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h i g h l i g h t s

• We need to develop stochastic models describing the neuronal dynamics.
• Stochastic systems can be expressed in terms of path integrals.
• Noise processes are induced by the neural network/feedforward correlations.
• We obtain path integral solutions driven by a non-Gaussian colored noise q.
• Allows us to investigate the underlying dynamics of the neural system.
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a b s t r a c t

To understand how single neurons process sensory information, it is necessary to develop
suitable stochastic models to describe the response variability of the recorded spike trains.
Spikes in a given neuron are produced by the synergistic action of sodium and potassium
of the voltage-dependent channels that open or close the gates. Hodgkin and Huxley (HH)
equations describe the ionic mechanisms underlying the initiation and propagation of
action potentials, through a set of nonlinear ordinary differential equations that approx-
imate the electrical characteristics of the excitable cell. Path integral provides an adequate
approach to compute quantities such as transition probabilities, and any stochastic system
can be expressed in terms of this methodology. We use the technique of path integrals to
determine the analytical solution driven by a non-Gaussian colored noisewhen considering
the HH equations as a stochastic system. The different neuronal dynamics are investigated
by estimating the path integral solutions driven by a non-Gaussian colored noise q. More
specifically we take into account the correlational structures of the complex neuronal
signals not just by estimating the transition probability associated to theGaussian approach
of the stochastic HH equations, but instead considering much more subtle processes
accounting for the non-Gaussian noise that could be induced by the surrounding neural
network and by feedforward correlations. This allows us to investigate the underlying dy-
namics of the neural system when different scenarios of noise correlations are considered.
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1. Introduction

To understand how information is transported in cerebral cortex we need to investigate first the input and output
characteristics of a given neuron. The membrane potential is the difference in electric potential between the interior and
exterior of the cell, where the surrounding extracellular fluid is located. The resting potential tells us what happens when
a neuron is at rest, at a voltage of −70 mV. The voltage in the membrane of a neuron depends on currents from a diverse
collection of ion channels,many ofwhich have nonlinear voltage-dependent dynamics [1–5]. General forms for the dynamics
of many of the major families of ion channels have been characterized [2,6], but the kinetic parameters vary according
to the neuron where the ion channels are located. A spike occurs when a neuron sends information down an axon, away
from the cell body as an explosion of electrical activity that is created by a depolarizing current. At the single neuron
level neurophysiology recordings allow to accurately measure the membrane potential showing that neurons exhibit rich
dynamical behaviors, including rhythmic bursting and patterned sequence generation [5,7–9]. These dynamics derive from
the intrinsic properties of individual neurons and from the connections among them within the network. That is neurons,
under the current framework, behave similarly to nonlinear oscillators [10].

The path integral method provides us with the means to estimate unmeasured states and parameters conditioned on
measurements of some subset of the variables. Moreover, the method is exact, as an exact statement of the information
transfer at eachmeasurement comes from an identity on conditional probabilities [11,12]. It has the advantage of combining
the local uncertainty in state to state transitions with the global trajectory of the system. This provides an integral
representation of the linear partial differential equation for the conditional probability distribution. As such delivers a
global view of the solution to the underlying stochastic physical problem and permits going beyond the local view of other
methodologies [11–15]. The path integral also takes into account the paths of a stochastic system through its state space as
they are influenced by observations. Thus, we have to focus first on the formulation of the questions one wants to answer
using the path integral formulation to then developing a methodology to perform the integrals that answer those questions
avoiding the limitations of other methods [12]. Stochastic differential equations can be used to model the phenomena of the
neuronal firing [16]. Importantly, any stochastic and even deterministic system can be expressed in terms of path integrals
that provide a convenient tool to compute quantities such as transition probabilities [11–16].

HH equations allows us to explain how action potentials are generated through the electrical excitability of neuronal
membranes [17–21]. The path integral methodology can provide us an alternative approach to determinate the analytical
solution of the membrane potential when considering the stochastic HH equations. In this paper we consider the path
integral solution driven by a non-Gaussian colored noise of the HH equations as a stochastic system. We develop a path
integral formulation for characterizing the different states of a neuron as non-linear dynamical system considering colored
noise that could account for the possible effects of the surrounding background activity, correlated activity, feedforward
correlations, and the ephaptic coupling [22], as theymight alter the functioning of individual neurons and neural assemblies
under different physiological conditions. In order to do it so we use a variational method to minimize the action of the path
integral formulation [11,12,23]. We apply the methodology of path integrals developed by Wio et al. considering a colored
noisewithin the q-Gaussian formalism [11–13]. More specifically, we investigate the solutions of HH equation as a particular
case of the Fokker–Planck equation driven by a non-Gaussian colored noise q that is better suited to be investigated within
the path integral approach. We analyze the causality entropy–complexity plane H × C and causal Fisher information versus
statistical complexity/Shannon entropy, F × C and F × H , considering the solution of the path integral formulation driven
by different levels of noise q. This allows us to investigate the underlying dynamics of the neural system, quantifying the
degree of correlations in the neural responses.

