1a.

Scattering experiment design and optimization. Effective design of
an experiment involves setting up the instrument and measure-
ment parameters to collect meaningful data to test underlying
hypotheses or refine models. The initial hypothesis or model is
used to determine the initial instrument parameters and experi-
mental conditions. As measurements evolve there is a double
feed-back process: On one side, processed results at different
stages are fed back (stage III to I) that change the instrument
parameters (such as temperature pressure or magnetic field), on
the other, improved modeling and predictions feed back into the
initial hypothesis, and subsequently into instrument and experi-
ment parameters (stage IV to I). The latter requires a detailed
analysis of the results and is usually unachievable in real time
during experiments.

Combining hierarchical clustering from the latent space of the
NLAE and the use of a generative model allows the rapid
construction of hypothetical phase diagrams for the behavior of
the material. Analysis of the data processed through the
autoencoder and its comparison with the measurement allow
for differences with the model to be detected. Meanwhile, the
variance of the values in latent space determine the degree to
which distinguishing features are detected, giving a criterion for
sufficiency of counting and measurement. Data sets at other
conditions such as field, pressure, and temperature then provide
validation of the model and parameters determined. A pre-
trained NLAE and generative model speed up the process to the
point where feed-back from fully processed results can also be
used live in the experiment.

In the case of DTO, the pre-trained NLAE and GM [see
Methods] allowed to predict a phase diagram (Fig. 2c) at finite
temperature which shows finely balanced structures controlled by
further neighbor exchanges. In combination with previously
considered phase effects4, trends anticipated from physical
variables such as uniaxial and hydrostatic pressure, applied
magnetic field, and doping effects can be projected out from such
phase diagrams in terms of their control over phase stability,
Fig. 2b. Hypotheses can then be constructed and targeted.

Here we hypothesize that the morphology of the recently
proposed structural glass state21 and its related anomalous
noise22 in spin ice should be tunable. This would provide a
testbed for out-of-equilibrium behavior in a model magnet; an
experimental scenario that would facilitate systematic study of
long-standing questions regarding breakdown of ergodicity. As
indicated in Fig. 2b applied field, doping, and uniaxial pressureT
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are not expected to be effective wherease hydrostatic pressure is
expected to appropriately couple into the frustration between
interactions. On this basis hydrostatic pressure was selected to
tune DTO between phases, combined with temperature to map
the development of irreversibility, and the results where analysed
in real time to vary experimental parameters.

Information compression and parameter space exploration. The
structure factor determined by neutron experiment, SexpðQÞ, is the
observed diffracted intensity at a given scattering vector Q and
contains detailed information about the system including corre-
lations and the possible existence of long- and short-range-
ordered structures. Traditionally, direct inspection of SexpðQÞ, and
comparison with simulated structure factors, SsimðQÞ, were the
tools used for extracting experimental information.

With Machine Learning both these processes can be greatly
optimised. First, SexpðQÞ, and SsimðQÞ, can be considered
volumetric images that need to be analysed and compared, and
the usual processes of compression and comparison in latent
space used. Second, the expensive process of calculating structure
factors SsimðQÞ, based on model parameters, usually performed
using Monte Carlo simulations [see Methods] can be tackled in a
more efficient way by means of a surrogate that directly generates
compressed representations of model information.

The first part requires an encoder. Large volumes of S(Q),
about 106− 108 pixels, covering several Brillouin zones, have to
be considered. While similar structure factors are expected to
indicate phase information of the model and data, the vast Q-
space dimensionality renders any analysis impractical. To address

this dimensionality reduction techniques are needed, e.g. Non
Linear Autoencoders (NLAE) or Principal Component Analysis
(PCA), that compress information to a latent space of much lower
dimension (dL), of the order of 100−102, while preserving a one-
to-one correspondence between the compressed S(L) and the
original S(Q). PCA is a commonly used linear technique for
dimensional reduction, that involves computing the principal
components of the input distribution and linearly transforming
from the original basis. While a linear autoencoder is essentially
performing principal component analysis, the flexibility of a
NLAE allow for further compression and more efficient
representations of the same problem (see23 for a detailed
comparison of these two approaches).

For this work we trained a NLAE architecture comprising an
Encoder and a Decoder [see Methods]. The Encoder takes a
linearized version of S(Q), and compress it into the lower-
dimensional representation, S(L). The Decoder outputs a
predicted structure factor, SAE(Q), for any S(L). The full NLAE
architecture is used for the training of the autoencoder itself,
minimizing the deviation between the input, a series of
simulated structure factors SsimðQÞ, and the filtered output.
The dimension of the latent space should strike a balance
between overfitting and underfitting. Keeping dL relatively small
limits the autoencoder from fitting irrelevant noise in the
training data. On the other hand, dL should be large enough to
allow the autoencoder flexibility to capture physically relevant
characteristics in S(Q). Based on the dependence of the error on
the validation set we determined dL= 30 for this work. We have
used as an initial approach a linear version of S(Q), where all

Fig. 2 Structure of the magnetic system, phase map and generative model. a In the frustrated material considered in this work, Dy2Ti2O7, the magnetic
moments located on Dy ions are constrained by crystal field interactions to point in or out of the tetrahedra. They form a corner sharing pyrochlore lattice.
Nearest neighbors (1), next-nearest-neighbors (2) and two inequivalent next-next-nearest neighbors (3 and 3'); interactions are shown as thick colored
lines. b Schematic diagram of the experimental parameters that can be used to tune the properties of frustrated materials and their associated effects. c A
predicted map of magnetic orderings for varying J3 and J30 with the remaining Hamiltonian parameters J1, J2, and D fixed to 3.41 K. 0 K and 1.3224 K
respectively. The coordinates of a three-dimensional latent space predicted by a Generator network have been converted to an RGB color code. A region
with uniform color is expected to be structurally the same, and continuous color changes correspond to either crossovers or continuous transitions.
d Comparison between the high-symmetry-plane slices of simulated and surrogate-predicted S(Q) data at multiple places in parameter space (labelled
from I to V) as indexed on panel (c).
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rows of the matrix are sequentially concatenated. This allows
for a much simpler network architecture. Since neutron
scattering data is a Fourier transform of a correlation function,
local information in real space is not stored in neighbouring
data in S(Q). The results with the linearized version are
sufficiently good that more elaborate network architectures are
not necessary for this kind of analysis.

