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Abstract: In this paper, the time variation of signals from several SCADA systems of geographically
closed turbines are analysed and compared. When operating correctly, they show a clear pattern of
joint variation. However, the presence of a failure in one of the turbines causes the signals from the
faulty turbine to decouple from the pattern. From this information, SCADA data is used to determine,
firstly, how to derive reference signals describing this pattern and, secondly, to compare the evolution
of different turbines with respect to this joint variation. This makes it possible to determine whether
the behaviour of the assembly is correct, because they maintain the well-functioning patterns, or
whether they are decoupled. The presented strategy is very effective and can provide important sup-
port for decision making in turbine maintenance and, in the near future, to improve the classification
of signals for training supervised normality models. In addition to being a very effective system, it is
a low computational cost strategy, which can add great value to the SCADA data systems present in
wind farms.

Keywords: wind turbine; fault diagnosis; renewable energy; feature engineering; normal behaviour
models

1. Introduction

Energy is one of the most important aspects in the development of our society. Easy
and cheap access to energy has always been a challenge, and nowadays there is the added
factor of environmental pollution that can be caused by the type of energy source that
is used. Carbon and gas-based energy is increasingly being curtailed in favour of green
energy, such as that derived from the sun, tides, or wind. These renewable energy sources
are an excellent choice because they are clean and can occur in various forms over a large
geographic area. This is another important point for democratising access to energy, as
many countries do not have access to carbon-based energy.

One of the biggest financial impacts on the cost of electricity (LCOE) of wind turbines
(WT) is associated with operation and maintenance tasks. Several schemes have been
proposed to reduce O&M costs. An overview of the different strategies can be found
in [1–3]. One of the options is to detect abnormal behaviour in WTs as early as possible,
before failures occur. Since the malfunction can then be corrected more quickly and without
major damage to the subsystems of WT, the electricity production costs decrease. There are
several ways to deal with this, and in this paper a data-driven normal behaviour model
(NBM) based on our previous work [4] is used to investigate how time scale affects the
results of the prediction system.
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Typically, turbines have a Supervisory Control and Data Acquisition (SCADA) system
that provides a range of data to monitor the status of subsystems. More specifically, a
SCADA system gathers data from the wind turbines’ systems and subsystems, and analyses
and visualises data. Operators can view important measurements such as temperature,
rotation speed, power consumption, etc., without having to visit each wind turbine on
site. A typical SCADA architecture has the following five main elements: (i) Human
Machine Interface (HMI) software for visualisation, which is a dashboard through which
operators can interact with a WT, system, or device, and track real-time. These user
interfaces allow full remote control of the equipment. (ii) Historian software, which are
responsible for logging and storing asset data allowing operators to reference historical
trends for analysis and reporting by providing a complete picture of their operations.
(iii) Supervisory system, the core of SCADA systems, are servers and software that gather
sensor data and send control commands to connected field devices. The supervisory
computer also communicates with the human-machine interfaces to visualize real-time data
for users. (iv) Communication infrastructure, which enables data transmission between
the programmable logic controllers (PLC), remote terminal units (RTU), and the master
SCADA system. (v) Finally, the remote terminal units and programmable logic controllers,
which are the physical devices that both gather telemetry data from the wind turbines and
execute control programs. Sensors placed in different parts of the WT are responsible for
collecting this data, which is obtained through statistics such as minimum value, maximum
value, average value, and standard deviation of various physical measurements, such as
temperature, pressure, voltage, current, etc., in different parts of the subsystems. Over the
past decade, the importance of SCADA data for predictive maintenance and monitoring
has increased significantly. In [5–8] some of the first attempts to use SCADA data for
turbine condition monitoring can be seen. The way to analyse and extract information
has improved significantly since the early days. Several algorithms are available in the
literature to assess the states of all principal components using different approaches based
on statistical analysis, machine learning, and deep learning [9–11]. SCADA benefits from
the highly desirable characteristics of wide availability, highly standardized formats, and
low cost.

Supervised learning and classification problems require complex pre-processing
pipelines for data preparation. First, reliable data labels must be assigned. Next, the
data must be accurately filtered and often enhanced by generating additional features that
can highlight interesting features in the data. Finally, a classification model can be trained
and used for prediction. All these steps are time-consuming. Label assignment is most
likely the most important and the most time-consuming step. Work orders and alarm logs
can be used to assign labels, but the lack of a standard format, the free-text nature of the
data, and common discrepancies in the information make it difficult to automate processes
and ensure that labels are reliable. Regression requires a less complex pipeline, filtering
data through labels rather than defining groups. A common challenge in regression tasks
is to choose a distance metric to use to quantify the quality of predictions and to assess the
difference between predicted and observed values when analysing new data. Analysing the
results, choosing the number of clusters, and interpreting them is important and non-trivial,
but clustering and anomaly detection are much easier to train and easier to pre-process the
pipeline. In general, the methods for condition monitoring with SCADA data use several
strategies such as signal trending, modelling with neural networks, or some physical mod-
els. To conduct some form of exploration or analysis of the data, machine learning-based
algorithms are commonly used. For example, in [12] the authors use machine learning
on SCADA data to predict WT failures. However, because the scenario is very unbal-
anced, with most of the samples coming from one class, such classifiers tend to perform
poorly [13]. For this reason, the authors in [4] propose to use normality models to predict a
(real) variable from a subsystem based on the rest of the variables and comparing them
with the actual variable to determine if the predicted variable was consistent with the real
one. If the predicted diverged from the real one, this divergence indicated a deterioration
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of the sub-system. In this initial work, Extreme Learning Machines (ELM) were used for
implementation, while the results were compared with other widely used methods, such
as Partial Least Squares (PLS), Support Vector Machines (SVM) or Deep Artificial Neural
Networks (DANN). ELMs were selected because they can be trained very easily and fast,
which is a very interesting feature. If the system has a fast training stage, the parameters
can be adjusted very rapidly so that the models can be adjusted and fine-tuned in a very
short time. Interested readers can find more details in [4].