2. Methodology

2.1. Model

Let us consider first the biophysical model for the membrane potential V of a section of a spatially homogeneous neuron,
the HH model reads as [17]:

Cm
dV
dt

= −INa − IK − IM − gL(V − EL) −
1
A
Isyn (1)

where

INa = ḡNaPNa(V , t)(V − ENa),
IK = ḡKPK (V , t)(V − EK ),
IM = ḡMPM (V , t)(V − EM ).

Here Cm is the membrane capacitance, gX is the maximal conductance of channels of type X , PX is the probability that a
channel of type X is open, EX is the reversal potential for channel type X and the subscripts Na, K and M refer to sodium,
potassiumandM-typepotassiumchannels respectively. A leak current is includedwith conductance gL and reversal potential
EL, A is the membrane area, while Isyn is the current resulting from synaptic background activity. This model is capable of
generating action potentials. Background activity in this case is modeled as a colored non-Gaussian noise, to take care of the
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coupling due to the changes in the surrounding electric field that could affect the activity of the cell (ephaptic coupling),
through a noise source with a certain temporal correlation.

We are interested in the initiation of the action potential, so we need only consider the sodium channels. Because
the dynamics of potassium channels are too slow we can take them as unchanged. Moreover, near threshold given by
xu ≈ 10 mV, the probability that a sodium channel is open depends only on the membrane voltage V . This probability
is traditionally measured by the so-called activation curve, where PNa(V , t) = PNa(V ). Under these assumptions, Eq. (1)
reduces to:

Cm
dV
dt

= −ḡNaPNa(V )(V − ENa) − (ḡK + ḡM )(V − EK ) − gL(V − EL) −
1
A
Isyn. (2)

Action potential onset can occurs when V reaches V ∗, where V ∗ is an unstable equilibrium of Eq. (2) in the absence of
noise. Below V ∗ the membrane potential relaxes to its resting potential, whereas above V ∗ an action potential can occur. To
study the dynamics near onset, we therefore write V = V ∗

+ x, and expand Eq. (2) to leading order in x, obtaining:
dx
dt

= ax + η(t),

a = −
1
Cm

(
ḡNa

dPNa(V ∗)
dV

(V ∗
− ENa) + ḡNaPNa(V ∗) + (ḡK + ḡM + gL)

)
,

η(t) = −
1

ACm
Isyn(V ∗).

We fix that an action potential is fired when the membrane potential V reached the value V ∗
+ xu. Then the neuron fired

when x(T ) = xu, with T the firing time [24]. With this consideration the model becomes equivalent to an Integrate-and-Fire
model with a stochastic current [25].

With the assumptions made above, the parameter a (which is the onset rapidity) is independent of time. Then, if we
consider a colored non-Gaussian noise as in Ref. [11], the problem to solve becomes:

ẋ = ax + η(t), (3)

η̇ = −
1
τ

dVq(η)
dη

+
1
τ
ξ (t), (4)

where ξ (t) is a Gaussian white noise of zero mean and correlation ⟨ξ (t)ξ (t ′)⟩ = 2Dδ(t − t ′). Vq(η) is given by

Vq(η) =
D

τ (q − 1)
ln

[
1 +

τ

D
(q − 1)

η2

2

]
.

Without enter in details this process η has, for q ∈ (1, 3), a Tsallis-exponential type stationary distribution. For a detailed
description of this process see Ref. [11].

We can make an approximation, valid for |q − 1| ≪ 1 [13]. The approach is made to modify Eq. (4):

1
τ

dVq(η)
dη

=
η

τ

[
1 +

τ (q − 1)η2

2D

]−1

≈
η

τ

[
1 +

τ (q − 1)⟨η2⟩
2D

]−1

≡ a(q, τ )η, (5)

given that ⟨η2⟩ =
2D

τ (5−3 q) . In this equation, a(q, τ ) =
5−3 q
τ 2(2−q) . After performing this approximation, we must solve:

ẋ = ax + η(t), (6)

η̇ = −a(q, τ )η +
1
τ
ξ (t). (7)

This is a kind of ‘‘renormalized’’ Ornstein–Uhlenbeck (OU) process. Let us remark that the path-integral representation in the
configuration space of the transition probability for a process driven by OU noise was previously derived in [23]. For q = 1
we recover the common OU process in agreement with Ref. [11].