The second part consists in building a generative network
model (GN), a surrogate to bypass computationally expensive
direct solvers. The GN maps model parameter space, fHðpÞg
directly into S(L). This makes exhaustive searches possible and
enables live experiment planning and parameter space mapping.
These predictions depend on the degree of training of the
network, and on the topography of the phase space and the
sparsity of the sampling. They do not fully replace simulations
and should not be used to draw conclusions when detailed
information is needed. These surrogates can also be used as the
low-cost estimator in the iterative mapping algorithm workflow
as an alternative to the Gaussian Process Regression of ref. 4.

Figure 1b shows the design of the surrogate implemented in
this work. A Radial Basis Network (RBN), labeled as Generator is
trained using Monte Carlo simulated data SsimðQÞ [see Methods
for details]. A quantitative measure of the predictive power of the
GN is given in Supplementary Fig. 2, where a comparison is
shown between the predictions for three vectors in LS given by
the GN (solid lines) and those calculated from the direct solver
(symbols), as one of the model parameters is varied. The
corresponding SsimðQÞ, were not included in the training of the
GN or the NLAE. In the case exemplified, each MC simulated
point takes of order of 330 CPU hours to run while the surrogate
model takes less than a second.

The information from experiments and model (both from
simulations and GN) and compressed into LS is then transferred
to processes III and IV.

Structure or property predictions. In the integration of ML into the
scattering pipeline the information encoded into LS has to be
decoded in order to provide some direct feedback into experi-
mental planning (I), and to allow for human-readable compar-
ison between experiments and modeling.

The decoder section of the NLAE trained previously serves this
purpose. An example of human-readable data comparison is
given in Figure 2d. Here the MC calculated scattering patterns
SsimðQÞ (labelled Simulation) for five different points in parameter
space are compared with the corresponding predictions from the
GN model (labelled Surrogate). The five parameter points are
scattered along the J3 � J30 plane as indicated by the circled
numbers shown in Fig. 2c. These points in parameter space are
not part of the training set of the GM.

The comparison shows that the predictions are fairly good in
most of the regions considered. They are expected to be worse in
regions where parameter space is sparsely sampled and the S(Q)
is rapidly changing. For example, in the regions where phase
transitions or rapid cross-overs occur, as is the case for the point
labelled aⓐ. Here, more samples are needed in order to increase
the prediction accuracy of the surrogate. This is a dynamical
process and the surrogate could be retrained on demand. Even
though the prediction accuracy may be weak over some regions,
the surrogates are still useful to locate regions with certain
correlations that can be later verified with calculations using more
time-demanding simulations.

Parameter space predictions. The last section of the ML pipeline
also takes as input the latent space LS. There are two main tasks
within this section: the Latent Space Optimization or solution of

the inverse scattering, which provides feedback into the Model/
Hypothesis of section I, and the data Auto-classification in order
to generate a phase diagram of the system.

Latent Space Optimization. The inverse scattering problem is
usually an ill-posed one where ML optimisation can make an
important contribution. The determination of the model para-
meters p that best fit experiments involves a minimization in a
multi-dimensional parameter space (d= 4 in our example). A ML
assisted scheme was recently introduced4 that by working in the
compressed LS and introducing a new error measure, χ2SL ,
defined as the sum of the squared distance between latent space
vectors of experimental and simulated data, can greatly improve
optimization over traditional methods. The problem was then
treated within the framework of an Efficient Global Optimization
algorithm. In this work we use an improved variant of that
version, an Iterative mapping algorithm (IMA), that involves the
use of the GN module, with a different training, rather than a
Gaussian process regression [see Methods for details].

In this approach, one iteratively constructs a dataset of
carefully sampled Hamiltonians HðpÞ. For each of these, one
calculates the simulated structure factor SsimðQÞ. The data is then
converted to latent space by means of the NLAE encoder and the
deviation χ2SL from the data to be fitted is calculated. With all such

data, one builds a low cost regression model χ̂2SL that predicts χ
2
SL

for Hamiltonians not yet sampled. The low-cost model χ̂2SLcan
then be rapidly scanned over the space of Hamiltonians. In this
approach, χ̂2SL is calculated with the RBN module used for the GN,

now trained with the p and corresponding χ2SLobtained from the
simulations used as inputs and target respectively. This surrogate
also acts as a denoiser, effectively "averaging out” uncorrelated
stochastic errors in the χ2SL data.