The SCADA system usually collects data at 10-min intervals. However, other intervals
are also possible, such as 5 min. Recently, some work has investigated the effect of sampling
frequency when collecting data in SCADA systems. For example, in [14] a wind turbine
performance monitoring technique based on high-frequency SCADA data is presented.
The sampling frequency is 4 s and it is shown that its use is beneficial for performance
monitoring, because the use of 5-min data tends to smooth this variation and does not
provide the degree of detail provided by high-frequency data. Fischer and Coronado’s
suggestions in [15] also highlight that 5-min data is not appropriate as a standardised
solution. Nevertheless, it is a valuable and relevant tool for the development of condition
monitoring systems (CMS). High frequency data appears to be a good option for CMS
development and to bring more information for wind farm management, as pointed
out in [16].

In any case, ANNs of different types have shown their usefulness in the construction
of these regression models. The idea behind it is simple. Periods of good operation of the
machines to be modelled are determined and a model is built that predicts one or more
outputs (targets) from other input variables. The most direct way is to build a regression
system that predicts the targets. Once the model is trained, it is kept running in the test
part. The error between estimation and measurement gives an idea of how well the system
is working. A small error, of the order of the error made in the training phase of the
system, means that the system is working correctly. However, when systems deteriorate,
measurements and calculations begin to diverge. Then, the error starts to grow and this
increase provides an early signal of a possible failure.

An increasingly popular and effective methodology for assessing the condition of
turbine components are so-called normality models. They attempt to capture the relation-
ship between a set of input variables and one or more target signals, which should be able
to determine the condition of the analysed component. An important step in normality
models is the filtering of the data to determine a subset of records that can be labelled as
normal data. Event and alarm records are often used for this task. Next, a set of inputs and
a target variable can be chosen, and an algorithm is fitted to the data. The goal is to infer
the model that describes the normal operating conditions of the monitored component, and
then use it to track deviations between the expected and observed behaviour of the tracked
variable. This approach is quite common in the wide world of predictive maintenance,
not only in wind turbine monitoring. One of the first, and most likely the most influential,
application of normality models to wind turbine monitoring is presented in [5]. Neural
networks are a popular choice due to their ability to model complex relationships in data;
some examples are provided in [17–19]. Other authors have compared the performance of
neural networks with standard machine learning algorithms, and regression models [9,20]
or alternative neural networks such as Extreme Learning Machines [4]. Normality models
allow capturing the complex relationships that can exist between turbine operating param-
eters such as temperatures, pressures, etc., and external factors such as wind speed and
ambient temperature. Improved modelling capability comes at the cost of reduced inter-
pretability compared to signal trending methods. The tuning of the models, the definition
of the best hyperparameters, and the architecture are not trivial and require knowledge of
data modelling and machine/deep learning. Normality models in wind turbines work
best when they model individual turbines [4,21]. When a generic model is built for all the
turbines in the wind farm, despite being of the same type and manufacturer, they always
perform worse. The performance of the turbines depends very strongly on their location,
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when compared between wind farms, and significantly within the wind farm itself. In
addition, when building models using SCADA data, some precautions must be taken.
The main one is to train the normality model with correct data; that is, making sure that
the turbine works properly in different operating regimes and preferably in all seasons
of the year, being sure that no malfunctioning sections of the machine are introduced as
they would bias and perturb the model. SCADA data is cheap to obtain and practically
available on all farms, but has low latency (5–10 min), so it is appropriate to focus on slow
time-varying targets. SCADA data are also characterised by outliers and missing data. The
number of variables that the SCADA system captures is extremely high.

In this paper, a way to determine the good performance of wind turbines is explored,
by comparing the variables of nearby machines of the same wind-farm and at the same time
instant, since it has been observed that, despite slight differences, the climatic conditions
(wind, temperature, humidity, etc.) are very similar as they are geographically very close.
When plotting them synchronised, the patterns are reproduced, as explained in Section 3.4.
From here, a reference signal is calculated and used to compare the rest of the signals,
extracting the signal difference between this reference signal and the (real) signals of each
turbine. From experiments, it has been observed that the signal difference is stable over
a range of values when the turbine is working properly, but, when it grows and remains
stable over time, it is indicative of a malfunctioning system.

To our knowledge, no work has examined the impact of estimating the values of
turbine variables using information from neighbouring turbines geographically close to
the one under analysis. The interest of this strategy is primarily to simplify the models
and create a baseline to be able to detect deviations from it that indicate a malfunction of
a turbine. This work investigates this strategy in detail and demonstrates experimentally
that it provides simple but very useful information for monitoring wind turbine farms.

The malfunction of a particular system or subsystem in a wind turbine is extremely
rare, so very few cases are available. Another problem in this field is the inconsistency of
labelling. Ultimately, the use of a normality model together with a regression technique
instead of classification-based models seems to be a good strategy. The critical point is to
train a normality model using data records belonging to different operating regimes, when
the turbines are operating correctly. If accurate models are to be developed, it is necessary
to have large data records to correctly represent the different conditions that may occur, for
example in changing wind or weather conditions.