2.2. Path integral approach

In the following we use the ‘‘unified color noise approximation’’(UCNA) [14,15]. This is an adiabatic-like elimination
procedure [23], which consists in setting equal to zero all the terms ẍ and ẋn with 2 ≤ n. This result can be obtained in
two ways: (a) applying a direct adiabatic-like elimination procedure to the Langevin system given by Eqs. (6) and (7). That
is, taking the derivative of Eq. (6) with respect to t and setting ẍ = 0. (b) A formal one, through the application of the
path-integral formalism to the indicated non-Markovian Langevin equations, which is providedwith a consistentMarkovian
approximation scheme. We follow the second alternative, because it has the advantage that we know exactly which terms
of the dynamics are ignored [11,12]. The Fokker–Planck equation (FPE) associated to Eqs. (6) and (7) is:

∂Pq
∂t

= −
∂

∂x

(
(ax + η)Pq

)
+
∂

∂η

(
a(q, τ )ηPq

)
+

D
τ 2

∂2Pq
∂η2

. (8)
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Since the diffusion matrix is singular, we can extend the number of variables (adding the canonically conjugate variables
to x(t) -px(t)- and η(t) -pη(t)-) and write the path-integral representation for the transition probability corresponding to the
FPE:

Pq =

∫ x(T )=xu,η=ηu

x(0)=0,η=η0

D [x(t)]D [px(t)]D [η(t)]D
[
pη(t)

]
eSq,1 , (9)

Sq,1 is the stochastic action given by:

Sq,1 =

∫ T

0
ds

(
ipx(s) [ẋ(s) − ax(s) − η(s)] + ipη(s)

[
η̇(s) + a(q, τ )η +

D
τ 2

(ipη(s))2
])

. (10)

The integration over pη(s) is Gaussian, yielding:

Pq =

∫ x(T )=xu,η=ηu

x(0)=0,η=η0

D [x(t)]D [η(t)]D [px(t)] eSq,2 (11)

in which Sq,2 is:

Sq,2 =

∫ T

0
ds

(
ipx(s) [ẋ(s) − ax(s) − η(s)] +

τ 2

4D

∫ T

0
ds′[η̇(s) + a(q, τ )η(s)]δ(s − s′)

[
η̇(s′) + a(q, τ )η(s′)

])
. (12)

The integration over px(s) gives:

Pq =

∫ x(T )=xu,η=ηu

x(0)=0,η=η0

D [x(t)]D [η(t)] δ̂ [ẋ(s) − ax(s) − η(s)] eSq,3 (13)

with

Sq,3 =

∫ T

0
ds
τ 2

4D
(η̇(s) + a(q, τ )η(s))2, (14)

and δ̂ [ẋ(s) − ax(s) − η(s)] means that, at each instant of time, we have

η(s) = ẋ(s) − ax(s). (15)

The integration over η(s) just corresponds to replacing η(s) by ẋ(s) − ax(s) and η̇(s) by ẍ(s) − aẋ(s). The resulting stochastic
action corresponds to a non-Markovian description as it involves ẍ(s). Doing the adiabatic elimination, which implies
neglecting the term ẍ(s), we get:

η̇(s) + a(q, τ )η(s) ≈ (a(q, τ ) − a)ẋ(s) − a(q, τ ) a x(s). (16)

The final result for the transition probability is

Pq =

∫ x(T )=xu,η=ηu

x(0)=0,η=η0

D [x(t)] eS (17)

with

S =
1
4D

∫ T

0
ds

(
ẋ
g

−
f
g
x
)2

. (18)

For sake of simplicity we write f = a 1
1− a

a(q,τ )
and g =

1
τa(q,τ )(1− a

a(q,τ ) )
.

Based on the previous assumptions, in the Results section we present the path integral solution of HH equation as the
transition probability Pq(xu, T |0, 0), when considering a non-Gaussian colored noise q. Despite the formalism is derived using
a pure analytical approach, it can be used to describe the emergent properties of the neuronal systems. It is important to
point out that the result obtained is an approximated solution of the original problem specified in Eqs. (3) and (4). This is
due to the followings approximations: one performed in Eq. (5), valid for |q − 1| ≪ 1, and the other that corresponds to an
adiabatic elimination realized in Eq. (16).

