

88

Transformations on Knowledge Representation
between OWL and RDF Knowledge Graphs: A

Study Case

Mariano Ferreirone1,2,3, Mario Lezoche1, Diego Torres2,3, and Hervé
Panetto1

1 University of Lorraine, CNRS, CRAN, F54000 Nancy, France
mariano-julian.ferreirone@univ-lorraine.fr,

mario.lezoche@univ-lorraine.fr, herve.panetto@univ-
lorraine.fr

2 LIFIA, CICPBA-Facultad de Inform´atica, UNLP, Argentina
mferreirone@lifia.info.unlp.edu.ar,

dtorres@lifia.info.unlp.edu.ar
3 Depto. CyT, UNQ, Bernal, Argentina

dtorres@unq.edu.ar, mferreirone@unq.edu.ar

Abstract. Is well known that the semantic web is having a tremendous impact
on many aspects of the world and that it’s a wave that is far away from going
down. Ontology and Knowledge graphs are two meth- ods of knowledge
representation that are part of the basis of this wave, and both have their pros
and cons. A big part of the agricultural devel- opment focuses on these models,
mainly interested in the possibility of exploiting implicit knowledge. In this
work, there is an analysis over the relation between a rigid knowledge
representation model as OWL, and a simple and more flexible one like RDF. This
is based on the attempt of transforming an OWL knowledge graph into an RDF
knowledge graph, taking into account the interesting possibility of combining
knowledge graphs that were created with different levels semantic
expressiveness. The work also presents a case of study on the chess domain.

Keywords. Ontology, Knowledge graph, OWL, RDF, Knowledge
representation.

1 Introduction

During the last years, Knowledge Graphs (KG) have been demonstrated that
are well known alternatives for knowledge discovering. There are well known
cases in the industry that uses KG in order to organize their data and then
discover underlying knowledge that are not directly present in their data sources
[8]. Since the agriculture development is aware of this knowledge representation

mailto:mariano-julian.ferreirone@univ-lorraine.fr
mailto:mario.lezoche@univ-lorraine.fr
mailto:mario.lezoche@univ-lorraine.fr
mailto:herve.panetto@univ-lorraine.fr
mailto:mferreirone@lifia.info.unlp.edu.ar
mailto:mferreirone@lifia.info.unlp.edu.ar
mailto:dtorres@lifia.info.unlp.edu.ar
mailto:dtorres@unq.edu.ar
mailto:dtorres@unq.edu.ar

89

model, an important part of the community efforts are dedicated to creating
these representations. Taking into account that there are many different systems
that are being constructed in this industry, it’s also important to work in the
interoperability between them, in order to state the goal of having an integrated
and consistent knowledge representation model.
A KG is a formal representation of knowledge in the form of a labeled directed
graph, where the nodes represent concepts or an actual entity from the real world,
meanwhile the edges represent different relations between these nodes [5]. A
standard data model to represent KG is the Resource Description Framework
(RDF), [10] which use triples of the form (subject, predicate, object).
Additionally, the RDF model is complemented by query languages in which
SPARQL is the most prominent.
KGs could be represented with different models which co-exists. The simplest one
is the aforementioned RDF, which only supports really simple semantics. It’s
based on XML, so it inherits the XML datatype definitions. Another model
is RDFS (Resource Description Framework Schema) which is an extension of
RDF, and it introduces simple constraints and semantics, as class and property
subtypes, property range and domain restrictions. Finally, OWL (Web Ontology
Language) that introduces several ontological characteristics on top of RDFS1.
Taking into account the aforementioned, the authors found interesting to
investigate how these different KGs, with different levels of semantic
expressiveness, could be combined, in order to increase the interoperability
between them.
During the last years, the amount of RDF knowledge graphs has been increasing
and the most big and popular knowledge representations of this type are created
with this formalization language. As an example, Wikidata2 is constructed on
RDF and it has several billions of triples [4].
The RDF knowledge graphs could have a schema behind in order to add con-
sistency to the model and the data, and this is the case when they are ontology-
based. In the case that the KG is purely developed in RDF, the lack of a
formal schema does not ensure the consistency of the data, and there’s a lack of
semantic expressiveness in comparison with an ontology. Another strong point to
highlight is that the knowledge graphs which use a shared ontology are more
inter-operable since the ontology structure is unambiguous and it has an
accepted and common meaning in the community [5]. On the other side,
RDF/S knowledge graphs are more flexible with the addition of new information,
and since they don’t have to do a strict review of the structure, is more
efficient from a computational point of view. On the other hand, OWL KG
has more expressiveness in their semantics, but they are not as fast
computationally as the Knowledge graphs [7]. These are reasons that make
attractive the idea of working in a bidirectional connection or transformation of
these two knowledge representation models.
Some of the advantages of this approach are detailed as follows: Having an
ontology with all the instances from the equivalent knowledge graph is useful for