The article is organised as follows. In Section 2, how the signals of the different
turbines show very clear time-varying patterns is illustrated from examples with real
data. This observation is evident from a temporally limited fragment of signals from
the generator system. Such observations motivate the study. Taking advantage of the
representation, problems associated with SCADA data processing such as the presence of
outliers or missing data, are presented and analysed. In Section 3, Materials and Methods,
the database used in this work, the data synchronisation method, the method used to filter
outliers, and the way the reference signal is generated, are presented. Section 4 is devoted
to the results of analysing each turbine with the proposed method. Finally, the article ends
with a brief discussion in Section 5 and with the conclusions in Section 6.

A list of acronyms used in this work is included before the References to facilitate the
reading of the manuscript.

2. Preliminary Observations

When observing and comparing the evolution over time of the same variable for all
wind turbines operating correctly in a wind farm, a clear pattern of change can be noticed.
This result is expected as the turbines are identical and are so close geographically that the
operating conditions are very similar between them. Furthermore, the SCADA data are
averages of the variables over 5 min (in our data), so that the higher frequency variations
are lost in this operation.
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Thus, although this pattern of joint variation appears in all the variables, it becomes
highly evident when the represented magnitude is of slow variation, as in the case of
temperature or pressure measurements.

To illustrate the coupling of the signals through a representation, the evolution of the
same variables in perfect time alignment is depicted to see the near-ideal synchronisation
when the WTs are working correctly, but are decoupled otherwise. This observation is
fundamental to develop a method based on neighbour observations.

Figure 1 shows, for the same time interval, four magnitudes of the generator sys-
tem of all the turbines of the park. The first signal corresponds to an angular veloc-
ity: wgen_avg_RtrSpd_IGR and the lasts three signals correspond to the temperatures:
wgen_avg_GnTmp_phsA, wgen_avg_GnTmp_phsB, wgen_avg_GnTmp_phsC. In fact, these are
the first four variables that appear in the database. See Section 3 for an explanation of the
names of the variables.

The upper graph in Figure 1 shows the rotor speed wgen_avg_RtrSpd_IGR of all
superimposed wind turbines in perfect time alignment, following a switching pattern due
to the presence of wind that causes the wind turbine to produce power or to be stopped. It
is interesting to note that, while the magnitudes of the well-functioning machines fluctuate
similarly, the WT82 (in yellow) is decoupled from the general operation for a time interval.
That is, during a time interval the values of the WT82’s signal wgen_avg_RtrSpd_IGR take
values close to zero, indicating that the turbine shaft does not rotate (it is stopped), when
the rest of the turbines maintain a pattern of activity. From now on, this signal will be used
to determine the status of the WTs. The next three signals in Figure 1 are the temperatures,
which are closely coupled to each other in such a way that it takes careful observation to
see that they are different. Thus, it can be observed that the temperature of turbine WT82
drops to room temperature levels during the interval where the rotor speed of WT82 (the
signal wgen_avg_RtrSpd_IGR in the upper plot, also in yellow) becomes zero, indicating
that the turbine, despite the wind blowing, has been stopped, possibly due to a fault.

This observation illustrates that when the WTs work correctly, the magnitudes collected
by the SCADA evolve synchronously between them, but when this is not the case, this
synchrony is disrupted, and the signal wgen_avg_RtrSpd_IGR is useful to determine the
WT state.

Figure 1 also points out two typical problems that appear in the SCADA databases.
The first one is the presence of outliers and the second one is the lack of data in certain
periods due to the failure of the SCADA system.

In Figure 1, especially in the three temperature plots, the outliers are easily identifiable
due to the physical impossibility of such a large variation. In this case it seems that the
data has been poorly transmitted since each WT that presents an error—an outlier—is
simultaneously shown in all the signals. Note that the outlier is represented by a certain
colour (which also identifies each turbine). When the fault affects a magnitude of the
turbine but not the rest of magnitudes, the fault can be attributed to a sensor fault. In
Figure 1, a general failure of the SCADA system can also be noticed, because there is a time
interval in which no data is recorded, affecting all the magnitudes of all the turbines.
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Figure 1. Plot of the pattern of variation of four variables of all the WTs in a common time interval. It
can be seen that although the variation is not identical, it follows a regularity when the turbines work
correctly but substantially differ if one of them does not, as is the case of WT83 (shown in green) at
the beginning of the figure.

3. Materials and Methods

In the following sections, the experimental database is described. Because not all the
sensors have all the data times, a temporal alignment method is also presented. Then,
an outlier removing block is described and after that, the reference signal for all the WTs
can be calculated, from which the deviation of each individual turbine will be extracted.
This residue will be used to identify possible failures in the turbines. Finally, the Gearbox
subsystem is analysed using the above-mentioned procedure.
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3.1. Experimental SCADA Data

A comprehensive three-year SCADA database of five wind turbines of 2.5 MW
Fuhrlaender, model FL2500, is presented. This turbine model consist of 10 different systems:
grid, transmission, generator, converter, nacelle, hydraulic system, rotor, meteorological,
turbine, and tower. The turbine signals are also organised into 10 groups, according to the
system they belong to.

The data in this database were generated by the wind turbine SCADA and collected
via an open communication platform (OPC) according to IEC 61400-25 format, which is the
standard protocol used for communication between wind turbines and SCADA systems.
Events and statistical indicators are recorded every five minutes. The values reported
for each sensor are: Minimum, Maximum, Mean, and Standard Deviation. The database
contains 312 analogue variables from 78 different sensors. The variables are stored with a
name symbolising the (sub)system and the type of variable, separated by an underscore;
the first term is the main physical system, e.g., generator = wgen , gearbox = wtrm,
nacelle = wnac, etc. The second term is the type of variable of the 5-min interval, e.g.,
min = minimum, avg = average, etc. The third and fourth terms are the final name of the
variable. Each of the events is labelled with a number. If the WT operates normally, the
label is ‘0’. If there is a warning, the turbine is not stopped and the label is ‘1’. Finally,
an alarm is indicated using ‘2’ as label, and in that case the WT is stopped. Alarms occur
very sporadically in WT, as the turbine operates correctly most of the time. Therefore, it is
common practice to combine warnings and alarms into a single class because a warning
can precede a future alarm if the WT is not properly inspected. This reduces the problem
to a two-class scenario. The aim is to identify in advance when a wind turbine starts
operating with potential problems that could lead to a warning or alarm condition. In the
experiments, only some of the system-related variables of the analysed subsystem are used.
The database was provided by Smartive (http://smartive.eu) (accessed on 20 April 2022)
and has been used in other publications [4,21–24].