The IMA process collects samples subject to the condition that
χ̂2SL is below an error tolerance threshold, CL. This threshold is

reduced gradually from CL= 1 to Cfinal
L ¼ 0:05 over 10 steps. The

NLAE and the RBN are then retrained to better fit the region
towards which the process is focusing. As more data is collected,
the prediction accuracy of the RBN towards the minimum of
χ2SLbecomes higher. Fig. 3b shows 3D cuts of the DTO 4D

parameter space. The coloured areas correspond to χ2SL< Cfinal
L for

different conditions (0 GPa, 1.3 GPa, etc.).
Autoclassification and Phase Diagram Generation. One of the

aims of a scattering experiment is to determine a phase diagram
for the system, a map of the different types of order the system
displays under different circumstances. The correlations of the
system are encoded in S(Q) (and consequently in S(L)) and
parameter sets corresponding to the same structure would cluster
together in either Q− or L− space. Thus, archetypal hierarchical
clustering can be easily used to classify the main phases. However,
such clustering analysis would fail when the system undergoes
continuous transitions or crossovers rather than abrupt first-
order like changes. In this case it is still possible to easily
construct a graphical phase diagram. LS can be further reduced
by an additional NLAE with an output into a three dimensional
latent space, LS0, and the resulting vectors treated as the RGB
color components of a phase map. Alternatively, the Q− space
can be directly reduced to an L0�space with dL= 3 (see ref. 5).

In the case studied here, the initial LS, with dL= 30, was
further reduced by a second NLAE, into LS0 with d0L ¼ 3. Also,
separate GN was trained with the p and SðL0Þ as the input and the
target respectively. Figure 2c shows a map of the magnetic
orderings (phase map) by varying J3 and J30 , generated in such a
manner.
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Neutron scattering of Dy2Ti2O7 under pressure. For the case
study neutron experiment, an isotopically enriched single crystal
sample of Dy2Ti2O7 was prepared, and used to perform neutron
diffuse scattering experiments at the Elastic Diffuse Scattering
Spectrometer, CORELLI at the Spallation Neutron Source, Oak
Ridge National Laboratory under zero and finite pressure con-
ditions (see Methods and Supplementary Note 1 for details).

Figure 3a shows the magnetic structure factor for three
perpendicular slices in reciprocal space at 0 GPa (upper row)
and 1.3 GPa (lower row), all taken at a temperature T= 680 mK.
The temperature has been chosen so that it is low enough for
correlations to be well developed but sufficiently high to reach
equilibrium over a short time scale (see e.g ref. 22). Each panel
shows a comparison between the experimental data (left) and the
simulated patterns using the ML optimised parameters (right). In
all cases there is a very good agreement between experiments and
simulation. Notice that the simulations intentionally exclude
nuclear Bragg peaks, not relevant for the magnetic structure
investigated here. A comparison between the 0 GPa and 1.3 GPa
data shows minor changes, corresponding to a slight sharpening
with pressure of features already present at 0 GPa, but the
structures are qualitatively identical. Pressure enhances short-
range correlations, but does not induce long-range order.

The ML processing allows for a quick and effective
determination of the variation in the Hamiltonian parameters

(see Supplementary notes 2 to 6 for details). The variation
with pressure in the lattice parameter is negligible up to 1.3
GPa, as determined from the nuclear Bragg peaks. This means
that no variation in the dipolar interaction parameter D
needs to be considered, and the parameter space becomes
effectively four-dimensional. Figure 3 shows different three
dimensional cuts of this four dimensional parameter space. The
light blue and red volumes correspond to the region in
parameter space where the χ2L is minimised for 0 GPa and 1.3
GPa respectively, as determined from S(Q) using the IMA. In
the case of ambient pressure, this volume can be further
reduced by considering also specific heat data (dark blue
region). While S(Q) leaves ill constrained both J1 and the
relation 3J2− J3, it is clear that there is no overlap between the
optimal χ2L volumes, and that the effect of pressure is to induce a
shift in the value of J 03 of ≈3 mK. The optimal parameters for 1.3
GPa are marked as white circles in the J3 � J 03 phase diagram of
Fig. 2b. Pressure moves the system deeper into the blue region,
where only short-range correlations arising from subsets of ice-
states are present.

The parameters determined for 1.3 GPa can be easily validated
by looking at the temperature dependence of S(Q). Fig. 4 shows a
2D slice of S(Q) in [l, l, l]− [k, k,− 2k] for six temperatures
(between 300 mK and 1.5 K). Each panel is a side by side
comparison of the experiment, on the left-hand side of the panel,

Fig. 3 Comparison of magnetic structure factor from both experiment and theory at different pressure and parameter fit. a Three perpendicular slices
of 3D volumes of SexpðQÞ are shown for 0 GPa (top) and for 1.3 GPa (bottom). Each panel is a side-by-side comparison of experiment (left) and simulation
(right). All data was collected at T= 0.68 K. Notice that the simulations exclude nuclear Bragg peaks, not relevant for the magnetic structure investigated
here. b Three 3D slices of 4D solution manifolds with J3=0 K, J2=0 K and J1=3.41 K respectively. The coloured contours denote the the region in parameter
space that best fit SexpðQÞat 0 GPa (blue) and 1.3 GPa (red). Black contours denote the combined uncertainty for the fit to SexpðQÞand the heat capacity (Cv)
at 0 GPa. The light blue plane indicates the usually accepted value of J1= 3.41K. Both J1 and 3J2− J3 are ill-constrained by SexpðQÞ, yet the relation
J2+ 3J3=− 0.0394K holds for both datasets (0 GPa and 1.3 GPa). Combining SexpðQÞwith Cv further reduces the uncertainties of the solution.
Unfortunately, it is extremely hard to measure heat-capacity of a material under pressure. However, the uncertainty along J03 is low enough to clearly
resolve a difference of≈ 3 mK in J03 as a hydrostatic pressure of 1.3 GPa is applied.
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and the simulation, on the right-hand side, using the parameters
determined with the ML optimisation for T= 680mK. The
agreement at all temperatures between model and experiment is
very satisfactory.