1 Wikidata, OWL, https://en.wikipedia.org/wiki/WebOntologyLanguage
2 Wikidata, https://www.wikidata.org/wiki/Wikidata:MainPage

90

visualizing the hierarchy and the structure in a clear way, and it also ensures the
consistency of the model. Furthermore, having into account that RDF Knowledge
graphs are likely to have a good efficiency, but they lack on the consistency since
they don’t have a complex semantic structure behind, there’s a gap that awakes
the scientific research interest, in order to add this expressiveness that, for
example, OWL has, creating a good combination of both characteristics.
Moreover, the translation would help to the interoperability between systems that
have their knowledge representation models, giving the possibility of choos- ing
which model is the preferred one, to create the integration following it. For
example, if the system A has its model in OWL, and the system B has it in RDF,
the goal of this development is to give the possibility of selecting if the integrated
model will be in OWL or in RDF, only transforming the corresponding one.
The approach that the authors of this article have developed, in order to start a
solution path for the aforementioned points of improvement, is to create a set of
rules or steps with the objective of transforming an OWL Knowledge graph
into an RDF knowledge graph, with the intention of analyzing what is lost in
the middle and define further steps.
There are some existent interesting works which are related to converting an
RDF and OWL into different formats. An example of this is the converter
developed as part of the tool named CoGui3 by the GraphiK team at
LIRMM[3]. In this case, the transformation is done from RDF to conceptual
graphs, and the resulting OWL file is exported to different languages. When
referring to RDF, currently, OWL rules, constraints and type disjunctions are
ignored. Another interesting work is the converter tool of the University of
Manchester4. This converter doesn’t have the possibility of converting an
OWL structure to a simple RDF syntax. Another interesting concept to take
into account is the ontology alignment or ontology matching, which is based on
generating a set of correspondences between concepts, properties or instances of
different structured KGs, with the objective of unifying them into a new one
[2].
The objective of this work is to develop a simple algorithm, aiming to in-
troduce the initial analysis of applying transformation rules which transform an
OWL KG into an RDF KG, primarily focused on the semantic loss that
takes place in the middle of the process. The approach is conducted over a study
case of a chess ontology. Learned lessons and challenges are reported.
The article is structured as follows: in section 2 there’s a general description
about the transformation process that the authors have designed and applied. In
section 3 we describe the creation of an OWL ontology over the chess domain, and
the application of the transformation to the corresponding file. Finally, in section 4
the learned lessons are described, and the next steps and further challenges are
mentioned.

3 CoGui Homepage, https://www.lirmm.fr/cogui/3/index.html. Last accessed 5/5/2022
4 OWLSyntaxConverter,UniversityofManchester http://mowl-
power.cs.man.ac.uk:8080/converter/. Last accessed 5/5/2022

http://www.lirmm.fr/cogui/3/index.html
http://mowl-/

91

2 Transformation

The transformation developed in this work consists of the creation of a program,
with the objective of converting an OWL KG into different types of RDF
triples representations, which means, RDF Knowledge graphs.
As a first step, the user can make the decision of working with the original OWL
KG input, or if it’s desired to infer the file in order to include also the implicit
axioms in the forward steps, using a reasoner engine and creating a new version
of the file. On the second step, the program reads the chosen input KG and
obtains all the elements from it, including classes, sub-classes, properties, etc.,
and assigns each of them to a graph structure that was previously created by the
authors. This graph structure has the following classes: Graph, which contains the
name of the graph, all the classes and all the individuals; Class, that contains
information related to a class, as his name and iri, all the subclasses and the
individuals of the class; Individual, which contains the name, iri and parent class
of the individual. The figure 1 describes the graph structure. Once this graph is
fed, the data and the knowledge are ready for being processed.

Fig. 1. Graph structure

As the next step, the generation of an intermediate output, which is going to be
structured as simple triple stores in the form (subject, predicate, object) takes
place. Then, the triple stores are translated to RDF/XML syntax, including

92

also those triples that are formed by OWL elements and don’t correspond to the
RDF semantic level. This is done using a template, which is described in the
figure 2, and creating a customized RDF triple, where some triples could be
compounded, concatenating information in the predicate or in the object.
Finally, the latter generated output will pass through a cleaner with the
objective of creating an RDF/XML output in the corresponding RDF
semantic level.