All the data from the SCADA system is in a MySQL database, and the MATLAB
Database Toolbox was used to download data from it (see Table 1 for the exact dates
of the data acquisition). So, all the processing has been done under a MATLAB 2021b
environment running on a 2.4 GHz Intel Core i9 of 8 cores with 64 GB 2667 MHz DDR4 in
macOS Monterrey.

Table 1. Temporal distribution of data and turbine identifier.

WT Id 5 min

80 01-Jan-2012 01:00
81 01-Jan-2012 01:00

start 82 01-Jan-2012 01:00
83 01-Jan-2012 01:00

80 08-Dec-2014 06:00
81 08-Dec-2014 06:00

end 82 08-Dec-2014 06:00
83 08-Dec-2014 06:00

In this contribution, signals from two different turbine systems, generation and trans-
mission, are used. To show in context where each of the signals used belong and why they
were chosen, two tables (Tables 2 and 3) are organised.

First, to show the synchronous variation of the signals in Section 2 and to introduce
the method, (outliers filtering, pattern generation, etc.) in Sections 3.1–3.4, four signals
from the generator system are used (see Table 2). This is a selection of three slowly varying
temperature signals and one more quickly varying angular velocity signal that are used to
determine the status of the WT.

http://smartive.eu
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Table 2. Temperature and angular velocity signals corresponding to the generation system used to
present the method. The measurements are 5-min averages.

Variable Name Short Description

wgen_avg_GnTmp_phsA Average temperature of the generator’s winding, phase A
wgen_avg_GnTmp_phsB Average temperature of the generator’s winding, phase B
wgen_avg_GnTmp_phsC Average temperature of the generator’s winding, phase C
wgen_avg_RtrSpd_IGR Average speed of the rotor at the inductive sensor

Second, two signals from the gearbox subsystem are used.
The gearbox is a subsystem within the transmission system. Since a fault in the

gearbox is expensive and difficult to repair, it is one of the subsystems that requires the
most monitoring. Therefore, in this work, the gearbox subsystem is the one chosen to
be monitored.

The presented method does not need a large number of signals to work properly. For
this reason, the gearbox will be monitored from Section 3.5 onward only with a temperature
signal and a pressure signal with the additional support of the wgen_avg_RtrSpd_IGR
(used to verify the status of the WT).

The temperatures are measured at different points of the gearbox chain and therefore
different possibilities are available. In fact, having the complete analysis of all the signals
of a subsystem is not difficult. Doing so can be used to try to isolate the fault within the
subsystem or simply to reinforce the results. However, for the sake of clarity, an analysis
with few signals is performed.

In Table 3 the list of the temperature and pressure measurements collected in the
transmission system is presented, using the name of the signals according to the note in
which they appear in the database. The first 13 variables measure temperature in Celsius,
and the last three correspond to pressure measurements. The variables used in the analysis
are highlighted in bold.

Table 3. Temperature and pressure measurements collected in the transmission subsystem with a
brief explanation. The measurements are 5-min averages.

Variable Name Short Description

wtrm_avg_TrmTmp_Gbx Gearbox Temperature
wtrm_avg_TrmTmp_GbxOil Gearbox oil temperature

wtrm_avg_TrmTmp_GbxBrg151 Gearbox bearing temperature at point 151
wtrm_avg_TrmTmp_GbxBrg451 Gearbox bearing temperature at point 451
wtrm_avg_TrmTmp_GbxBrg450 Gearbox bearing temperature at point 450
wtrm_avg_TrmTmp_GbxBrg152 Gearbox bearing temperature at point 152

Temperature wtrm_avg_TrmTmp_GbxBrg452 Gearbox bearing temperature at point 452
wtrm_avg_TrmTmp_GbxClWtBkw Generator cooling system, cold side (inlet from radiator)
wtrm_avg_TrmTmp_GbxClWtFrw Generator cooling system, hot side (outlet to radiator)

wtrm_avg_TrmTmp_Brg1 Temperature transmission bearing 1 (main bearing system)
wtrm_avg_TrmTmp_Brg2 Temperature transmission bearing 2 (main bearing system)

wtrm_avg_TrmTmp_GnBrgDE Generator Bearing Temperature 1
wtrm_avg_TrmTmp_GnBrgNDE Generator Bearing Temperature 2

wtrm_avg_Gbx_OilPres Gearbox oil pressure
Pressure wtrm_avg_Brg_OilPres Bearing housing oil pressure

wtrm_avg_Brg_OilPresIn Bearing housing internal oil pressure

3.2. Temporal Alignment of the Signals of the Ensemble of WTs

When extracting the signals from each of the turbines, it is observed that the number
of samples differs slightly, so that if, for example, looking at the 10,000th sample of the
same signal from each turbine, their data-times do not match. The first step of our method
is therefore to temporarily align the signals of all turbines The turbine with the highest
number of records is WT81 with 215,613 and the one with the lowest number of records
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is WT84 with 210,689. Therefore, the records whose data-time were not available for all
turbines were removed. After completing the alignment process, 201,444 samples on all the
turbines were available. This means that 0.0657% of samples from WT1 and 0.0439% from
WT4 were removed. This is three orders of magnitude lower than the volume of data lost
due to the general failure of the SCADA system.