2.3. Information theory approach

We can define an Information Theory quantifier as ameasure that is able to characterize some property of the probability
distribution function associated with the time series of a given row signal (i.e. a neuron’s membrane potential). Entropy,
regarded as a measure of uncertainty, is the most paradigmatic example of these quantifiers. Given a continuous transition
probability Pq(xu, T |0, 0) or a given probability distribution function (PDF), and

∫
1
Pq(xu, T |0, 0) dxu = 1, its associated

Shannon Entropy S [26] is

S[Pq(xu, T |0, 0)] = −

∫
1

Pq(xu, T |0, 0) ln(Pq(xu, T |0, 0))dxu. (19)
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Note that Pq(xu, T |0, 0) is characterized by a parameter q, which conveys departure from the pure Gaussian noise (q = 1).
In practice we consider Pq(xu, T |0, 0) of length N , that is X (t) ≡ {xt; t = 1, . . . ,N}. Thus for a chosen discretization and

the associated PDF, given by P ≡ {pj; j = 1, . . . ,N} with
∑N

j=1pj = 1 and N the number of possible states of the system
under study, the Shannon’s logarithmic information measure [26] is defined by (see Refs. [27–29])

S[Pq] = −

N∑
j=1

Pqj ln(Pqj). (20)

As Pq(xu, T |0, 0), which is the solution of the stochastic HH equation, accounts for the temporal causality (see Eq. (32)),
this functional is equal to zero when we are able to predict with full certainty which of the possible outcomes j, whose
probabilities are given by pj, will actually take place. Our knowledge of the underlying process, described by the probability
distribution, is maximal in this instance. In contrast, this knowledge is commonly minimal for a uniform distribution
Pe = {pj = 1/N,∀j = 1, . . . ,N}.

The Shannon entropy S is a measure of ‘‘global character’’ that is not too sensitive to strong changes in the PDF taking
place in small region. Such is not the case with the Fisher information measure [30,31]

F [Pq] =

∫
|∇⃗Pq(x)|

2

Pq(x)
dx, (21)

which constitutes a measure of the gradient content of the distribution Pq(x) (continuous PDF), thus being quite sensitive
even to tiny localized perturbations.

The Fisher information measure can be variously interpreted as a measure of the ability to estimate a parameter, as the
amount of information that can be extracted from a set of measurements, and also as a measure of the state of disorder of a
systemor phenomenon [31,32], itsmost important property being the so-called Cramer–Rao bound. It is important to remark
that the gradient operator significantly influences the contribution of minute local Pq-variations to the Fisher information
value, so that the quantifier is called a ‘‘local’’ one. Note that Shannon entropy decreases with skewed distribution, while
Fisher information increases in such a case. Local sensitivity is useful in scenarios whose description necessitates an
appeal to a notion of ‘‘order’’ [33–35]. The concomitant problem of loss of information due to the discretization has been
thoroughly studied (see, for instance, Refs. [36–38] and references therein) and, in particular, it entails the loss of Fisher’s
shift-invariance, which is of no importance for our current work. Phenomena, such as Poisson processes, do not obey shift
invariance. Importantly the discrete version of Fisher information we present below is also valid when there is no shift
invariance [39].

For Fisher information measure computation (discrete PDF) we follow the proposal of Dehesa and coworkers [40] based
on amplitude of probability Pq(x) = ψ(x)2 then

F [ψ] = 4
∫ {

dψ
dx

}2

dx. (22)

Its discrete normalized version (0 ≤ F ≤ 1) is now

F [Pq] = F0
N−1∑
i=1

(
√
Pqi+1 −

√
Pqi)

2. (23)

Here the normalization constant F0 reads

F0 =

{
1 if Pqi∗ = 1 for i∗ = 1 or i∗ = N and Pqi = 0 ∀i ̸= i∗

1/2 otherwise. (24)

Consequently, in the definition given by Eq. (22), the indicated integral becomes a weighted sum. This definition is also valid
in the case of no shift-invariance as stated in Ref. [39]. If our system is in a very ordered state and thus is represented by a
very narrow PDF, we have a Shannon entropy S ∼ 0 and a Fisher information measure F ∼ Fmax. On the other hand, when
the system under study lies in a very disordered state one gets an almost flat PDF and S ∼ Smax, while F ∼ 0. Of course, Smax
and Fmax are, respectively, the maximum values for the Shannon entropy and Fisher informationmeasure. One can state that
the general behavior of the Fisher information measure is opposite to that of the Shannon entropy [41].