The effective Hamiltonian obtained using ML has predictive
power and can be used to explore the consequence of a further
increase in J 03. Fig. 4g) shows the evolution of a cut in
[l, l, l]− [k, k,− 2k] of S(Q) as J 03 is gradually increased from 0
towards 0.3 K with the other parameters fixed. The features
sharpen, but no proper long range order (LRO) is established.

Discussion
The results here show that the application of machine learning in
the planning, collection, analysis, and interpretation of neutron
experiments and data provides a powerful capability. It is easy to
imagine the extension of this approach to inelastic data and
other codes.

Instrumental effects. The effects of instrumental resolution are
straightforward in the case of diffuse scattering where the signal is
broadened and so is not strongly affected. In other applications
resolution will be more challenging. Surrogates based on Monte
Carlo ray tracing simulations of instruments should be able to
provide fast capabilities for computation of resolution effects.
Codes are available, e.g. McSTAS24 and McVINE25, by which
simulations over ranges of cases can be made available for
training.

Data compression. Non-linear autoencoders are successful at
efficiently compressing input from diffuse scattering. Other
architectures could provide even more effective training. For
example Euclidean Neural Networks (ENN) can exploit the
symmetries in crystalline samples which may make them train-
able with far fewer simulations26. Certainly the relatively small
dimensionality of the latent space here implies a high degree of
compression which a network that encodes some physics into
may very effectively learn for complex cases. These also open the
way for more generic training over a wide range of Hamiltonians
as well as experimental data itself. Such an ENN could form the
basis of a more model agnostic compression of experimental data.
Combined with Bayesian analysis this would provide a basis for
assessing experimental data for more autonomous steering of
experiments.

Data processing. A well trained NLAE, as utilized here, suc-
cessfully undertakes filtering of experimental background and
artifacts. Alternative approaches, which are suitable for cases
where less precise models are available, involve identifying
background and artifacts more straightforwardly. Generally these
will provide signals that do not correspond to the underlying
symmetries and physical constraints so physics informed net-
works such as ENNs should provide good discrimination.
Another approach is to use both measured background data sets
and simulations to train machine learning to identify and remove
these signals. Generally, instrumental backgrounds correspond to
a limited number of processes such as scattering from sample
environments or phonons from sample mountings.

Fig. 4 Validation over temperature dependence and prediction of scattering data. Two-dimensional slices of [l, l, l]− [k, k,− 2k] at six temperatures: (a)
300 mK, (b) 400 mK, (c) 500 mK, (d) 680 mK, (e) 900 mK and (f) 1.5 K. Each panel is a side by side comparison of experiment (left) and simulation
(right). All the experimental data shown here are collected at 1.3 GPa. The parameters for the simulations are J1= 3.3(3) K, J2=−0.079(8) K,
J3= 0.010(4) K, J03 = 0.075(5) K and D= 1.3224(1) K. g The evolution of calculated SsimðQÞas a function of J03 with fixed values of other exchange
parameters at J1= 3.33 K, J2=−0.05 K, J3= 0 K and D= 1.3224 K.
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Integrated workflows. The simulations and training of the
machine learning components as well as data processing requires
coordination over data and computing resources. Current
instrument control systems at the Spallation Neutron Source and
High Flux Isotope Reactor at Oak Ridge National Laboratory are
able to integrate feedback from analysis. However, the scheduling
and management of the simulations and data processing using
machine learning requires an infrastructure that can combine
edge and high-performance computing resources. This requires
to work over a delocalized network where specialized codes will
be required to run at other institutions. These developments will
be needed if machine learning is to transform experiments
beyond simpler cases of diffraction and small angle scattering
where large data bases and standard codes are available.

Modeling. A large number of approaches to the simulation of
magnetic structure and dynamics are available. Our work for
elastic and inelastic scattering has utilized Monte Carlo and
Landau Lifshitz approaches which cover a wide range of cases5.
Spinwave theory provides fast computation for simple magnon
dynamics and codes are available27. More interestingly, machine
learning holds the promise of being able to interface sophisticated
simulations28 that include quantum effects including correlations
which are important to quantum materials. Examples are density
matrix renormalization group29, quantum Monte Carlo30, dyna-
mical mean field theory31 and dynamic cluster approximation
approaches to name but a few. Efficient training is of paramount
importance as these are computationally expensive methods to
run. However, bringing such state-of-the-art theoretical methods
closer to experiment would undoubtedly have a significant impact
on our understanding of quantum materials. Further, artificial
intelligence is being used to accelerate these methods and can be
expected to facilitate their integration with experiment in the
foreseeable future.

Applications. The general approach to machine learning inte-
grating into neutron scattering is potentially applicable to a wide
range of science cases. A wide array of diffuse scattering problems
could be approached this way with large scale atomic simulations
being an obvious starting point. Inelastic data is well suited also.
Crystal field measurements should be considered and may well be
open to a significant degree of automation of measurements and
analysis. Powder inelastic scattering is also well suited which
could make a significant impact on throughput and time to
understand materials. Finally, single crystal inelastic scattering
from quantum magnets, itinerant and superconducting materials,
and anharmonic phonons are obvious targets.