3.3. Filtering of Outliers

Another sensitive issue in the preprocessing steps is the outliers handling. In [25] a
study was made on the different filtering methods in the context of WTs. What is clear is
that it is not possible to use methods that assume a given statistic of the signal to be filtered
without having determined the characteristics of the signals.

In the present work, only two configurations have been used: (i) the one applied to
Figure 2, which is widely used but does not work correctly in our problem, and (ii) the one
applied to Figure 3, which is taken as general, since it works very well on the whole set of
available signals.

In this sense, the effect of using a typical filtering method consisting of eliminating
values that exceed three times the scaled median absolute deviation (MAD) [26] is shown
in Figure 2 The particularity of this filtering method is that it works on the entire signal. Let
us consider that the samples are organized in the vector x. The scaled MAD is computed
as K ·median(|x−median(x)|) where the median() represents the function that calculates
the median of its input, | | stands for the module, and K is the scale factor taken by default
as 1.4826 (the value taken when assuming Gaussian statistics). In this plot, in which
the temperature wgen_avg_GnTmp_phsA is depicted, it can be observed that the method
captures values close to zero as outliers. The outliers are marked with a black cross. These
detections are consistent with the laws of physics, as temperature values are subject to
high inertia and cannot undergo such sharp variations. However, the method visibly fails
when values corresponding to high amplitudes are removed, even though it is known that
these values correspond to well-functioning states of the WT. After the application of this
method, they would no longer be well represented.

Figure 2. Plot of the set of samples that the algorithm detects as outliers when it uses one of the
most common rules to detect them, which is to consider a value to be an outlier if the value is
more than three scaled median absolute deviations (MAD) away from the median. In this case, the
algorithm would incorrectly remove the values of high signal amplitudes. The values of the outliers
are indicated with a cross.
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Figure 3. Graphical result of the proposed outlier filtering algorithm, consisting of determining that a
value will be an outlier if it is more than 3.2 local standard deviations from the local mean calculated
on a moving average window of 25 samples. Unlike the traditional method, this variant takes into
account the local characteristics of the signal and does not remove the correct high amplitude values.
The values of the outliers are indicated with a cross.

Optimally, the filtering method for each signal should be determined according to the
characteristics of each particular signal. For that, a method that works acceptably well for
all recorded signals is proposed. It consists in determining that a value will be an outlier if it
is more than 3.2 local standard deviations from the local mean calculated over a 25-sample
moving window, which roughly correspond to 2 h of data. The fact of performing the
operations on a moving window means that the filtering criteria are applied locally and
not considering the whole range of values that the signal takes in the entire period of the
recording. In Figure 3, the points detected as outliers according to this second method are
shown, for the same signals and period as those shown in Figure 2. In this second case, the
method does not clip the higher amplitude values of the signal. In order to generalise the
process, this filter has been applied in the same way to all the signals.

3.4. Determination of the Reference Pattern of the Signal and the Residue

In this section, the reference pattern that the signal of each turbine follows is deter-
mined. This signal will be used as a reference to see how the signal of each turbine deviates
from this standard by calculating the residual, i.e., the result of subtracting this reference
from the signal of each turbine.

By calculating the pattern signal, it is assumed that most of the time the turbines
work correctly and that it is highly improbable that more than half of the turbines fail
simultaneously. Under this assumption, and for each k point of the sequence, the pattern
signal will be the median of the values of the 5 turbines at the point k. More precisely, given
the same signal of all WTs in the time instant k, named sWT8x(k), the pattern p(k) in k is
defined as p(k) = median([sWT80(k) sWT81(k) · · · sWT84(k)]). Therefore, from now on, the
pattern signal will be named as the median. In Figure 4, in the upper plot, the shape of the
median over-imposed on the set of example signals is represented, and in the lower plot
the residuals are represented. Note that the residuals of a well-functioning turbine stay or
oscillate around zero or show sporadic peaks that return to the origin, but in the case of
WT82 this residual diverges very perceptibly at the moment when it was stopped.

To improve the interpretation of the residuals, the signals can be smoothed by applying
a moving average or a low-pass filter.
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Figure 4. The upper plot shows the median (reference) signal in black, overlaid on the data of the
different WTs. In the lower plot, the differences of the signals of each WT with respect to the reference
signal are shown. Each of these residuals provides a visual representation of the deviation of the
individual WTs from the reference signal.

3.5. The Gearbox Subsystem

The gearbox system was chosen to carry out the experiments, following the work
developed in [4] and in a very similar way in [27]. The gearbox is the part of the turbine that
has the greatest impact on maintenance, repair, and manufacturing costs. As can be seen in
Table 4 of NREL’s report [28], the drivetrain, of which the gearbox is a part, is the second
most expensive element to maintain, regardless of the way that amortised generation costs
are calculated (CapEx & LCOE).

Given the importance of the prognosis of the gearbox subsystem, for its economic
implications, two signals from this subsystem were selected to be analysed according to
the procedure described above. To present the results, the experiments will focus on a
temperature value and an oil pressure value. These are the signals wtrm_avg_TrmTmp_Gbx
and wtrm_avg_Gbx_OilPress, which are represented in Figure 5. The time interval selected
is the same used in the previous figures. Note also that the proposed outlier detection
algorithm detects outliers generically, but some of them (marked with a cross in the figure)
still remain.