In the followingwe consider theMPR statistical complexity [42] as it is able quantify critical details of dynamical processes
underlying the data set. Based on the seminal notion advanced by López-Ruiz et al. [43], this statistical complexity measure
is defined through the product

CJS[Pq] = QJ [Pq, Pe] · H[Pq] (25)

of the normalized Shannon entropy

H[Pq] = S[Pq]/Smax (26)
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with Smax = S[Pe] = lnN , (0 ≤ H ≤ 1) and the disequilibrium QJ defined in terms of the Jensen–Shannon divergence. That
is,

QJ [Pq, Pe] = Q0J [Pq, Pe] (27)

with

J [Pq, Pe] = S[(Pq + Pe)/2] − S[Pq]/2 − S[Pe]/2 (28)

the above-mentioned Jensen–Shannon divergence and Q0, a normalization constant (0 ≤ QJ ≤ 1), are equal to the inverse
of the maximum possible value of J [Pq, Pe]. This value is obtained when one of the components of Pq, say pm, is equal to one
and the remaining pj are equal to zero. The Jensen–Shannon divergence, which quantifies the difference between two (or
more) probability distributions, is especially useful to compare the symbolic composition between different sequences [44].
Note that the above introduced statistical complexitymeasure (SCM) depends on two different probability distributions, the
one associated with the system under analysis, Pq, and the uniform distribution, Pe.

3. Results

Let us remark that we have performed an approximation, valid for |q − 1| ≪ 1 as in Ref. [13] in order to modify Eq. (4).
Following Ref. [12] one can provide the exact solution of the path integral presented in Eq. (17), and the result for the
transition probability Pq(xu, T |0, 0) reads as:

Pq(xu, T |0, 0) =

[
2πD

(
∂xr (T )
∂ ẋr (0)

)]−1/2

exp (S [xr (t)]) , (29)

where xr (t) is a reference path (typically themost likely trajectory, or ‘‘classical’’, onewhichminimizes the action δS[xr (t)] =

0). These solutions take into account the probability for the most likely path and the Gaussian deviations around it. Let
us emphasize again that the results showed in Eqs. (17), (18) and (29) are approximate solutions of the original problem
specified in Eqs. (3) and (4). More specifically, we have performed an approximation of the non-Gaussian colored noise q,
which is valid for |q − 1| ≪ 1 [13], and we have carried out an ‘‘Effective Markovian Approximation’’ as in Ref. [11]. Thus,
the solution obtained from the path integral is an approximate solution of the original problem depicted in Eqs. (3) and (4).

The associated Lagrangian for this problem is:

L[x, ẋ, t] =
1

4D g2 (ẋ − f x)2, (30)

so the ‘‘classical’’ solution with the boundary conditions x(0) = 0 and x(T ) = xu is:

xc(t) = xu
sinh(f t)
sinh(f T )

. (31)

Replacing this in Eq. (29) we obtain:

Pq(xu, T |0, 0) =

[
2πD
f

sinh(fT )
]−1/2

exp

[
e−2fT

− 1
8Df

(
xuf

g sinh(fT )

)2
]
. (32)

Importantly, in the limit q → 1 and τ → 0, we get f → a and g → 1. We recover, in this case, the result obtained by
Colwell et al. [24] for the Gaussian approach:

P1(xu, T |0, 0) =

[
2πD
a

sinh(aT )
]−1/2

exp

[
e−2aT

− 1
8Da

(
xua

sinh(aT )

)2
]
. (33)

In the following we use the first passage time problem to obtain some relevant quantities [12]. Let us consider trajectories
x(t) subject to the boundary conditions x(0) = 0 and x(T ) = xu, where T is the time atwhich the voltage threshold is attained.
There is a distribution of times T at which the threshold condition can bemet. Moreover, for a given T , there is a distribution
of voltages x(T ) that the trajectory might attain at time T . This distribution is characterized by a mean x∗(T ), as well as a
variance δx(T )2. The total variance of the voltage threshold is therefore given by

S2v =

∫
P(T )x(T )2dT −

(∫
P(T )x(T )dT

)2

+

∫
P(T )E[δx(T )2]dT (34)

where P(T ) is the probability that the voltage threshold occurs at time T , and E[·] denotes the expectation. The first two
terms of Eq. (34) make up the variance of mean values x∗(T ) that occur owing to the range of times T at which the threshold
condition is met. The onset span Sv measures the variability of the voltage threshold for action potential initiation [24]. For
each such time T , the final term sums the variance of voltages x(T ) likely to be reached about the mean value x∗(T ). Eq. (34)
directly relates the onset span Sv to the diffusion coefficient D, the voltage threshold xu, and the onset rapidity a.
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Fig. 1. Onset Span, Sv , versus the onset rapidity, a, for τ = 0.0015, a diffusion coefficient D = 25 and q = 1, 1.1, 1.2, 1.3 and 1.4, respectively.