Fig. 2. Example of Subclass triples obtained

The implementation of the program was done using the programming lan- guage
Python. Furthermore, a part of the manipulation of the OWL file was
developed re-utilizing functions of the Python library called OWLREADY25,
which also offers the possibility to execute SPARQL queries over the
ontology. Regarding the inference, the reasoner Hermit6 was the chosen one. For
visualizing the obtained RDF triples in a graphical representation, the Python
package Graphviz7 was used. However, when the file is too large, the picture is
hard to read, and the graph is often stretched. The application Neo4J with the
plugin Neosemantics was also utilized to load the output triples and represent
them in a graph. The transformation process is represented in the figure 3. It’s
important to mention that in this stage of the project, the work is not going to
be focused on the computational efficiency. Instead, the efforts are concentrated
in the functional sense.

3 Case of study: application on the chess domain

3.1The ontology
In an attempt of analyzing the existent knowledge formalization done on the chess
domain, the work done by Adila Krisnadhi and Pascal Hitzler on their
published chapter ”Modeling With Ontology Design Patterns: Chess Games
As a Worked Example” [6] was found very interesting. However, the design of the
aforementioned ontology is more oriented to the representation of a chess
competition.
Regarding this case study, the first step was to create an ontology with some

5 OWLREADY2, documentation, https://owlready2.readthedocs.io/en/v0.37/
6 Hermit, http://www.hermit-reasoner.com/
7 Graphviz, https://graphviz.org/

http://www.hermit-reasoner.com/
http://www.hermit-reasoner.com/

93

individuals (an OWL KG), based on the chess domain. The idea of the
design is to represent the game, with all the important factors, and also represent a
match that has been played as a list of movements, or in other words, as the
evolution of the pieces on the board. As a supplementary support, the rules of the
game could be found in the internet8.

Fig. 3. Diagram of the transformation process

A description of the structure of the created ontology is as follows: The ontol- ogy
has five main classes which are: ”Board”, ”Match”, ”Pieces”, ”Players” and
”Rules”. The ”Board” class contains the sub-classes ”Cell”, ”file” and ”rank”,
with the objective of representing each position where a piece can be placed. The
first subclass contains sixty-four individuals in order to instantiate this, and
each one of these individuals is related through two object properties to one
individual of the subclass ”file” and one of the subclass ”rank”. They are also
related to a string value, so for example, the cell c3 is related to the string value
”c3”. This was done to workaround the following issue: the reasoner engine is not
capable to understand semantically the name of a subclass or an individual. The
”Match” class is designed to represent a specific list of movements that are
attached to one specific game played by two entities. An individual of the match
is going to be related to an object property with two different players, which
one will be identified with the white pieces, meanwhile the other one is going to
be related with the black pieces (both sides of the match). The class ”Pieces”
contains all the different pieces that are part of the game, like the Bishop, the

8 https://en.wikipedia.org/wiki/Chess

94

Tower or the King as sub-classes. Each one of this, has individuals to represent
the specific pieces that are on the board. For example, the subclass ”knight” has
two individuals per color. ”Players” contains two sub-classes called ”AI” and
”Person”, and they represent the entities that will play the match. ”Rules” class
contains some specific allowed movements (for example ”en passant”, the castle,
the promotion) and also the conditions that could get the game to the end in
the subclass ”win conditions”.
The class hierarchy of the ontology is graphically represented in Protege in the
figure 4 and in the corresponding VOWL diagram in figure 5

Fig. 4. Protégé structure

The main relations which help to represent a played game are the following:
– Match Where black player is Player
– Match Where white player is Player
– Match moves To cell cell
– Match moves Moving Piece Pieces
– Match moves Next move Match moves
– Pieces Strat cell is Cell

The object property hierarchy of the ontology is described in figure 6.
In order to represent a match, the design takes into account the following
statements: A game is played by two players. One plays the white pieces and
the other plays the black pieces. A match is a set of movements alternatively of
white pieces and black pieces from a starting situation to the end of the match. A
movement, in our chess ontology, is basically a piece which is moving from a
specific cell to another specific cell of the board.