For each of the two signals, the procedure carried out is detailed by means of plots.
For the temperature signal, wtrm_avg_TrmTmp_Gbx, in Figure 6 the median and the signals
are superimposed, while in Figure 7 the residuals are depicted in the upper plot, while the
smoothed residuals, using a 50-sample moving average filter, are depicted in the lower plot.

In Figure 8, the median and the signals wtrm_avg_Gbx_OilPress of each turbine are
overlaid, while in Figure 9 the residuals are depicted in the upper plot, while the smoothed
residuals, using a 50-sample moving average filter, are depicted in the lower plot.
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Figure 5. Plot of a fragment of the signals wtrm_avg_TrmTmp_Gbx at the top and
wtrm_avg_Gbx_OilPress at the bottom corresponding to the Gerabox subsystem prior to the fil-
tering of outliers. It can be observed that in some periods of the graphs, the variables of WT81 and
WT84 are not in line with the general operation.

Figure 6. Reference signal (in black) of a fragment of the signals wtrm_avg_TrmTmp_Gbx after filtering
out the outliers.
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Figure 7. At the top, the residue of the signals wtrm_avg_TrmTmp_Gbx of Figure 6. The same signals
smoothed by a 50-sample moving average filter are depicted at the bottom.

Figure 8. Reference signal (in black) of a fragment of the signals wtrm_avg_Gbx_OilPress after filtering
out the outliers.

Figure 10 shows a simplified diagram of the proposed method. The first step consists
of a time-strict alignment of the measurements of all the turbines and a preprocessing of
outliers, performed on the basis of the temporal register that is incorporated into each
measurement. To detect outliers, a conventional method is applied but evaluated in a
time window. After this step, all measurements of the wind farm can be rearranged into a
three-dimensional tensor that allows the simultaneous processing of all measurements. The
reference pattern is calculated by simply taking the median of the same signals from each
WT and applying it to each k-point. This reference signal is used to calculate the residuals
of this signal for each WT by simply extracting the difference between the reference and the
actual signal at each WT. Figure 10, for a single signal, depicts this idea. From the analysis
and tracking of the residuals, alarms are generated in the same way as they are generated
in a regression-based ML model.
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Figure 9. At the top, the residue of the signals wtrm_avg_Gbx_OilPress is depicted. The same signals
smoothed by a 50-sample moving average filter are depicted at the bottom.

Figure 10. Simplified diagram of the proposed method.

The mathematics of this process are fairly straightforward. It involves calculating the
means to find the reference signal, subtractions to find the residuals, and moving averages,
both to smooth the residuals and to detect outliers. Let us now summarise them.

The median of dataset x of n values, median(x), is computed by first ordering the
values of this data set from smallest to largest such that the smallest is x(1) and the largest
is x(n); then, depending on whether n is even or odd, one has:

median(x) =


x( n+1

2 ) i f n is odd

1
2

(
x( n

2 )
+ x( n

2 +1)

)
i f n is even

(1)

To perform the smoothing of the signal x(i), a simple moving average (SMA) filter
with a temporal window of N samples is used, according to the following expression:

y(n) =
1
N

n

∑
i=n−N+1

x(i), (2)

which can be effectively computed by the following recursive form:
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y(n) = y(n− 1) +
x(n)− x(n− N)

N
(3)

One way to interpret the smoothing is to determine the Discrete Fourier Transform (DFT)
of the filter through the study of the Z transform of any of the expressions (2) or (3):

H(z) =
Y(z)
X(z)

=
1
N

1− z−N

1− z−1 (4)

When replacing z by e−jω in (4), and performing some operations, the DFT is obtained,
in terms of the discrete frequency ω, which is:

H(ejω) = e−jω N−1
2

1
N

sin
(

ω N
2

)
sin
(

ω
2
) (5)

Note that N, the length of the moving window, controls the pass-band of this simple
low-pass filter, so that the larger the N, the narrower the pass-band.

Finally, note that the same moving average filter has been used to filter outliers. The
samples within the temporal moving window are used to calculate the standard deviation
σ(n) when the filter is used for this purpose. Then, if |x(n)− y(n)| > 3.2σ(n), x(n) will be
labelled as an outlier.

4. Results

In this section, two signals from the gearbox subsystem are processed using the
proposed method and all the data available in the database. These are the temperature
signal wtrm_avg_TrmTmp_Gbx and the pressure signal wtrm_avg_Gbx_OilPress shown in
the previous section. In Figure 11 the residuals obtained from wtrm_avgg_TrmTmp_Gbx in
each of the five turbines are overlaid. In the upper plot, the raw residuals are shown, while
in the lower plot they are shown after being filtered with a 50-sample moving average filter,
which makes the interpretation easier. In Figure 12, the same representation is available
for the residuals of the wtrm signal. These two plots, due to the overlapping of the signals
and the long time interval covered, are difficult to interpret but they allow us to notice the
relative amplitudes and peaks that appear occasionally in the different turbines, and show
that at some point these signals separate from the signal that was defined as a reference
from the median.

To improve the interpretation of these results, in the following figures we separate
the information of these two graphs by turbines and compare them with the rotor speed,
wgen_avg_RtrSpd_IGR. Figures 13–17 show the information for turbines WT80, WT81,
WT82, WT83, and WT84, respectively. For each of these plots, in the central part the signal
wgen_avg_RtrSpd_IGR in the colour used to identify the turbine, is plotted. In the upper
part, in black, the residue is coming from wtrm_avg_Gbx_OilPress, but it is reversed, so
that the positive peaks of the Figure 12, in this representation, point downwards. The
lower signal, also in black, represents the smoothed residual of the temperature signal,
without any inversion. In the set of these five plots, the signals are scaled for a pleasing
display, so their absolute amplitudes do not provide information. The information is in
the position of the peaks of the residuals, their relative amplitude, and their position in
relation to the sections where the turbine shows speed values of the wgen_avg_RtrSpd_IGR
in the vicinity of zero. The rotor speed has the particularity that it allows to identify when
a turbine is inactive while the rest of the turbines are working, which is indicative that the
turbine is stopped, either in maintenance phase, or presumably out of order, and therefore
in repair phase.