Since in our model the threshold is fixed in the value xu, the two first terms are zero, because the mean values x∗(T ) are
all equals to the threshold xu, and it is only the last term that survives, so the onset span is rising with the onset rapidity
(parameter a in our model). The calculation of the last term in Eq. (34) is similar to the one performed in Ref. [24], and for
our current model reads as:

E[δx(T )2] =
2Df 2

T τ a2a(q, τ )2

∞∑
n=0

1
π2

T2
(
n +

1
2

)2
+ f 2

. (35)

The plot of the onset span as function of the onset rapidity a can be seen in Fig. 1, for a diffusion coefficientD = 25, correlation
time τ = 0.0015, and considering q = 1, 1.1, 1.2, 1.3, 1.4. Fig. 1 displays that the onset span increases as the level of noise q
becomes higher. Also shows an intriguing relationship between variability of the onset potential at which an action potential
occurs (the onset span) and the noise correlation q.

Fig. 2 shows the unnormalized transition probabilities Pq provided by Eq. (32), considering five values of q =

1, 1.1, 1.2, 1.3 and 1.4. Note that as the values of q increases the distribution becomes sharper. In the following we illustrate
how to use the path integral methodology, once obtained the transition probability associated to the Fokker–Planck
equation as in Eq. (32), in order to characterize the dynamics of the spiking neural activity when considering a colored
noise q. This could allow us to account for the possible effects of the surrounding background activity and the ephaptic
coupling across the neuronal membrane. Indeed the application of nonlinear time series analysis provides us additional
information, in comparison to the linear techniques, with useful insights about the correlational structure of the signal.
More specifically, in the following we use subtle measures accounting for the nonlinear dynamic effects of the temporal
signal: Shannon entropy [45,46] and the Martín–Plastino–Rosso (MPR) statistical complexity [45,46] within the entropy–
complexity causality plane [47].

By estimating the statistical complexity versus the Shannon entropy [35,45–49], we show that it is possible to estimate
the evolution of system trajectory to its maximum complexity path for a given amount of noise q. Fig. 3(a), (b), and (c)
show the normalized Shannon entropy, the Fisher information and the statistical complexity versus q, respectively. In all the
previous cases the normalized Shannon entropy, the Fisher information and the statistical complexity grows as the degree
of noise q increases.

Let us recall that the maximum and minimum possible values of the generalized statistical complexity depends on the
values of q [50,51]. Fig. 4(a) and (b) show that Fisher information grows as the entropy and statistical complexity becomes
larger. Fig. 4(c) shows the informational causal plane of entropy versus complexity, H × C . Note that the MPR statistical
complexity grows linearly as the Shannon entropy becomes higher as the degree of noise q grows. Fig. 4(c) displays the
maximum and minimum possible values of the generalized statistical complexity (continuous lines for different q). Note
that the minimum and maximum value of the statistical complexity are reached at q = 1 and q = 1.4, respectively.

In contrast Fig. 5(a), (b), and (c) show the normalized Shannon entropy, the Fisher information and the statistical
complexity versus q respectively, when considering a different diffusion coefficient D and onset rapidity a. In this case we
present another scenario in which an optimal amount of noise correlation (controlled by q) leads to a maximum of the
statistical complexity. Fig. 5(a) shows that the maximum entropy is reached when q = 1.17. Fig. 6(b) shows that Fisher
information grows as q becomes larger. Fig. 5(c) shows that the statistical complexity is maximized when q = 1.27. The
degree of order decreases as entropy increases, and thus a system with a lower degree of entropy is characterized by a
higher degree of order. Fig. 6(a) shows Fisher information versus entropy, i.e., the causal information plane F × H . Fig. 6(b)
shows Fisher information versus the statistical complexity, i.e., the causal information plane F × C , for the same diffusion
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Fig. 2. Unnormalized transition probability, Pq , versus time (T ). The diffusion coefficient is D = 25. The black curve correspond to the Gaussian noise q = 1;
solid dark gray curve, q = 1.1; solid dark gray curve, q = 1.2; dashed gray curve, q = 1.3; dotted gray curve, q = 1.4 (non-Gaussian noise).