Pressure control of a magnetic glass. In the case study experi-
ment undertaken here, the results show that the further-neighbor
couplings of Dy2Ti2O7 are successfully tuned by hydrostatic
pressure. The pressure applied of ≈1.3a GPa perturbs the system
modifying the nanoscale magnetic order from ambient pressure.
The morphology of the resulting glass21 restricts monopole
pathways and is a key property reflecting the phase ordering
kinetics. Recently, we have proposed spin ices as a model systems
to explore glass formation systematically21,22. The results here are
promising; diffuse neutron studies reaching ~7 GPa are feasible.
Over such a range significant variation would be attainable and
the role of subtle interactions on the development of non-
equilibrium phases rigorously testable. Anomalous dynamics,
such as colored noise spectra, are signatures of memory effects22

and when combined with diffuse scattering give a comprehensive
characterization of the state. The systematics then could provide a
powerful connection between theory and experiment for the long

standing and difficult problems involving the fundamentals of
glass and correlated liquid behavior; a connection made possible
by ML based approaches.

In this paper we have proposed a scheme for the application of
machine learning to neutron scattering that enables high-level
real-time feedback. The approach uses non-linear autoencoders
to undertake compression to a latent space from training data
involving computationally expensive simulations of neutron
scattering data. A generative model provides fast calculations
which allow identification of areas of interest and experiment
planning. Hierarchical clustering provides categorization of
theoretical phase diagrams and identification of experimental
phases from measurements. The NLAE also provides capabilities
for accurate parameter determination and data treatment/
handling. We explore these capabilities on the highly frustrated
magnet Dy2Ti2O7 under pressure. This material has a complex
physical behavior which can be extracted rapidly from the
combined measurements and data analytics based on simulations.
Our analysis shows that hydrostatic pressures of up to 1.3 GPa are
able to modify the magnetic interactions of the material leading to
the prediction that substantially higher pressures may cause a
magnetic phase transition. This provides a route to a pressure
tunable structural glass.

Methods
Characteristics and training of the Autoencoder. For the construction and
training of the NLAE we follow the approach introduced in ref. 4. We use a non-
linear autoencoder (NLAE) composed of two networks: a Encoder and a Decoder32.
The Encoder takes a linearized version of the S(Q) (either simulated or experi-
mental) and compress it into a lower-dimensional representation S(L). This latter
space is referred to as the Latent space, LS, and its dimensionality is determined in
the training during the hyper-parameter tuning step4. The Decoder network
returns a structure factor, SAE(Q) for any provided S(L).

If the encoder and decoder are used in tandem, the resulting structure factor
SAE(Q)captures the essence of the input S(Q) removing irrelevant information,
including noise and artefacts if present. The dimension of the latent space needs to
be tuned so that the NLAE acts as a ’poor identity’ where not all information can be
carried through. The aim of the training is to ensure that the lost information
corresponds to noise and artefacts. Part of this is obtained by using simulated data
for the training, with low noise levels and no experimental artefacts.

Training Previous training on elastic neutron scattering signal determined the
optimal dimension of the latent space to be dL= 30 (see ref. 4). A NLAE of 30-
dimensional latent space was trained using simulated structure factors, SsimðQÞ,
obtained by means of the direct solver (see relevant methods section). For the
training, the dataset has to be sufficiently broad that it would cover all potentially
important characteristic scattering features.

For DTO our training data consisted on a 1000 model Hamiltonians of the form
of eq. (1), labelled by their coupling parameters p. We used the direct solver (DS) to
calculate an equilibrated three-dimensional SsimðQÞ for each HðpÞ and split this
into two groups: 90% were used as the training dataset and remaining 10% was
used as test data. The model parameter space was sampled iteratively through the
IMA within the parameter range J1= 3 K to 3.8 K, J2=−0.5 K to 0.5 K, J3=−0.3
K to 0.3 K and J36

0 = 0 to −0.3 K. The autoencoder tries to minimize the deviation
between its input S(Q) and its outpur SAE(Q), summed over all random models in
the dataset. The loss function used in this minimisation is

L ¼ 1
N

∑
fpg;Q

mðQÞðSðQÞ � SAEðQÞÞ2

þ λ

2
∑

fpg;Q
W2 þ β∑

D
KLðρjjρ̂DÞ:

ð2Þ

Here m(Q)= 0, 1 can be used to mask some experimental artefacts. The second
and third terms are two types of regularisation: the first one on the weight matrix,
W, and the second a Kullback-Leibler regularisation on latent space sparcity. ρD is
the average activation value of the hidden layer neurons and ρ, the desired average
activation value, set to 0.05 (see ref. 4 for details). To find the model parameters
that minimize L, we have used the scaled conjugate gradient descent algorithm,
both in MATLAB and and Keras33, a deep learning API written in Python.
Although more complex architectures such as multilayer convolutional neural
networks (CNN) or variational autoencoders, the simple version used here works
well for the S(Q).

Building and training of the Surrogate. Building a Surrogate to bypass compu-
tationally expensive direct solvers is essential for drawing exhaustive information
based on existing results. The surrogate maps between the model parameter space,
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fHðpÞg and their corresponding structure factors, S(Q). It is composed of two parts:
a Generator and a NLAE Decoder (see Fig. 2b).

The Generator is a Radial Basis Network (RBN) trained to predict latent space
representations, Ssur(L), for an input of HðpÞ with a given set of parameters, p.
These are then fed through the Decoder network of the trained NLAE to calculate,
SsurAEðQÞ.