In other words, when there is sufficient wind to move the set of turbines, the
wgen_avg_RtrSpd_IGR signals of the turbines follow the operating pattern. However, if
one WT is stopped, its wgen_avgen_avgg_RtrSpdSpd_IGR is measured as zero, decoupling
it from the general pattern. A detailed example can be seen in the last plot of Figure 1,
where the signal wgen_avg_RtrSpdd_IGR corresponding to the WT82 (in yellow), becomes
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zero when the rest of the signals of the same turbine (also in yellow) and represented in
the upper plots, uncouple from the pattern.

In Figures 13–17, the periods in which a turbine is stopped are represented in those
intervals where the central signal is zero. The blue rectangles added in these figures (11 in
total) highlight the time intervals where a peak in the residuals (black signals) is detected
and the WT is stopped. The red rectangles (two in total, one in Figure 13 and one in
Figure 17) show the presence of peaks in the residuals, but in this case the turbine is
not stopped.

Figure 11. At the top, an overlaid representation of the residues obtained from the signal
wtrm_avg_TrmTmp_Gbx corresponding to each of the analysed turbines (WT80–WT84) for the tem-
poral intervals in which the SCADA system has been operating. At the bottom, the same signals
smoothed by a 50-sample moving average filter.

Figure 12. At the top, an overlaid representation of the residues obtained from the signal
wtrm_avg_Gbx_OilPress corresponding to each of the analysed turbines (WT80–WT84) for the tem-
poral intervals in which the SCADA system has been operating. At the bottom, the same signals
smoothed by a 50-sample moving average filter.

In each of these plots there are blue rectangles that mark areas where there is a peak in
some residue signal and capture a section where the rotor speed is zero and therefore the
turbine is stopped. When that is the case, it can be noticed—but not always—that in both
residues a peak is produced simultaneously. Note that there are few peaks of significant
width that are not accompanied by the section, indicating that the turbine has stopped,
although one can be found at the beginning of the Figure 17 corresponding to the WT84.
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In Figures 13 and 16, the presence of a red rectangle can be observed, indicating that
despite the occurrence of important peaks, the turbines WT80 and WT83 do not stop. In
this case, we note that the peaks occur at the same time instants on both turbines. Moreover,
at the same instant time, the other three WTs (81, 82, and 84) also present peaks, indicating
that the turbines stopped, and in these three turbines, it is indeed registered as a stop. In
this case, the presence of the peaks in all the turbines is precisely due to the simultaneous
stop of the three of them, more than half of the turbines, which causes the median filter
to select, as a reference signal, the samples corresponding to one of the machines that is
stopped, which ends up in the centrality position.

Figure 13. Analysis of the WT80 turbine on the basis of the residues obtained from the signals
wtrm_avg_Gbx_OilPress (upper signal, in black) and wtrm_avg_TrmTmp_Gbx (lower signal, in black)
together with the rotation of the rotor of the WT80 turbine (central part, in blue). The blue rectangles
identify peaks in the residual signals that coincide with the turbine stops, detected as zero-valued
angular velocities. The red rectangle shows a ghost peak.

Figure 14. Analysis of the WT81 turbine on the basis of the residues obtained from the signals
wtrm_avg_Gbx_OilPress (upper signal, in black) and wtrm_avg_TrmTmp_Gbx (lower signal, in black)
together with the rotation of the rotor of the WT81 turbine (central part, in blue). The blue rectangles
identify peaks in the residual signals that coincide with turbine stops, detected as zero-valued
angular velocities.

Figure 15. Analysis of the WT82 turbine on the basis of the residues obtained from the signals
wtrm_avg_Gbx_OilPress (upper signal, in black) and wtrm_avg_TrmTmp_Gbx (lower signal, in black)
together with the rotation of the rotor of the WT82 turbine (central part, in blue). The blue rectangles
identify peaks in the residual signals that coincide with turbine stops, detected as zero-valued
angular velocities.



Appl. Sci. 2022, 12, 9491 18 of 21

Figure 16. Analysis of the WT83 turbine on the basis of the residues obtained from the signals
wtrm_avg_Gbx_OilPress (upper signal, in black) and wtrm_avg_TrmTmp_Gbx (lower signal, in black)
together with the rotation of the rotor of the WT83 turbine (central part, in blue). The blue rectangles
identify peaks in the residual signals that coincide with turbine stops, detected as zero-valued angular
velocities. The red rectangle shows a ghost peak.

Figure 17. Analysis of the WT84 turbine on the basis of the residues obtained from the signals
wtrm_avg_Gbx_OilPress (upper signal, in black) and wtrm_avg_TrmTmp_Gbx (lower signal, in black)
together with the rotation of the rotor of the WT84 turbine (central part, in blue). The blue rectangles
identify peaks in the residual signals that coincide with turbine stops, detected as zero-valued
angular velocities.

5. Discussion

Although the database has been exploited previously in other work to derive different
normality models for the exploration of different subsystems, this technique uncovered
subsets of data that were used in the training part of the model, but were mislabelled, i.e.,
used in the wrong class. While this is a relatively small proportion of the data, retraining
the models with the more correctly labelled training data would provide a slight overall
improvement in model performance. The strategy employed was to use the first half of the
data for training, and although all machines had small stops in this time frame, some of
these had not been detected.