coefficient D and onset rapidity a used above in Fig. 5(a), (b), and (c). Fig. 6(a) and (b) depict that Fisher information grows as
the amount of noise q increases. So the system is in a very ordered state and thus is represented by a very narrow probability
distribution, then we have a Shannon entropy close to zero and a maximal Fisher information measure as shown in Fig. 6(a).
On the other hand when the system is in a very disordered state one gets an almost flat probability distribution and the
entropy is maximal, while the Fisher information is smaller as shown in Fig. 6(a). The location of the maximum in the H × C
causality plane allows us to infer useful information about the underlying dynamics of the path integral solution when
considering the neural dynamics time series. Fig. 6(c) depicts H × C , which shows that the maximum of the complexity is
reached when the amount of noise q is optimal and equal to 1.27.

For the sake of completeness we show that taking different diffusion coefficients D and level of noise q it is possible
to reproduce some of the prominent dynamical features of biological neurons as in Ref. [20]. Fig. 7 shows that we are
able to reproduce the characteristics of the 20 different rhythmic activities as in Ref. [20], which includes also considering
different input current (stimuli) proposed by Izhikevich [2], just by choosing different diffusion coefficients D and different
level of noise q. The continuous lines represent the curves of maximum and minimum statistical complexity, Cmax and Cmin,
respectively, as functions of the normalized Shannon entropy [20,50]. Note, however that as we are considering a correlated
noise the neurons are not able to shoot with a fixed period as in Refs. [2,20]. Thus bursts are not therefore very likely to
appear in this case when considering the different dynamics.

In this paper we use the methodology of path integrals, developed byWio et al. considering a colored noise within the q-
Gaussian formalism [11–13], to investigate the solutions of HH equation driven by a non-Gaussian colored noise q. We have
shown that the complexity of the neuronal can be characterized by estimating the intrinsic correlational structure of the
signal, modulated by q, considering the path integral solution of the HH stochastic equation. Fisher information increases
as the amount of noise q becomes higher. Importantly, the causal entropy–complexity plane H × C allows us to identify
and quantify the growing correlational structure of the neuronal dynamics. We have shown how the statistical complexity
grows in theH×C plane reaching amaximumprovided either by the optimal amount of noise or by themaximum/minimum
possible value for the informationmeasures that depend upon q [50,51]. This suggests the HH path integral solutions display
a critical level of complexity for an optimal level of noise correlation q.

4. Discussion and conclusions

Developing theoretical tools that could provide new insights to study howmind/brain mechanisms behave can crucially
change our understanding of cognitive processes. In this paper, we show that recent advances in complex systems can
provide crucial new insights into this problem. Complexity captures the degree to which a neural system integrates
specialized information, and in particular, the complexity of the neural system represent the amount of information
contained in the organism, in the sense that it quantifies the dynamical features of the temporal pattern due to functional
interactions produced by a structural network. Complexity captures the degree to which a neural system integrates
specialized information, and in particular, MPR statistical complexity can distinguish time series generated by stochastic
and chaotic systems [45,46]. This statistical complexity measure can also detect and quantify noise induced order [45,46].

In this paper we present a novel theoretical approach to investigate the path integral solutions of HH equation driven
by a colored noise q. More specifically we provide the analytical solution driven by a non-Gaussian colored noise when
considering the stochastic versions of the HH equations, taking into account subtle processes that could be induced by
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Fig. 3. The information quantifiers versus q considering a diffusion coefficient D = 4 and an onset rapidity a = 0.211 m s−1 . (a) Causal Fisher information
versus q. (b) Causal Fisher information versus q. (c) Statistical complexity versus q.

the surrounding neural network and by feedforward correlations. Importantly, we recover the results obtained within
the Gaussian approach, for the stochastic HH equations [24], in the limit q → 1 and τ → 0. We investigate then the
causality entropy–complexity plane H × C and Fisher information versus MPR statistical complexity/Shannon entropy
considering the solution of the path integral formulation driven by different levels of noise q. This permits characterizing
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Fig. 4. The informational causal plane considering a diffusion coefficient D = 4, an onset rapidity a = 0.211 m s−1 and that q can change freely. (a) Causal
Fisher information versus normalized Shannon entropy (F×H plane). (b) Causal Fisher information versus statistical complexity (F×C plane). (c) Statistical
complexity versus normalized Shannon Entropy (C × H plane). The upper and lower curves are the maximum, and minimum complexity, respectively for
different q values. Solid black curve, q = 1; solid dark gray curve, q = 1.1; solid light gray curve, q = 1.2; dashed black curve, q = 1.3; dashed dark gray
curve, q = 1.4.
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Fig. 5. The information quantifiers versus q considering that the onset rapidity is a = 26.33 m s−1 . The diffusion coefficient D takes values between 1.63
and 1.71, and that q can change freely. (a) Causal Fisher information versus q. (b) Causal Fisher information versus q. (c) Statistical complexity versus q.