95

This ontology was created utilizing the free and open source software Protégé9, which
is widely used to create ontologies and it has a lot of interesting utilities. The
mentioned ontology has been stored in OWL format, since it’s one of the most
common languages for this purpose, and it has a high level of schema
formalization, so it represents the lack of flexibility that it’s needed for the
objective of this work. This file format can be open as a text file or with different
specific software like Protégé. A little part of the structure of the language is
shown in figure 7 and in figure 8.

Fig. 5. VOWL diagram of the class hierarchy

In order to visualize the ontology in the tool Protégé, the plugins OWLViz10
and VOWL11 were utilized. A VOWL representation of the ontology can be
seen in the figure 9.

9 Protégé, Homepage https://protege.stanford.edu/ Last accessed 5/6/2022
10 OWLViz, https://protegewiki.stanford.edu/wiki/OWLViz
11 VOWL, http://vowl.visualdataweb.org/

http://vowl.visualdataweb.org/

96

3.2From OWL to RDF
The second step of this work consists in the application of the transformation
described in section 2, with the objective of converting the OWL KG file into
RDF triples that represent an RDF KG. The created chess KG mentioned in
the above section was exported from Protégé as a .OWL file and different tests
were executed in order to evaluate the different possible behaviours of the process.
The transformation was done with the original ontology file and with the infer-
enced one, and several outputs were generated formatted as RDF triple stores,
customized RDF and RDF/XML.

Fig. 6. Object properties in Protégé

Fig. 7. Bishop class in OWL file

97

Fig. 8. Moving Piece property in OWL file

In order to obtain the knowledge and being able to process it, the OWL structure
was transformed into the python graph structure. This load was then evaluated
through a comparison between the number of elements that were present in
Protégé and the number of elements that were loaded to the python graph

Fig. 9. VOWL ontology representation

98

structure. In this case, this test had successful results. The figure 10 shows an
example where the number of individuals is compared.
The first output is generated in triples of the form (subject, predicate, object),
which represent the relation between two nodes in the knowledge graph.
Futhermore, for the sake of the analysis, a customized RDF structure output
has been generated, in which the triples are compound. This means that
everything from the OWL input is present in the output, concatenating
information in the predicate or in the object. As an example, the input OWL
statement pawn promoted to ”Pieces not(Kings) not(Pawns)” was translated
to an ”RDF” triple with a compound object ”not(Kings) not (Pawns)”. After
cleaning the customized RDF output, the triples are also translated to an
RDF structure,

Fig. 10. Comparison of individual between Prot´eg´e and program

which is described in the figure 2. The obtained triples in this occasion have a
lack of expressiveness, since there’s an obvious difference between it and OWL.
This makes that the constraints, types of relationships and all the characteristics
that are specific from OWL, are not represented in RDF. Examples of the
RDF triples obtained are shown in the figures 11 and 12.

99

Fig. 11. Example of Subclass triples obtained

Fig. 12. Example of Individual triples obtained

100

In order to show the lost semantics that this transformation has, the OWL
statement pawn promoted to ”Pieces not(Kings) not(Pawns)” can be highlighted
as an example again. In this case, the object or range is only one element for the
OWL file, but it cannot be transformed into only one element in the RDF
structure. Moreover, it would be necessary to create several triples to represent
only one OWL relation with constraints. An example of a graphical representation
of the generated triples is in the figure 13.

4 Learning lessons and further steps

Through this exercise, the authors have analyzed the lost of semantics that takes
place in a simple transformation from an OWL KG into an RDF KG, which is
related to the difference over the expressiveness between them. RDF is a lighter
and more flexible representation, and it’s not designed to express the level of
semantics that OWL does. The experiment showed that the following
characteristics weren’t able to be represented in the output of the transformation:
type of relationships (symmetric, transitive, etc.), cardinality constraints, exact
values, complex classes and more. Furthermore, the transformation had the
necessity of looking for generic keywords in order to not depend on the specific
syntax of a specific file. Regarding the visualization of the output, it was not
possible to generate a clear one, since the triples were many and the visualization
was too diffused.
Currently, the authors have in mind two possible options to treat this
expressiveness difference. The first one is to create a representation of the OWL
ontology without constraints, but maintaining all the logic that is behind these
rules or definitions. A possible path to do this is investigating and testing the