The RBN of the Generator is composed of two layers: an input layer of radial
basis (RB) neurons followed by an output layer of logistic neurons. The latent space
predictions, Ssur(L), for a given set of parameters p are defined as:

SsurðLiÞ ¼ f 2 ∑
j
wð2Þ
ij hjðpÞ þ bð2Þi

� �
ð3Þ

where f2 is the logistic activation function f2(x)= 1/(1+ e−x), similar to the one
used in the output layer of the NLAE encoder, W(2) is the weight matrix and b(2) is
the bias vector of the output layer. Here,

hiðpÞ ¼ exp �
∑jðpj � cijÞ2

σ2

" #
: ð4Þ

The values of the weight matrix elements wð2Þ
ij , the bias vector b(2) and the

clustering centers cij of the RB layer are determined in the training process. The loss
function in this case is defined as,

L ¼ ∑
fpg

1
Nν

∑
ν
ðSsimðLÞ � SsurðLÞÞ2

� �
ð5Þ

and is minimized using the Adam optimization algorithm for a preset number of
radial basis neurons. The spread of the RB functions, σ, is preset to 0.05. The
network is trained using the outputs of the Direct solver, SsimðLÞ, as the target and
the corresponding p as the input (see Fig. 2b). Thus the input and the output
dimensionality are set by the dimensionality of the {H(p)} and of the latent space
respectively. The number of neutrons in the RB layer is determined during the
training process. The training starts with no neurons in the hidden layer and
iteratively adds neurons in order to minimize the error between output and the
target, with a termination condition in which the prediction error is below a preset
threshold. In our runs this number is between 20 and 30 neurons. This step was
initially implemented in MATLAB using the newrb function in Deep Learning
Toolbox. We have also implemented this in Python using Keras.

The complete surrogate to predict S(Q)for a given parameter set, p, is built by
joining the RBN to the decoder part of the NLAE trained in a prior step.

Monte Carlo based Direct Solver for scattering SsimðQÞ. We use a standard
Monte Carlo based direct solver for the neutron scattering (see e.g. ref. 4). In DTO
the individual vector spins Si ¼ Sxi ; S

y
i ; S

z
i

� �
are at positions Ri which are located on

the pyrochlore lattice and behave as classical Ising spins that can point in or out of
the tetrahedra. The energy due to interactions is given by the spin Hamiltonian,
HðpÞ of equation (1). The set of interactions spans p ¼ ðJ1; J2; J3; J30 ;DÞ. For our
simulations we fix D ¼ 1:3224 K.

Realistic spin configurations can be prepared based on the Metropolis
algorithm, a Markov Chain Monte Carlo method34. The Metropolis algorithm
anneals the configuration of spins to be representative of the system in thermal
equilibrium at a chosen temperature T. From these configurations a full range of
physical properties can be calculated.

The diffuse scattering from the magnetic system is (approximately)
proportional to the cross section35:

dσ
dΩ

¼ r2m ∑
α;β

gαgβ
4

δαβ �
qαqβ
q2

� �
´

´ jFðQÞj2Sαβ Qð Þ
ð6Þ

where Q is the wavevector transfer in the scattering process, rm is a scattering
factor, α, β= x, y, z are cartesian coordinates indicating initial and final spin
polarization of the neutron, F(Q) is the magnetic form factor and Sαβ Qð Þ is the
scattering factor correlation function:

SαβðQÞ ¼ 1
2πN

jSαQSβ�Qj ð7Þ

with

SαQ ¼ ∑
i
Sαi ðtnÞeiQ�Ri : ð8Þ

The actual measured cross sections SexpðQÞ depend on experimental conditions
including resolution. The direct solver then undertakes the transformation
HðpÞ→ SsimðQÞ to calculate the expected scattering signal for the given model and
parameters.

Iterative mapping algorithm (IMA). To find optimal values of the parameters p
that best describe a given S(Q) we use an Iterative mapping algorithm (IMA), a variant
of the Efficient Global Optimization algorithm. A dataset of carefully sampled
Hamiltonians HðpÞ is constructed iteratively. For each of these, SsimðQÞ is calculated
over a 3-dimensional volume of reciprocal space (61 × 81 × 21= 35721 pixels) using a

Monte–Carlo algorithm (see methods:MC direct solver). The data is then converted to
latent space by means of the NLAE encoder and the deviation from the data to be

fitted is calculated: χ2SL¼ 1=dL∑iðSexpðLiÞ � SsimðLiÞÞ2. With this data a low cost

regression model χ̂2SL is calculated that predicts χ2SL for Hamiltonians not yet sampled
with a much smaller computational cost (from 300 CPU hours to 0.1 CPU seconds at
each point). This low-cost predictor uses the same RBN architecture as the GN used to
predict S(Q). The training in this case involves using the χ2SL calculated from a set of
simulated Hamiltonians as target, and their parameters, p, as input. The low-cost
predictor is defined as χ̂2SL ¼ 1=dL∑iðSexpðLiÞ � SsurðLiÞÞ2, where Ssur(Li) is the output
from the GN. If a Gaussian Process Regression is used to predict χ2SL , the computa-
tional expense increases exponentially with the number of model parameters and it
becomes impractical beyond six.

The IMA process collects samples subject to the condition that χ̂2SL is below an
error tolerance threshold, CL. The NLAE and the RBN are iteratively retrained to
better fit the region towards which the process focuses. The IMA was run to fit the
DTO data measured at 680 mK, zero field and ambient pressure before the pressure
experiment. The pre-trained RBN was then used in real time to analyze the data at
680 mK and 1.3 G.Pa. (data in Fig. 3) and to predict model parameters with
uncertainty. The ellipsoidal approximation to the uncertainty corresponding to
χ2SL (1.3 G.Pa.) < CL (red) is shown in Fig. 3. The SsimðQÞ for the predicted
parameters for each data set is also shown in Fig. 3 compared to experimental data.
As shown in the Fig. 4, the predicted parameters for 1.3 G.Pa data were then
validated over the S(Q)datasets collected at multiple temperatures.