Thanks to the proposed method, if a turbine in the wind farm fails, the specific location
of the failure can be determined as follows: Typically, WTs are analysed by subsystems.
This means analysing the set of signals segregated into smaller groups according to the
part of the WT they belong to. This allows faults to be isolated. Let us say, for example,
that subsystem A is analysed and the failure occurs on subsystem B. What is observed in
the signals belonging to subsystem A is that, if the failure is important enough to stop the
WT, at the moments when the WT is stopped, peaks appear in the residuals and, obviously,
if the WT is stopped, the rotor speed, the instantaneous power produced, etc., records
are zero. In this sense, failure is not anticipated, but a way to automatically isolate the
time windows in which the WT stops is obtained, which allows segmenting or correctly
labelling sections of data to improve the training phase of the supervised models. In a
context where wind farms have many WTs (more than a hundred, in many cases) and
because each WT has hundreds of measurements recorded continuously for many years,
applying this technique can be very helpful. It is even more interesting, however, when
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the failure occurs in the signals of the system under analysis. In that case, if the failure is
caused by the progressive deterioration of some mechanism, the signals involved begin
to vary the pattern gradually and the failure can be anticipated. This occurs in Figure 17,
corresponding to the analysis of the WT84. This failure affected the gearbox. The largest
blue square selects the time interval where the WT failed. Here it is interesting to note
that the peaks of the residuals, generated from signals from this subsystem, start to appear
before the WT stops (zero-valued section in the central green signal).

A brief analysis of the results found shows that they are consistent with what was
observed in previous analyses of this area. The tests were carried out with the second part
of the data of the turbines. As it is also reflected in the residue analysis, the first three
turbines, WT80 (Figure 13), WT81 (Figure 14), and WT82 (Figure 15) have better health
than the previous ones. The best of all is WT82 (Figure 15), which does not present any
problem during the test period. The turbines WT81 and WT82 only have one problem that
leaves them inactive for a short time. The turbine WT83 (Figure 16), also with a single
problem in the test part, remained inoperative for a considerably longer period of time.
Finally, it should be noted that the WT84 turbine (Figure 17) was inoperative due to a
problem in the gearbox that left it inactive for much longer than the rest, as the repair of
this subsystem, in addition to being economically costly, is slow. We note that the analysed
signals, wtrm_avg_TrmTmp_Gbx and wtrm_avg_Gbx_OilPress belong to this subsystem. In
this context, it is observed that the peak in the residue from the wtrm_avg_TrmTmp_Gbx in
the blue rectangle anticipates the failure. Additionally, we note that a peak had previously
been generated in the two residues (wtrm_avg_TrmTmp_Gbx and wtrm_avg_Gbx_OilPress),
which did not cause any stop but could possibly anticipate a problem in this subsystem.

6. Conclusions

The set of SCADA variables of all the turbines in the wind-farm operating correctly
follows a well-defined variation pattern group, especially by the variables of the type _avg.
When one of the turbines malfunctions, or stops working, its variable set is decoupled
from the general pattern. These two facts allow a comparison of the health status of the
turbines. To do the comparison, a reference signal is calculated, corresponding to the
median value of the signals of each turbine. The underline idea is that WTs will hardly fail
all at the same time, so that the detection of the malfunction of one of them can easily be
done via the difference of their signals with the reference signal. In this first exploration
it can be seen that the residuals, the difference between the signal from each turbine and
the reference signal, have an interesting and powerful potential to generate warnings and
that most of them are related to the status of the wind turbine. Moreover, the detection
of a fault does not only appear in the signals associated with the subsystem that fails, but
also transversely in the rest of the variables in a very general way. Hence, the detection of
abnormal behaviour does not depend on the exploration of a single signal.

An advantage of the presented technique is its explainability, as we can see why the
peaks are generated in the residue. In the present format, the representation of the signals
can already provide a visual idea of the occurrence of potential problems. In fact, an analyst
can study and interpret the signals causing the alarm and assessing the risk before a failure.

Another advantage is that once the strict time alignment of all the data of all the signals
of all the WTs has been verified, the information can be stored in tensors (multidimensional
matrices), which can be of third order, where the dimensions can be time × signals ×WT.
The operations involved, such as filtering outliers, can be performed very quickly on this
structure. Similarly, reference signals or patterns can be calculated by performing the
variance operation, operating only in the third dimension of the tensor. This means that
with very simple operations, the residuals of all the signals of interest of an entire park can
be generated massively and automatically without the need to train models. Compared to
supervised systems, this is a very important advantage. This method could also be easily
modified and used to mark the signal sections where WTs are stopped to better refine the
signal sets that are selected.This would allow better labelling of the signals used in the
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training phase, e.g., by discarding the sections where WT stops, if one wants to train a
normality model for the forecast. It should be noted that the strategy presented is simple
and allows a massive analysis of all the signals, being easily parallelised and with a very
controlled computational cost.

However, as with all methods, the proposed method has some possible drawbacks.
One of the disadvantages is the need to introduce a threshold on the residual signal when
generating alarms automatically. This disadvantage is common with the normality models
based on regressors that also need to apply a threshold on the error signal when generating
an alarm automatically. At this point, operator supervision would be desirable. In the work
presented, there have been a total of 13 possible alarms (the rectangles in Figures 12–16)
over an interval of almost 2 years, which represents an easily manageable volume. Another
disadvantage in presenting this paper is that it is a seminal work and there are no other
works on systems using SCADA signals with information from various WTs in the wind
farm available for comparison. It will therefore be interesting for future work on other data
to use the proposed method and confirm its effectiveness.
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