101

Fig. 13. Output triples in Neo4j

output generated after the inferences over the OWL structure and deleting the
constraints. The second option is to keep all the constraints and finding a way
to express them. This could represent the creation of new nodes, and additional
triples would represent the complex axioms in RDF. With the customized
RDF output, a primitive and first attempt of maintaining all the characteristics in
the RDF KG was done, but this is only with analysis purposes since it’s not
practical as its. However, this output will be also taken into account in the
further steps.
Regarding the next steps, one possible path would be to add a new step in the
program with the objective of interpreting this customized RDF structure, giving
to the compound triples a representation that fits with the RDF syntax. Another
possible path to follow, in order to add these characteristics to an RDF graph,
could be to add a layer of representation, to express this structure in an efficient
manner. The authors will research existent work related to adding formalization
to RDF KG. It’s interesting for the authors to study Shapes Constraint
Language [1], the characteristics of the property graphs [9], ontology alignment
[2] and the state of the art of its applications into the knowledge graphs. The
objective would be to integrate some of this existent concepts, or develop a
new one inspired by them, and introduce it in this transformation process.
Furthermore, it’s interesting for the authors to investigate the transformation in

102

the opposite direction, which means from an RDF KG to an OWL KG.

5 Acknowledgments

The application of the idea to the case of study has been done with the help of
Hamza ABDOULHOUSSEN, Killian CRESSANT and Hadrien ROCHU,
who are currently doing their master in computer science at the Université of
Lor- raine (Nancy). Their contribution was done inside the framework of the
”Projet Interdisciplinaire de recherche” (PIDR), which is a research project
conducted as part of the TELECOM Nancy curriculum.

References

1. Shapes constraint language (SHACL). Tech. rep., W3C (Jul 2017),

https://www.w3.org/TR/shacl/
2. Ardjani, F., Bouchiha, D., Malki, M.: Ontology-alignment techniques: Survey and analysis.

International Journal of Modern Education and Computer Science 7, 67–78 (11 2015).
https://doi.org/10.5815/ijmecs.2015.11.08

3. Baget, J.F., Chein, M., Croitoru, M., Fortin, J., Genest, D., Gutierrez, A., Lecl`ere, M.,
Mugnier, M.L., Salvat, E.: RDF to Conceptual Graphs Translations. In: CS-TIW:
Conceptual Structures Tool Interoperability Workshop. vol. LNAI, p. 17. Springer,
Moscow, Russia (Jul 2009), https://hal-lirmm.ccsd.cnrs.fr/lirmm-00410621

4. Desouki, A., R¨oder, M., Ngonga Ngomo, A.C.: Ranking on very large knowledge
graphs. pp. 163–171 (09 2019). https://doi.org/10.1145/3342220.3343660

5. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G.d., Gutierrez, C., Kirrane, S.,
Gayo, J.E.L., Navigli, R., Neumaier, S., Ngomo, A.C.N., Polleres, A., Rashid, S.M., Rula,
A., Schmelzeisen, L., Sequeda, J., Staab, S., Zimmermann, A.: Knowledge Graphs.
Synthesis Lectures on Data, Semantics, and Knowledge 12(2), 1–257 (Nov 2021).
https://doi.org/10.2200/S01125ED1V01Y202109DSK022,
https://www.morganclaypool.com/doi/abs/10.2200/S01125ED1V01Y202109DSK022,
publisher: Morgan & Claypool Publishers

6. Krisnadhi, A., Hitzler, P.: Modeling With Ontology Design Patterns: Chess Games As a
Worked Example, vol. 25, chap. 1, p. 3–21. IOS Press (2016). https://doi.org/10.3233/978-
1-61499-676-7-3

7. Lera, I., Juiz, C., Puigjaner, R.: Performance-related ontologies and semantic web
applications for on-line performance assessment of in- telligent systems. Science
of Computer Programming 61(1), 27– 37 (2006).
https://doi.org/https://doi.org/10.1016/j.scico.2005.11.003,
https://www.sciencedirect.com/science/article/pii/S016764230600013X, special Issue on
Quality system and software architectures

8. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale
knowledge graphs: lessons and challenges. Communications of the ACM 62(8), 36– 43 (Jul
2019). https://doi.org/10.1145/3331166

9. Tomaszuk, D., Angles, R., Thakkar, H.: Pgo: Describing property graphs in rdf. IEEE
Access 8, 118355–118369 (2020)

10. Wood, D., Lanthaler, M., Cyganiak, R.: Rdf 1.1 concepts and abstract syntax. W3C
Recommendation, W3C (2014)

http://www.w3.org/TR/shacl/
http://www.morganclaypool.com/doi/abs/10.2200/S01125ED1V01Y202109DSK022
http://www.morganclaypool.com/doi/abs/10.2200/S01125ED1V01Y202109DSK022
http://www.sciencedirect.com/science/article/pii/S016764230600013X