the internal dynamics of the neuron when taking into account different degrees of noise. We show that the maximum of the
complexity is reached when the amount of noise q is optimal. Importantly, we show that using the path integral solution
in combination with complexity measures our results resemble the prominent dynamical features of biological neurons as
in Ref. [20]. Moreover, the current model could be easily generalized by adding another variable accounting for the ionic
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Fig. 6. The information quantifiers considering an onset rapidity a = 26.33 m s−1 . The diffusion coefficient D takes values between 1.63 and 1.71, and that
q can change freely. (a) Causal Fisher information versus q. (b) Causal Fisher information versus q. (c) Statistical complexity versus normalized Shannon
Entropy (C × H plane). The upper and lower curves are the maximum, and minimum complexity, respectively for different q values. Black curve, q = 1;
dark gray curve, q = 1.1; light gray curve, q = 1.2; dashed light gray curve, q = 1.3.

channels dependence to the stochastic equations. Despite the formalism presented in this paper has been derived using a
pure analytical approach, it can be used in future research to compare experimental observations with the parameter values
incorporated into such model.

Our approach allows us to characterize the dynamics of a Fokker–Planck neuron, quantifying the causality of the signal,
and inferring the emergent properties of the system as the amount of noise q increases. The causal information plane
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Fig. 7. Causal MPR complexity versus normalized Shannon entropy (H × C-plane) for the 20 most relevant neurocomputational features of biological
neurons. Different diffusion coefficients D and level of noise q are considered. (A) q = 1.15152, D = 4.22755; (B) q = 1.16268, D = 3.81318; (C)
q = 1.12925, D = 6.89292; (D) q = 1.16062, D = 4.37179; (E) q = 1.13131, D = 5.16442; (F) q = 1.06566, D = 11.2422; (G) q = 1.10606,
DD = 5.93473; (H) q = 1.17204, D = 3.78157; (I) q = 1.10929, D = 0.0596582; (J) q = 1.13333, D = 6.21699; (K) q = 1.13373, D = 6.0347;
(L) q = 1.14465, D = 5.71361; (M) q = 1.15476, D = 2.73747; (N) q = 1.11594, D = 6.09513; (O) q = 1.14815, D = 5.45674; (P) q = 1.17733,
D = 3.86789; (Q) q = 1.14103, D = 5.99206; (R) q = 1.14815, D = 5.45674; (S) q = 1.16667, D = 3.87343; (T) q = 1.13333, D = 5.77569.

can be profitably used to separate and differentiate amongst chaotic and deterministic systems [33,52]; visualization and
characterization of different dynamical regimes when the system parameters vary [33–35]; time dynamic evolution [53];
identifying periodicities in natural time series [54]; identification of deterministic dynamics contaminatedwith noise [55,56]
and estimating intrinsic time scales of delayed systems [47,57,58]; among other applications [48].

According to the theorem of Liouville in the case of dissipative systems (non-energy preserving), the volume occupied
by the states in the phase space shrinks as time goes towards infinity. The limit set of an autonomous dissipative system to
which trajectories converge for time increasing towards infinity is called the attractor. As the noise correlation q grows, the
dendrites of the neuron dissipate large quantities of their metabolic energy. The dissipation in this case manifests itself in
the disappearance of energy and the emergence of a complex network structure. In this paper, we show that the different
path of the solution for different levels of noise q can be associated with a complex dynamic reflected in the causality
entropy–complexity plane, H × C . The effects of the network inter-connectivity and the possible ephaptic coupling of given
neuron is summarized through the parameter q, which may be essential for integrating the actions of individual neurons
and therefore for enabling cognitive processes such as perception, attention, and memory. We are currently working on
a Metropolis simulation that will allow us to further test the goodness of the results presented in this paper not just by
contrasting them with the neuronal rhythm proposed by Izhikevich [2,20] as we showed here, but instead also using real
neurophysiological data. Thus, using the path integral solution of theHHequations driven by a colored noise q in combination
with the normalized Shannon entropy, Fisher information and statistical complexity, can help us to understand the subtle
processes of the neural dynamics considering stochastic models, and information theory.
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