Experiment details
Crystal growth. For this work we used an isotopically enriched single crystal sample
of Dy2Ti2O7, grown using floating-zone mirror furnace (see4). The single crystal
was cut and polished to be cylindrical. The diameter, height, and mass are 1.8 mm,
5 mm, and 76.6 mg respectively. The cylindrical axis of the sample aligns with
[h,−h,0] crystallographic direction. The polished crystal was kept inside a Teflon
tube filled with Fluorinert FC-770 as a pressure transmission medium, and a
Copper-beryllium cell was used to apply hydrostatic pressures. A load of 0.9 tonnes
was applied using a hydraulic press, and the resultant pressure at the sample can be
estimated as ~1.3 GPa, according to Fig. 4 of ref. 36.

Diffuse neutron scattering experiment. Elastic Diffuse Scattering Spectrometer,
CORELLI at the Spallation Neutron Source, Oak Ridge National Laboratory was
used to perform experiments under zero and finite pressure conditions37.
Ambient pressure and 1.3 GPa experiments were performed on two different
beam-time and experiment setups. The dilution refrigerator insert was used in
both cases to enable the measurements down to 100 mK. A cryomagnet was used
in the ambient pressure experiment, and two datasets at temperatures of 100 mK
and 680 mK were collected under zero-field4. In the pressure experiment, the
loaded pressure cell was rotated through 360 degrees with the steps of 3 degrees
horizontally in the [H,H,L] plane of reflection at a fixed temperature. Seven
measurements were repeated at 300 mK, 400 mK, 500 mK, 680 mK, 900 mK, 1.5
K, and 19 K. The data was reduced using Mantid [24] and Python scripts
available at Corelli.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The computer codes that support the finding of this study are available at https://doi.org/
10.5281/zenodo.6491385, additional codes are available from the corresponding author
upon reasonable request.

Received: 4 August 2022; Accepted: 13 October 2022;

References
1. Hey, T., Butler, K., Jackson, S. & Thiyagalingam, J. Machine learning and big

scientific data. Phil. Trans. R. Soc. A 378, 2190054 (2020).
2. Chen, Z. et al. Machine learning on neutron and x-ray scattering. Chem. Phys.

Rev. 2, 031301 (2021).
3. Doucet, M. et al. Machine learning for neutron scattering at ornl. Mach.

Learning: Sci. and Technol. 2, 023001 (2021).
4. Samarakoon, A. M. et al. Machine-learning-assisted insight into spin ice

dy2ti2o7. Nat. Commun. 11, 892 (2020).

ARTICLE COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00306-7

10 COMMUNICATIONS MATERIALS |            (2022) 3:84 | https://doi.org/10.1038/s43246-022-00306-7 | www.nature.com/commsmat

https://doi.org/10.5281/zenodo.6491385
https://doi.org/10.5281/zenodo.6491385
www.nature.com/commsmat


5. Tennant, A. & Samarakoon, A. Machine learning for magnetic phase diagrams
and inverse scattering problems. J. of Phys.: Condensed Matter https://doi.org/
10.1088/1361-648X/abe818 (2021).

6. Bramwell, S. T. & Gingras, M. J. Spin ice state in frustrated magnetic
pyrochlore materials. Science 294, 1495–1501 (2001).

7. Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice.
Nature 451, 42–45 (2008).

8. Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin
chirality, berry phase, and anomalous hall effect in a frustrated ferromagnet.
Science 291, 2573–2576 (2001).

9. Gardner, J. S., Gingras, M. J. & Greedan, J. E. Magnetic pyrochlore oxides. Rev.
of Mod. Phys. 82, 53 (2010).

10. Castelnovo, C., Moessner, R. & Sondhi, S. L. Spin ice, fractionalization, and
topological order. Annu. Rev. Condens. Matter Phys. 3, 35–55 (2012).

11. Melko, R. G. & Gingras, M. J. Monte carlo studies of the dipolar spin ice
model. J. of Phys.: Condensed Matter 16, R1277 (2004).

12. Yavors’kii, T., Fennell, T., Gingras, M. J. & Bramwell, S. T. dy2ti2o7 spin ice: a
test case for emergent clusters in a frustrated magnet. Phys. rev. lett. 101,
037204 (2008).

13. Henelius, P. et al. Refrustration and competing orders in the prototypical
dy2ti2o7 spin ice material. Phys. Rev. B 93, 024402 (2016).

14. Borzi, R. A. et al. Intermediate magnetization state and competing orders in
dy2ti2o7 and ho2ti2o7. Nat. commun. 7, 1–8 (2016).

15. Edberg, R. et al. Dipolar spin ice under uniaxial pressure. Phys. Rev. B 100,
144436 (2019).

16. Edberg, R. et al. Effects of uniaxial pressure on the spin ice ho2ti2o7. Phys. Rev.
B 102, 184408 (2020).

17. Mirebeau, I. et al. Pressure-induced crystallization of a spin liquid. Nature 420,
54–57 (2002).

18. Mirebeau, I. & Goncharenko, I. Spin liquid and spin ice under high pressure: a
neutron study of r2ti2o7(r = tb,ho). J. of Phys.: Condensed Matter 16,
S653–S663 (2004).

19. Zhou, H. et al. High pressure route to generate magnetic monopole dimers in
spin ice. Nat. commun. 2, 1–5 (2011).

20. Borzi, R. A., Slobinsky, D. & Grigera, S. A. Charge ordering in a pure spin
model: dipolar spin ice. Phys. Rev. Lett. 111, 147204 (2013).

21. Samarakoon, A. M. et al. Structural magnetic glassiness in the spin ice
dy2ti2o7. Phys. Rev. Res. 4, 033159 (2022).

22. Samarakoon, A. M. et al. Anomalous magnetic noise in an imperfectly flat
landscape in the topological magnet dy2ti2o7. Proc. of the Natl. Acad. of Sci.
119, e2117453119 (2022).

23. Samarakoon, A. M. & Tennant, D. A. Machine learning for magnetic phase
diagrams and inverse scattering problems. J of Phys.: Condensed Matter 34,
044002 (2021).

24. Lefmann, K. & Nielsen, K. Mcstas, a general software package for neutron ray-
tracing simulations. Neutron news 10, 20–23 (1999).

25. Lin, J. Y. et al. Mcvine–an object oriented monte carlo neutron ray tracing
simulation package. Nucl. Instrum. and Methods in Phys. Res. Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 810, 86–99
(2016).

26. Smidt, T. E., Geiger, M. & Miller, B. K. Finding symmetry breaking order
parameters with euclidean neural networks. Phys. Rev. Research 3, L012002
(2021).

27. Tóth, S. & Lake, B. Linear spin wave theory for single-q incommensurate
magnetic structures. J. of phys. Condensed matter 27 16, 166002 (2015).

28. Butler, K. T., Le, M. D., Thiyagalingam, J. & Perring, T. G. Interpretable,
calibrated neural networks for analysis and understanding of inelastic neutron
scattering data. Journal of Physics: Condensed Matter 33, 194006 (2021).

29. Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77,
259–315 (2005).

30. Zhang, S. Quantum Monte Carlo Methods for Strongly Correlated Electron
Systems (pp. 39–74. Springer New York, New York, NY, 2004).

31. Kotliar, G. et al. Electronic structure calculations with dynamical mean-field
theory. Rev. Mod. Phys. 78, 865–951 (2006).

32. Samarakoon, A. & Tennant, A. D. Codes for paper “Samarakoon, A. M., D.
Alan Tennant, Feng Ye, Qiang Zhang, and S. A. Grigera. "Integration of
Machine Learning with Neutron Scattering for the Hamiltonian Tuning of
Spin Ice under Pressure” https://doi.org/10.5281/zenodo.6491385 (2022).

33. Chollet, F. et al. Keras documentation. keras. io 33 (2015).
34. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller,

E. Equation of state calculations by fast computing machines. The J. of chem.
phys. 21, 1087–1092 (1953).

35. Lovesey, S. W.Theory of neutron scattering from condensed matter
(Clarendon Press, 1984).

36. Komatsu, K. et al. Zr-based bulk metallic glass as a cylinder material for high
pressure apparatuses. High Press. Research 35, 254–262 (2015).

37. Ye, F., Liu, Y., Whitfield, R., Osborn, R. & Rosenkranz, S. Implementation of
cross correlation for energy discrimination on the time-of-flight spectrometer
corelli. J. of appl. crystallogr. 51, 315–322 (2018).

Acknowledgements
We acknowledge useful discussions on machine learning and workflows with Mingda Li,
Tess Smidt, Scott Klasky, Juan Restrepo, Cristian Batista, and Guannan Zhang; and on
glass formation in spin ice with Roderich Moessner and Claudio Castelnovo. A portion of
this research used resources at the Spallation Neutron Source. The research by D.A.T.
was sponsored by the Quantum Science Center. A.M.S. was supported by the U.S.
Department of Energy, Office of Science, Materials Sciences and Engineering Division
and Scientific User Facilities Division. S.A.G. acknowledges support from Agencia
Nacional de Promoción Científica y Tecnológica through PICT 2017-2347. The com-
puter modeling used resources of the Oak Ridge Leadership Computing Facility, which is
supported by the Office of Science of the U.S. Department of Energy under contract no.
DE-AC05-00OR22725.

Author contributions
D.A.T., A.M.S., and S.A.G. conceived and coordinated the project. A.M.S. performed the
numerical simulations and machine learning analysis with input and guidance from
D.A.T.,and S.A.G.. F.Y. and Q.Z. prepared the pressure cells. All the authors performed
the neutron experiments and discussed the data and its interpretation. D.A.T. and S.A.G.
wrote the paper with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s43246-022-00306-7.

Correspondence and requests for materials should be addressed to Santiago A. Grigera.

Peer review information Communications Materials thanks the anonymous reviewers
for their contribution to the peer review of this work. Primary Handling Editors: Aldo
Isidori and John Plummer. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

COMMUNICATIONS MATERIALS | https://doi.org/10.1038/s43246-022-00306-7 ARTICLE

COMMUNICATIONS MATERIALS |            (2022) 3:84 | https://doi.org/10.1038/s43246-022-00306-7 | www.nature.com/commsmat 11

https://doi.org/10.1088/1361-648X/abe818
https://doi.org/10.1088/1361-648X/abe818
https://doi.org/10.5281/zenodo.6491385
https://doi.org/10.1038/s43246-022-00306-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsmat
www.nature.com/commsmat

	Integration of machine learning with neutron scattering for the Hamiltonian tuning of spin ice�under pressure
	Results
	Neutron scattering experiments
	Machine learning integration scheme
	Scattering experiment design and optimization
	Information compression and parameter space exploration
	Structure or property predictions
	Parameter space predictions
	Neutron scattering of Dy2Ti2O7 under pressure

	Discussion
	Instrumental effects
	Data compression
	Data processing
	Integrated workflows
	Modeling
	Applications
	Pressure control of a magnetic glass

	Methods
	Characteristics and training of the Autoencoder
	Building and training of the Surrogate
	Monte Carlo based Direct Solver for scattering S^(Q)Ssim(Q)
	Iterative mapping algorithm (IMA)
	Experiment details
	Crystal growth
	Diffuse neutron scattering experiment

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




